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Abstract 

Solar thermal energy is currently used for low temperature heating applications using flat plate collectors. The absorbed solar 
energy is transferred to the working fluid flowing in the pipe. The performance of the system is influenced by heat transfer from 
tube to working fluid, with minimum convective losses, which has to be considered as one of the primary design factor. In tube 
and channel flows, to enhance the rate of heat transfer to the working fluid, passive augmentation techniques such as twisted 
tapes and swirl generators are used in the fluid flow path. In this paper, convective heat transfer analysis for a horizontal 
circular pipe with fluid in mixed laminar flow range is performed using experimental simulation under constant heat flux 
boundary condition. The variation of heat transfer coefficient and pressure drop in the pipe flow for water and water based 
Al2O3 nanofluids at different volume concentrations and twisted tapes are studied. The dependence of particle concentration and 
Reynolds number for enhancement in heat transfer and increase in the pumping power due to pressure drop is analysed in the 
range of parameters considered. 
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1. Introduction  

In many engineering applications having heating or cooling process, solar energy is widely used. For most of the 
domestic water heating purposes, solar flat plate collectors are employed. The heat exchange phenomenon between 

 

 
* Corresponding author. Tel.: +91-9962155819; fax: +91-416-2243092. 

E-mail address: rajasekhar.y@vit.ac.in 

© 2013 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the organizing and review committee of IConDM 2013



1475 Y. Raja Sekhar et al.  /  Procedia Engineering   64  ( 2013 )  1474 – 1484 

the fluid and surrounding high temperature source is governed by convective heat transfer. In the current era, high 
performance heat transfer equipment with minimal surface area is the industrial requirement. Also, to derive 
optimal energy conversion, the design of the system must provide high efficiency at low cost. Usually in all solar 
energy applications, the efficiency is governed by the collector area and amount of incident solar radiation. The 
enhancement of heat dissipation to the working fluid and using a working fluid of high heat transfer performance 
will increase the efficiency of collectors. For more than a decade, researchers had performed many studies in the 
past to show enhanced properties of nanofluids [1-3] and will result a certain increase in the heat transfer 
characteristics in tube flow [4-8]. But, heat convection characteristics in practical heat exchange mechanisms must 
also be studied [9]. Many researchers have focused experimental and numerical investigations for forced 
convection heat transfer studies in a pipe with different material and concentration of nanoparticles, inserts and 
boundary conditions in turbulent and laminar flow regime in plain tubes [10-16]. Yung et al. [17] studied the 
convective heat transfer coefficient and friction factor in rectangular micro channels using Al2O3  water/ethylene 
glycol (50:50) nanofluid with different concentrations. Their results had shown increase in 
Nomenclature 

p
C   Specific heat of the fluid, kJ/kg-K 

pd   diameter of the particle, nm 
D  diameter of tube, mts 
f   Friction factor 
h   Heat transfer coefficient, W/ m2-K 
I  Current, amps 
K   Thermal conductivity, W/m2 
L  length of the tube .
m    mass flow rate, kg/s 
Nu  Nusselt number 
Pr  Prandtl number 
q  heat input, watts 

  heat flux, W/m2 

Re  Reynolds number 
T  Temperature of fluid, 0C 
V  Voltage, Volts 
x  axial distance from the entrance region of tube, mts 
Greek symbols 

   Density, kg/m3 
  Volume concentration, % 
  Dynamic viscosity, kg/m-s 
  Boundary layer thickness 
  Thermal diffusivity, m2/s 

Sub-scripts 
f  fluid 
in  inlet 
m  bulk mean 
nf  nanofluid 
out  outlet 
p  particle 
s  surface 
Reg  Regression 

 
convective heat transfer with increase in Reynolds number of flow and enhanced by 32% at 1.8% volume 
concentration. Kolade et al. [18] studied convective heat transfer performance in laminar thermally developing 
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flow with Al2O3  water and Silicone oil/MWCNT nanofluids. They observed that augmentation factor for water - 
Al2O3 nanofluid is very less compared to silicone oil with MWCNT. Wen and Ding [6] conducted experimental 
investigations under laminar flow conditions at the entrance region of the tube using water and -Al2O3 
nanoparticles. They proposed that the reason for enhancement might be migration of particles and the resulting 
disturbance of the boundary layer.  The rate of heat transfer depends on the thermal and hydraulic properties in the 
system. Usually, to enhance the heat transfer rate in pipe flows, twisted tapes are employed which provides many 
advantages in heat exchanger applications. It becomes significant where, there is no additional heat transfer area is 
required. It is usually mistaken that, use of twisted tape inserts lead to increased tube side pressure drop. But, in 
comparison to plain tube it can always be shown that tube with inserts have heat transfer enhancement at the same 
or even lower pressure drop [15]. Due to insertion of twisted tapes in the flow path, greater flow length is induced 
and generates swirl which affects the transverse fluid transport across the tape-partitioned pipe section, there by 
promoting greater fluid mixing and high heat transfer rates [15].  Sharma et al. [16,19] have investigated 
convective heat transfer of Al2O3 nanofluids in plain tube with twisted tape insert under turbulent flow conditions. 
Their results indicated enhancement of Nusselt number compared to the plain tube at the same flow conditions. 
Also, a few researchers have attempted convective heat transfer studies for solar collector applications using 
twisted tapes in turbulent flow regime [20]. From the literature study it is understood that using nanofluids will 
increase the convective heat transfer, but will also increase the pumping power. This study is intended to estimate 
the heat transfer coefficients for forced convection and uniform heat flux boundary condition in the laminar flow 
range. Aqueous Al2O3 nanofluids of various concentrations and twisted tapes under different uniform axial heat 
flux condition are tested. The estimated heat transfer coefficients are compared with the data available in 
Literature.  

2. Experimental setup and procedure 

An Experimental test setup was fabricated to investigate the convective heat transfer and friction factor 
behaviour of water based Al2O3 nanofluids in a horizontal circular tube subjected to constant heat flux boundary 
condition. The schematic diagram of the experimental setup and twisted tape is shown in Figure 1a and 1b 
respectively. The fluid is allowed to flow through a copper tube of 0.012 m diameter resembling the riser tube of 
solar flat plate collector. The flow circuit consists of a chiller, collecting tank, and a storage tank connected to a 
pump. The copper tube is heated uniformly by wrapping it with two nichrome heaters of 20 gauge, having a 
resistance of 53.5 ohms per meter length and 1000 W maximum rating, and the entire test section is subject to a 
constant heat flux boundary condition. The space between the test section and the outer casing is insulated with 
rock wool to minimize heat loss. The test section of 1.5 m in length is provided with five K-type thermocouples in 
which three were brazed to the surface at distances of 0.375, 0.75, 1.125 m from entry and two located to measure 
the working fluid inlet and outlet temperatures. All these thermocouples have 0.10C resolution and are calibrated 
before fixing them at the specified locations and the accuracy is within 0.40C. Experiments are conducted with 
distilled water with a view to test the accuracy of the results. The aspect ratio of the test section is sufficiently large 
for the flow to be hydro-dynamically developed. The fluid from the storage tank is forced through the test section 
with the aid of a pump connected to the suction side of the tank. The liquid is heated in the test section and hot 
fluid is allowed to cool by passing it through a chiller. The provision of the chiller helps to achieve the steady inlet 
fluid temperature. The procedure for preparation of nanofluids follows Syam Sundar et al. [3]. Nanofluid at 
different volume concentrations of 0.02, 0.1 and 0.5% is used in conducting the experiments. The thermal and 
properties of nanofluids such as thermal conductivity, density, viscosity and specific heat of the nanofluids at 
different concentrations are estimated using the equations (1)  (4) respectively based on the previous work of 
Sharma et al. [16].  
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The flow rates are calculated by collecting the fluid in a collecting vessel over a period of time with the help of 
a precise measuring jar and stop watch. At the ends of the test section 3mm hole is drilled with the help of drilling 
machine to tap the pressure across the test section. One end of the manometer is connected with the inlet tap, and 
the other end of the monometer is connected with the outlet tap. The readings of the level in the U-tube are noted 
down and made equal. Due to the working fluid pressure, the fluid level in the U-tube changes and the difference 
in height of the levels are measured. The fluid line connections are checked for leaks after filling the storage tank 
with the working fluid (water & nanofluids). The Reynolds number of flow of the working fluid flowing in the test 
section is measured from the mass flow rate. The total heat transfer test section is heated with constant heat flux 
boundary condition. All the heat transfer tests and friction factor tests are conducted in the flow Reynolds number 
form 800 - 2200. Total 80 data points are generated for the estimation of heat transfer coefficient and friction factor 
with twisted tape inserts. Regression equations are developed for the estimation of Nusselt number and friction 
factor for fluid flowing in a tube with and without tape inserts based on the experimental data.  

 

 

Fig. 1. (a) Schematic diagram of the experimental system 

 

Fig. 1 (b) Full length twisted tape insert inside a tube 
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3. Data Analysis 

In the experiments conducted under constant heat flux boundary condition, temperature of pipe surface at 
different locations, Voltage and current supplied to the heater and pressure drop is recorded. The heat transfer 

 The energy balance between the heat supplied and energy 
absorbed by the flowing liquid is established using Eqns. (5) and (6) for every set of data and the experimental heat 
transfer coefficient is estimated with Eqn. (7).  

 

IVq     (5)             
inoutp TTCmq

.    (6)       

mTsT

"qh
              (7) 

The deviation between the values obtained with Eqns. (5) and (6) is less than ± 2.5% and the heat loss to 
atmosphere is neglected. The net heat input to the test section is corrected for electrical heat input to the fluid by 
calculating the losses through the insulation. The experiments were performed for each run after ensuring the 
difference between the net heat input and enthalpy rise of the fluid is less than 5%. The enthalpy rise of the fluid is 
calculated from equation 6.  

The bulk temperature of the fluid at any axial position of the tube at a distance of   from the inlet is 
calculated by assuming linear temperature variation along the length. The local heat transfer performance was 
defined in terms of the Nusselt number ( xNu ) and heat transfer coefficient ( xh ) is given by 
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Where xh is the local heat transfer coefficient  
Since, the inner wall temperature of the tube could not be measured directly, it can be determined from the heat 

conduction equation in the cylindrical coordinate system given by equation (10) [1]. 
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The mean temperature of the fluid xT fm,  at any axial position from the entrance can be determined from the 

energy balance equation at that section of the tube for the constant heat flux boundary condition. From the first law 
of control volume of the length, dx of the tube with incompressible fluid and negligible pressure, the convective 
heat transfer is given by equation (11). 

mpconv dTCmdxpqdq
.

" . (11) 
Where p  is the perimeter of the test section given by iD  and mdT  is the differential mean temperature of the 

fluid in that section. 
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The variation of mT with respect to axial distance x can be determined by integrating the above equation from 
0x to x and mean temperature of the fluid is given by 
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Therefore,        
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The Nusselt number can also be determined from the well-known Shah correlation for laminar flows under 
constant heat flux boundary condition given by [10,11] 

3
1

x
DRe.Pr.1.963Nu  for 33.3

x
DRe.Pr.       (15) 

The fluid in the test section having uniform cross sectional area is assumed to be incompressible and flow is 
steady. Reynolds number of flow is defined as 
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m
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Similarly, average heat transfer coefficient and Nusselt number of flow is calculated using 
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where, 

____

wT is the average temperature of the wall and 
____

fT is the mean bulk fluid temperature. 
Similarly, the pressure drop across the test section was measured by U-tube manometer which is connected at 

the either ends of the test section as shown in the experimental setup Fig. 1(a). CCl4 was used as the manometer 
fluid since the density of the fluid is higher than that of the working fluid.  Before taking the pressure drop 
measurements, the test section was freed of air bubbles by venting them to the reservoir tank placed at the end of 
the test section. The Darcy friction factor is calculated from the measured pressure drop using equation (16). 
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where ghP  
But, for laminar flows friction factor is given by  

Re
64f     (17) 

4. Results and discussion 

To validate the experimental setup, measurements were first evaluated for Nusselt number and friction factor by 
conducting experiments in a plain tube with water at different Reynolds number. The experimental local Nusselt 
number data is compared with numerical results and experimental data from Literature [6,10,11] as shown in Fig 2. 
The variation of friction factor for water in a plain tube with increasing Reynolds number is shown in Fig 3. It is 
observed that equation of Shah [10,11] is under predicting the local Nusselt numbers by over 15%. A similar trend 
was observed by Wen and Ding [6] and Kim et al. [21] in their experimental results and the reason is presumably 
because of the tube size where the Shah equation was developed for large channels [6]. The deviation of present 
experimental values compared to experimental data of literature is found to be less than 10% hence validating the 
experimental setup. The variation of local Nusselt number along the dimensionless axial distance for different 
Reynolds number of water in a plain tube is shown in Fig 4. It can be observed that for increasing Reynolds 
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number, the local Nusselt number is increasing by over 20% at the same axial position. Further, the variation of 
local Nusselt number in plain tube with use of nanofluids is experimentally studied. The data of local Nusselt 
number along the axial distance for different flow Reynolds number is shown in Fig 5.  The Reynolds number will 
change with use of nanofluids due to small variations in viscosity at different particle concentrations. The changes 
in values of Reynolds number in Fig.5 are within ± 100. It can be observed that with use of nanofluids the heat 
transfer coefficient certainly enhances especially in the entrance region. The local heat transfer coefficient at X/D 
=10 and 0.5% particle concentration is 26% and 22% higher than compared to water in a plain tube. It is also 
observed that the local Nusselt number increases with Reynolds number and particle concentration. But, a 
significant decrease in heat transfer enhancement with increase axial distance is noted. A similar trend was 
observed by Wen and Ding [6] in their experimental results using Al2O3 nanofluids up to 1.6% volume 
concentration. 
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Fig 3. Comparsion of friction factor for water in plain tube at 
different flow Reynolds number using water with data of literature  
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Friction factor measured from the experiments for plain tube with water is presented in Fig. 6 and compared 

with equation of Moody [22]. The deviation of present experimental friction factor for water to the equation of 
Moody is found to be less than 5%. It can be observed that for increasing particle concentration the friction factor 
is increasing while for increasing Reynolds number the friction factor decreases. The variation of friction factor for 
different nanofluids is presented in Fig 4(a). Regression equations are developed for average Nusselt number and 
friction factor in a plain tube using water and nanofluids given by equations (5) and (6) valid in the range 0< < 
0.5%. The deviation of estimated values from measured values of average Nusselt number and friction factor using 
regression equations are less than 10% as shown in Figs. 5 and 4(b) respectively. The friction factor for different 
volume concentrations of Nanofluid calculated from the eqn. (6) are compared  with the values of plain water and 
observed that the friction values of nanofluid are slightly higher than the values of water due to increase in fluid 
viscosity and decrease in Reynolds number. The Nusselt number increase for nanofluids compared to plain water is 
of the order of 8-12% for all the particle volume concentrations. The possible reasons for the enhancement of 
Local heat transfer coefficient are discussed here under. 
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For a flow having uniform velocity and temperature distributions through the pipe, the fluid has different 
temperature from the wall temperature. Experimental Local heat transfer coefficient for different volume 
concentrations of nanofluid with twisted tape inserts is shown in the Figs. 5  8.  From the figures it can clearly 
observed that the nanofluid of 0.5% volume concentration with twisted tape of H/D = 5 is having high heat transfer 
coefficients compared to the other data. Twisted tapes insertion and consideration of nanofluids for heat transfer 
enhancement result in increase of pressure drop in the flow, which contribute to increase of pumping power. 
Pumping power increase is calculated on the basis of Fanning frictional factor. The ratio of increase of Fanning 
frictional loss due to increase in density and viscosity of nanofluids to the Fanning friction loss due to water will 
give the increase in pumping power required. The reason for heat transfer enhancement of nanofluid with twisted 
tape insert is the effect of Prandtl number. The similar trend was observed by Sarma et al. [26] for single phase 
fluid with twisted tape inserts. How ever for comparison of experimental data with nanofluid and twisted tape 
inserts under laminar flow conditions, data is not available in the literature. 

5. Conclusions 

Heat transfer experiments were conducted in a pipe under low Reynolds number range using water and water 
based nanofluids. Heat transfer coefficient and friction factor for nanofluid in the flow path enhanced compared to 
water. The experimental data is compared with the data of literature and are found to be in good agreement. The 
increase in heat transfer coefficient in plain tube with use of nanofluids is greater by 8-12% compared to the flow 
of water in a plain tube. The nanofluid of 0.5% particle concentration is having highest friction factor compared to 
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water. The Nusselt number and friction factor increases with increase of particle concentration. But, friction factor 
decreases with increase of Reynolds number of flow where as the Nusselt number increases. Using nanofluid with 
a high heat exchange can help in reduce the size of the heat exchanger or with out increasing the size of the heat 
exchanger efficiency of the system can be improved. Further, using twisted tapes and nanofluids in the pipe flows 
is advantageous since it is visible from the results that the energy gained with heat exchange is more than the 
energy spent on pumping power. It is clear from the results that heat transfer enhancement in a horizontal tube 
increases with Reynolds number of flow and nanoparticle concentration. 
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