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Abstract: Day-by-day, the desideratum for high speed internet connectivity 
increases and consequently, high performance switches are imminent. These 
switches require efficient schedulers to reach its maximum potential. In this 
paper, a high performance scheduler is proposed for buffered crossbar switches 
to work under multicast traffic. The scheduler is able to reduce the starvation 
effect and thereby achieves maximum throughput with minimum delay than 
existing algorithms. 
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1 Introduction 

In recent years, advanced high speed communications have become vital to the economic 
growth of a country. Most of the online applications such as video games and 
conferencing, internet protocol TV, distance learning, etc. works with multicast traffic 
(Guo and Chang, 1998). These applications demand high speed internet support in order 
to attain its features. Applications with streaming video and audio are generated, 
processed and handled from a single source and are sent to many receivers. For example, 
a single video feed is transmitted from a video server to thousands of destined receivers. 
As a result, the entire community raises concerns about bandwidth usage and CPU 
overheads involved in the same (Sahasrabuddhe and Mukherjee, 2000). In general, if the 
video server needs to send a video feed to each individual receiver then it has to generate 
thousands of video streams. This result in so many streams which would most likely 
saturate the link connected to the server and render the server useless due to the high 
CPU load incurred. The concept of multicasting allows a one-to-many transmission that 
consists of a single data stream that is propagated to any host that wants to receive the 
data stream, without unnecessarily sending that data stream to hosts that do not want to 
receive the data stream (Eriksson, 1994; Giaccone et al., 2001). 

Packet transmission takes place through three different strategies such as unicast, 
multicast and broadcast (Dai et al., 2008). A unicast packet is sent from a single source to 
a single destination and is also known as one-to-one communications. A broadcast packet 
is sent from a single source to all the destinations on the given environment and is also 
known as one-to-all communication. Multicast traffic is designed to send a packet to the 
fixed number of destinations in the given environment. It is also known as one-to-many 
communications. Multicasting ensures only a single copy of a one-to-many transmission 
is sent over the paths necessary to reach the appropriate destination that need to receive it. 

Figure 1 shows the multicast traffic in core routers. R1 and R2 are the routers which 
receive the message from the server and transfers to the host or next intermediate router. 
H1, H2 and H3 are the hosts waiting for the information from the server. Any number of 
hosts can be connected to a router. In Figure 1, H1, H2 and H3 are connected to R2. If all 
the three host request for the same message from the server, it can send same message 
three times to all the hosts. Otherwise, it can use the routers to split the message into 
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three copies and sent to each host. The second method is the better one in terms of 
performance and cost which is termed as multicasting. Only requirement is the  
routers must be designed to support multicast traffic (Salama, 1996; Navaz and 
Balasubramanian, 2016). 

Figure 1 Multicast traffic 

 

Multicasting is implemented through layer 2 and layer 3 switches. When multicasting 
with layer 2 switches, all the attached network devices receive the packets irrespective to 
their requirements. On the other case, when multicasting with layer 3 switches, the 
packets are sent only to the exact receiver who needs them. Multicasting allows for a 
reduction in bandwidth usage, increasing network efficiency and performance. Any 
application that needs to send large amount of information to fixed number of multiple 
destination then Multicast is the best option (Navaz and Balasubramanian, 2015). 
Example application includes: 

 Multimedia applications that consume high bandwidth, such as streaming video and 
TV servers. 

 Remote conferencing system, i.e., voice. 

 Software distribution applications. 

 Routing protocols such as open shortest path first (OSPF), enhanced interior gateway 
routing protocol (EIGRP) and routing information protocol (RIP) v2. 

In this paper, a high performance scheduling scheme is proposed and its performance  
is analysed under various uniform and non-uniform traffic patterns in multicast 
environment. Section 2 discusses about the BCS support to multicast scheduling.  
Section 3 provides the proposed scheduler and Section 4 analyse the throughput and 
delay performance of the proposed scheduler. Section 5 concludes the paper. 

2 Multicasting in BCS 

To support multicasting, BCS is considered as the suitable architecture due to its 
scalability, flexibility, low cost and intrinsic multicast capabilities (Marsan et al., 2003; 
Prasanth and Balasubramanian, 2015). BCS holds buffer in the switch fabric rather than 
in the line cards which means the switch and buffer implemented in a single chip, thereby 



   

 

   

   
 

   

   

 

   

   6 N.N. Prasanth et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

reducing the implementation cost (Chen et al., 2016). At each timeslot, BCS requires  
two schedulers to switch a cell namely, arrival and departure scheduler. Arrival scheduler 
selects a cell from the HOL of a queue and places it in an empty crosspoint buffer. 
Departure schedule selects a cell from a non-empty buffer and transferred it to output 
through destination port. At each timeslot, based on the employed scheduling algorithm, 
a cell is scheduled from VOQ to one or more crosspoint buffer and from buffer to output 
port. Amount of cells stored in the crosspoint buffer is based on its size and it is 
practically viable to implement multi-sized buffer in the crosspoint of a switch [Pan and 
Yang, (2005), p.23]. 

Multicasting is a process of transferring a cell from a single source (port) to multiple 
destinations at minimum cost and time. Number of destination ports that a cell needs to 
be transferred in a switch is said to be fanout set (Liu et al., 2016; Mhamdi, 2009). In 
BCS/VOQ architecture, copies of the cell to be multicast are placed in the alternate 
queues of VOQ such that multiple copies can be delivered at the same timeslot. This is 
possible subject to the availability of empty buffers and employed scheduling algorithm. 
These situations are dealt with two procedures namely no fanout splitting and fanout 
splitting (Lee and Un, 1997; Prabhakar et al., 1997). 

No fanout splitting will switch the cell only if all the buffers corresponding to 
destination ports are empty, i.e., cell will be switched only once. Fanout splitting will 
switch the cell irrespective to the availability of buffers at the crosspoint and the process 
continues until all the port receives the cell. No fanout splitting is easy to implement but 
offers low throughput because of work conserving. Fanout splitting is complex to 
implement since cells are transferred partially to the destinations ports (Hui and Renner, 
1994). 

Several scheduling algorithms are proposed for the multicast traffic under BCS (Sun 
et al., 2005). At each timeslot, a HOL cell is switched to empty crosspoint buffer results 
in minimum residue left. Another scheduling algorithm opts for a cell which has 
maximum possible destinations. A new algorithm works with respect to maximum 
service ratio (MSR), which is the number of reachable destination outputs divided by the 
fanout number of a cell. Mhamdi et al. (2007) proposed multicast crosspoint round robin 
scheduler (MXRR) scheduler and its performance are compared as best to other 
schedulers such as TATRA and iSLIP (Mhamdi and Hamdi, 2004). In Divanovic et al. 
(2012), author proposed longest queue first and round robin scheduler for multicast 
support and their performances are analysed. From all the above work, it is understood 
that most of the algorithms try to cover certain issues but fails with other requirements. 
None of the algorithms proved efficient in terms of throughput and delay performance. 
Also, these algorithms have taken a very less effort to reduce the starvation effect. 

The prolonged waiting period of a cell in a virtual output queue is called as starvation. 
Starvation is one of the primary factors which disturb the performance of a scheduling 
algorithm. TPQRS and D-PQRS are the commonly used unicast algorithms which made 
an impressive attempt to reduce the impact of starvation. PQRS uses priority queue 
scheduler as input schedule and round-robin algorithm as output schedule. It reduces the 
difference between the average waiting of the queues in a VOQ and thereby reduces 
starvation. Simulation ensures that the performance of the switch gets increased by the 
reducing the starvation. PQRS is updated as D-PQRS which uses delay-based priority 
queue scheduler as input schedule and round-robin algorithm as output schedule. It 
further reduces the starvation effect by stabilising the average waiting time. Simulation 
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result shows that D-PQRS achieves high throughput with minimum delay by reducing the 
starvation effect in the input queues. 

3 DPQRS-M scheduling scheme 

D-PQRS scheduler for multicast support is called as D-PQRS-M or DPQRS-M. Proposed 
algorithm has taken at-most care to reduce the starvation effect and is given. 

3.1 Arrival schedule 

1 Incoming cells are stored in the VOQ’s of the switch. 

2 Multicasting cells are stored in alternate queues of the VOQ. 

3 At each timeslot, a cell is transferred to multiple destination ports based on fanout set 
subject to the availability of buffer. 

4 Selection of cell to be switched is based on the priority value (PV) of a queue. 

5 Initially, PV is assumed to be the size of the queue and for each timeslot, PV is 
updated with respect to bonus value (BV), i.e., PV = PV + BV. 

6 BV is the waiting time of HOL cell in a queue which is represented in terms of 
timeslots. 

7 During every schedule, PV of the currently used queue will be reduced by one. 

8 If two queues have same PV, then queue which is not recently selected will be 
allowed to switch their cell or queue which is not selected at least once will be 
selected or FIFO principle will be used. 

9 If high prioritised queue is empty, then switch the cell from next high priority queue. 

3.2 Departure schedule 

Round robin scheduling (RRS) is a proven output queued scheduler and is used to switch 
the cell from buffer to destination ports unless the buffer is empty. 

3.3 An example 

The proposed scheduling algorithm made an attempt to overcome the starvation problem 
by prioritising the waiting cells with BV. BV for a cell is computed based on its waiting 
time in the queue. For example, consider a 4 × 4 switch works under uniform switch 
which assumes all the input cell arrived at the same time. For each schedule, BVs are 
computed for the queue cells of each VOQ and are shown in Table 1. 

At timeslot T0, numbers of cells entered in the queues are (5, 7, 8, 6) and are 
considered as queue PVs. As per the proposed scheduler, Q2 is selected for the first 
schedule because it has the highest PV and the priority table at T1 is updated as  
(6, 8, 7, 7). At T1, Q1 is selected for the schedule and Table 1 is updated as (7, 7, 8, 8). At 
the third timeslot, Q3 is selected for schedule even though Q2 and Q3 have same PV. This 
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is because Q2 is already switched once but not Q3. The process continues until all the 
incoming cells are scheduled or the scheduling period gets over. From the above 
example, it is clear that the proposed approach made a significant effort to serve the cells 
equally from all the queues and thereby reduces the starvation effect. 
Table 1 BV computation 

Timeslots ↑ 

Queues ↓ 
T0 T1 T2 T3 

Q0 5 6(+1) 7(+1) 8(+1) 

Q1 7 8(+1) 7(–1) 8(+1) 

Q2 8 7(–1) 8(+1) 9(+1) 

Q3 6 7(+1) 8(+1) 7(–1) 

4 Performance analysis 

A 4 × 4 buffered crossbar switch is used to multicast the packets with buffer size 1. Each 
packet is segmented into equal sized cells in the input side and is reassembled in the 
output side before they move out of the switch. JNetworkSim developed by Nick 
Mckeown Group of Stanford University is used to simulate the switching process with a 
total amount of 10,000 cells. At each timeslot, multicasting a cell is implemented through 
both the fanout splitting and no fanout splitting principle to analyse its outcomes. 
Proposed algorithm is tested and compared with MXRR algorithm (Dai et al., 2008) 
under non-uniform unbalanced and non-uniform bursty traffic patterns. 

4.1 Average waiting time analysis 

Waiting time of a cell is a measure of total time spent by a cell in the queue of a VOQ. 
The primary objective of every scheduler is to reduce the waiting time of a cell so that the 
overall performance will increase. Waiting time of a cell is measured in terms of 
milliseconds/timeslots. Figure 2 shows the averating waiting time of a VOQ under no 
fanout splitting scheme. For DPQRS-M, queue 1 of the VOQ has the minimum waiting 
time of 3.7 ms and queue 3 has the maximum waiting time of 5.1 ms with a difference 
between them is 1.4 ms. For MXRR, queue 3 of the VOQ has the minimum waiting time 
of 4.3 ms and queue 2 has the maximum waiting time of 6.7 ms with a difference 
between them is 2.4 ms. In Figure 3, under no fanout splitting scheme, the difference 
between the minimum and maximum average waiting time is 1.2 ms for DPQRS and  
1.9 ms for MXRR. Therefore in both the cases, the average waiting between the queues 
has been considerably reduced in DPQRS-M compared to MXRR, which means 
starvation is also reduced. 
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Figure 2 Averating waiting time of a VOQ under no fanout splitting scheme (see online version 
for colours) 

 

Figure 3 Averating waiting time of a VOQ under fanout splitting scheme (see online version  
for colours) 

 

4.2 Throughput analysis 

Throughput performance of DPQRS-M and MXRR algorithms are analysed under  
non-uniform bursty traffic and is depicted in Figure 4. It adopts no fanout principle. 
DPQRS-M throughput performance is greater than 70% when minimum load (20%) is 
supplied and thereafter throughput drops up to 50% when maximum load is supplied. 
Comparing with MXRR, less than 5% of throughput is separating both the algorithms in 
favour of DPQRS-M. Figure 5 shows the throughput performance of DPQRS-M and 
MXRR algorithms under non-uniform bursty traffic with a burst size of 100. Both the 
algorithms offer similar performance slightly lesser than 70% when minimum load is 
offered and greater than 40% for the maximum load offered. To improve the performance 
further, a speedup of two can be introduced in the switch against line speed. But 
considering the implementation cost, speedup is not used in our work. It is understood 
that the throughput performance is average because of the no fanout splitting. 
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Figure 4 Throughput performance of DPQRS-M and MXRR under non-uniform unbalanced 
traffic using no fanout splitting (see online version for colours) 

 

Figure 5 Throughput performance of DPQRS-M and MXRR under non-uniform bursty traffic 
using no fanout splitting (see online version for colours) 

 

Figure 6 shows the throughput performance of DPQRS-M and MXRR algorithms under 
non-uniform unbalanced traffic which uses fanout splitting procedure. Overall throughput 
is increased by 20% for DPQRS-M which is slightly greater than 90% for minimum load 
and lesser than 80% when maximum load is offered. For any load, DPQRS-M throughput 
performance is 5% better than MXRR. Figure 7 shows the throughput performance of 
DPQRS-M and MXRR algorithms under non-uniform bursty traffic which uses fanout 
splitting procedure. Again, a 20% increase is noted as similar to unbalanced traffic. 
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Throughput is slightly less than 90% and greater than 70% for minimum and maximum 
load, respectively. DPQRS-M and MXRR schedulers’ throughput are much improved 
under fanout splitting and difference between them is around 5%. From the simulation 
results, it is understood that proposed scheduler offers better throughput performance 
than MXRR. Fanout splitting principle should be used to achieve maximum throughput 
performance. 

Figure 6 Throughput performance of DPQRS-M and MXRR under non-uniform unbalanced 
traffic using fanout splitting (see online version for colours) 

 

Figure 7 Throughput performance of DPQRS-M and MXRR under non-uniform bursty traffic 
using fanout splitting (see online version for colours) 
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4.3 Delay analysis 

Average cell latency of D-PQRS-M and MXRR algorithms are analysed under  
non-uniform unbalanced traffic using no fanout splitting. Figure 8 depicts the average 
delay performance of DPQRS-M compared to the MXRR running on 4 × 4 buffered 
crossbar switch. For DPQRS-M, ACL is 22% for minimum load and 40% for maximum 
load. Comparing with MXRR, DPQRS-M ACL is better by 5% when minimum load is 
offered and when load exceeds 70% (p = 0.7), both the algorithms deliver similar delay 
performance. Figure 9 shows the average cell latency of DPQRS-M and MXRR under 
non-uniform bursty traffic using no fanout splitting. For bursty traffic, both the algorithm 
offers similar delay performance (30%) when minimum load is offered. When maximum 
load is supplied, delay increases up to 55% for MXRR which is 7% greater than  
DPQRS-M. Similar to throughput, switch delay performance also suffered under no 
fanout splitting. 

Figure 8 Average cell latency of DPQRS-M and MXRR under non-uniform unbalanced traffic 
using no fanout splitting (see online version for colours) 

 

Average cell latency of D-PQRS-M and MXRR algorithms are analysed under  
non-uniform unbalanced traffic using fanout splitting. Figure 10 depicts the average delay 
performance of D-PQRS-M under non-uniform unbalanced traffic running on 4 × 4 
buffered crossbar switch. Delay performance of D-PQRS-M is much improved to 5% for 
minimum load and 20% for maximum load. For any load structure, D-PQRS-M delay 
performance is better than MXRR by 10%. Figure 11 shows the average cell latency of 
DPQRS-M and MXRR under non-uniform bursty traffic using fanout splitting. Delay 
performance of DPQRS-M is under 10% for minimum load and slightly greater than 20% 
for maximum load. A delay of 10% difference is found between DPQRS-M and MXRR 
schedulers in favour of DPQRS-M. 
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Figure 9 Average cell latency of DPQRS-M and MXRR under non-uniform bursty traffic using 
no fanout splitting (see online version for colours) 

 

Figure 10 Average cell latency of DPQRS-M and MXRR under non-uniform unbalanced traffic 
using fanout splitting (see online version for colours) 

 

From the simulation results, it is proved that DPQRS-M provides better delay 
performance than MXRR for any non-uniform load structures. As discussed, scheduler 
deployed fanout splitting procedure delivers better performance than no fanout splitting. 
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Figure 11 Average cell latency of DPQRS-M and MXRR under non-uniform bursty traffic using 
fanout splitting (see online version for colours) 

 

5 Conclusions 

A DPQRS-M algorithm is proposed with the intent of reducing the starvation effect in a 
switch scheduling process and thereby increasing the switching performance. DPQRS-M 
for multicast support is analysed with respect to throughput and delay performance and 
the results are compared with MXRR algorithm. Proposed scheduler is implemented in a 
BCS under unbalanced and bursty traffic patterns. Simulation is carried out under no 
fanout splitting as well as fanout splitting strategies to transfer the cells in and out of  
the switch. Simulation result shows D-PQRS-M offers better throughput and delay 
performance than MXRR for any non-uniform traffic patterns. D-PQRS-M performance 
under fanout splitting procedure is 20% greater than non-fanout splitting. In the future, 
the performance of DPQRS-M can be analysed with different crossbar buffer sizes and 
also with multistage switching architectures. 
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