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Higher order decouplings of the dilated electron propagator
with applications to 2P BeÀ, 2P MgÀ shape and 2S Be¿ „1sÀ1…
Auger resonances
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The full third order (S3), quasi-particle third order (Sq
3) and Outer Valence Green’s Function

decouplings of the bi-orthogonal dilated electron propagator have been implemented for the first

time and results from their application to 2P Be2, 2P Mg2 shape and 2S Be1 (1s21) Auger

resonances are presented and compared with energies and widths obtained using the zeroth order

(S0), quasi-particle second order (Sq
2) and second order (S2) decouplings. The energies and widths

from third order decoupling for shape resonances are close to those obtained using second order

self-energy approximants. The energy and width calculated using the third order decoupling for

Auger resonances provide better agreement with experimental results, with the much more

economic quasi-particle third order decoupling being just as effective. The differences between

FDAs from different decouplings are analyzed to elicit the role of correlation and relaxation in the

formation and decay of shape and Auger resonances. © 2001 American Institute of Physics.

@DOI: 10.1063/1.1328395#

I. INTRODUCTION

Electron propagator theory1–6 has emerged as an effec-

tive tool for accurate calculation of ionization potentials and

electron affinities. The dilated7,8 electron propagator9–11

where all electronic coordinates in the Hamiltonian have

been scaled by a complex factor h5ae iu has been success-

fully employed to elicit the energy and width of electron

scattering shape and Auger resonances.12 The calculation of

resonance energy and width from the resonant poles of the

dilated electron propagator is demanding since these are

identified by constructing the dilated electron propagator for

a large number of h values ~;5–10 a and ;30 u values per

a being typically representative! and associating the poles

invariant to changes in h with resonances.7–11 The treatment

of resonances using the dilated electron propagator is there-

fore ;150 times more arduous compared to an equivalent

real electron propagator calculation of ionization potential

and electron affinity. For this reason, although the use of the

third order decoupling has become routine in calculation of

ionization potentials/electron affinities, the treatment of reso-

nances using the dilated electron propagator method has

been limited to the use of second or pseudo-second order

~diagonal 2ph-TDA! decouplings and their quasi-particle

variants.12–14

The second order dilated electron propagator provides

resonance energies which are in fairly good agreement with

those from experiment and other theoretical methods but for

many systems, the widths of the shape resonances are much

narrower than those observed experimentally.12 The diagonal

2ph-TDA decoupling15–17 includes diagonal ring and ladder

diagrams to all orders but does not seem to provide much

improvement.18 Further accuracy in the treatment of reso-

nances therefore requires an exploration of improvements

available from third and other higher order decouplings;

More so, since the use of third order decoupling has offered

considerable improvement in the accuracy of calculated ion-

ization energies.19 Also, with the advent of faster computers

with larger memory and storage space, it has become pos-

sible to perform third order calculations for the dilated elec-

tron propagator as well and an examination of the effect of

higher order decouplings like the third order (S3), Outer

Valence Green’s Function ~OVGF!, quasi-particle third order

(Sq
2) on the resonance attributes of the prototypical 2P Be2,

2P Mg2 shape resonances and the 2S Be1 (1s21) Auger

resonance is the principal focus of this paper. The Feynman–

Dyson Amplitudes ~FDAs! of the electron propagator serve

as correlated orbitals20 and the radial probability density pro-

files of the resonant FDAs from different decouplings are

analyzed to understand the role of relaxation and correlation

in formation and decay of shape and Auger resonances.

The formal developments of the bi-orthogonal dilated

electron propagator based on bi-variational SCF21 closely

follow the derivation of different decouplings for the real

electron propagator1,3,6,22 and only a skeletal outline is of-

fered in Sec. II for completeness. The effect of correlation

and relaxation using the third order, quasi-particle third order

and OVGF decouplings of the dilated electron propagator on

resonance at tributes are presented in Sec. III. A summary of

main results in Sec. IV concludes this paper.

II. METHOD

The dilatation of all the electronic coordinates (r

→hr;h5ae iu) in the system Hamiltonian leads to H†(h)

5H(h*)5H(h*)ÞH(h), i.e., H(h) is non-Hermitian and

the variational theorem does not apply. However, there exists

a bi-variational theorem23,24 for non-Hermitian operators.

The bi-variational SCF equations for the dilated Hamiltonian

are derived by extremizing the generalized functional
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E~F0 ,C0!5
^F0uH~h !uC0&

^F0uC0&
~1!

under the constraint that solutions F0 and C0 be the single

determinantal approximation to the exact N electron eigen-

functions uÑ& and uN& of the H†(h) and H(h), respectively,

and the constituent one-electron orbitals $f% and $c% be bi-

orthogonal, i.e., ^f iuc j&5d i j . The Grassmann Algebra G

associated with field operators defined on $f% has an adjoint

algebra G* associated with $f%, and in terms of the duality

between G and G*, the interior multiplication of the left ⌋ ,

and of the right ⌊ , are defined as follows:

~x ,a i∧j !5^x~a i∧ !†,j&5^x ⌋a i ,j&, ~2!

with x, x ⌋a iPG* and j, a i∧jPG . Similarly, we have

^x∧a i,j&5^x ,~∧a i!†j&5^x ,a i
⌊j& ~3!

with x, x∧a i
PG* and j, a i

⌊jPG .

The interior multiplications a i
⌊ and ⌋a i decrease the rank

of tensors in G and G*, respectively. It is obvious that the

exterior multiplications a i∧ and ∧a i and the interior multi-

plications a i
⌊ and ⌋a i may be formalized as the familiar cre-

ation and annihilation operators on the direct $c i% and ad-

joint $f i% spaces, respectively, except that now the operators

and their adjoints do not have the same domain. Specifically

(a i∧)†
5 ⌋a i . These concepts are part of the general theory of

Dual Grassmann Algebra.25 Some other relevant results are:

~a i∧ !†
5 ⌋a i ~a i

⌊ !†
5∧a i, ~4!

@a i
⌊ ,a

j
⌊#1505@a i∧ ,a j∧#1 ; @a i∧ ,a j

⌊#15d i j . ~5!

The electron field operator ĉ(x) for the direct space is given

by

ĉ~x !5(
i

c i~x !a i
⌊5(

i
c i~x !~∧a i!†,

and the electron field operator ŵ(x) for the adjoint space is

defined as

ŵ†~x !5(
i

f i
!~x !~ ⌋a i!†

5(
i

f i
!~x !a i∧ ,

and in terms of the duality between G and G*, the regular

second quantized representation of the physical operators is

easily generalized,11 e.g., using Moller–Plesset partitioning

H(h)5H0(h)1V(h)

H0~h !5(
k

ekak∧ak
⌊ , ~6!

and the fluctuation potential V(h) is defined by

V~h !5(
i

(
j

(
k

(
l

^f if jickc l&

3@1/4a i∧a j∧a l
⌊a

k
⌊2d j l^n l&a i∧ak

⌊# . ~7!

The linear space of fermionlike creation and annihilation

operators introduced in the superoperator formulation26,27 of

the propagator equations is now to be replaced by bi-

orthonormal operator spaces11

h5$a i
⌊ ,a i∧a j

⌊a
k
⌊ , ¯% j,k , ~8!

h̃5$ ⌋a i , ⌋ak⌋a j∧a i,¯% j.k , ~9!

with scalar product

~ h̃ iuh j![^Ñu@h j , h̃ i
†#1uN&. ~10!

The dilated superoperator Hamiltonian is partitioned as

Ĥ~h !5Ĥ0~h !1V̂~h !, ~11!

with

Ĥ0X5@X ,H0~h !#2 , V̂X5@X ,V~h !#2 ,

~12!
ÎX5X , ;XPh,

and

~XuY !5^Ñu@Y ,X†#1uN&. ~13!

The Dyson equation for the dilated bi-orthogonal matrix

electron propagator G(h ,E) once again is expressed as12

G~h ,E !5^ ãuh&~ h̃u~EÎ2Ĥ !uh!21~ h̃ua!, ~14!

and using the projection manifolds

h5h
1
5$a i

⌊%, and h̃5h̃
1[$ ⌋a i% ~15!

in Eq. ~14! we obtain11

G
0~h !5~ ãu~EÎ2Ĥ0~h !!a!21 ~16!

with

G i j
0 ~h !5d i j /~E2e i!, ~17!

which demonstrates the equivalence of this development to

that of the undilated electron propagator. The structural

equivalence at any order of perturbation theory between the

dilated G(h) and the undilated case, demonstrated by an

equivalence of projection manifolds and reference state uN&,
guarantees the ease with which the dilated propagator coa-

lesces into the undilated one for h51 at any level of

approximation.11 For example, writing h5h
1

% h
3

% h
5¯ and

h̃5h̃
1

% h̃
3

% h̃
5¯ , with

h
3
5$ap∧aa

⌊a
b
⌊ ,aa⌊a

p∧aq∧%

and ~18!

h̃
3
5$ ⌋ab⌋aa∧ap,∧aq∧ap⌋a

a%,etc.,

and partitioning h5a% f where a5h1 ~a,b labeling occu-

pied, p,q labeling unoccupied orbitals, and i,j labeling un-

specified orbitals!, the dilated matrix electron propagator for-

mulas are entirely similar to those for the undilated real

electron propagator12 except that the direct $c i% and adjoint

$f i% spaces are not self dual and the bi-orthonormality per-

meates all expressions.

With the partitioning of the operator space h5a% f the

dilated electron propagator may be expressed as12

G
21~h ,E !5~ ãu~EÎ2Ĥ~h !!ua!2~ ãuĤ~h !uf!

3~ f̃u~EÎ2Ĥ~h !!uf!21~ f̃uĤ~h !ua!, ~19!

whereby
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@G
21~h ,E!# i j5@G0

21~h ,E!# i j1~ ã iu~EÎ2V̂~h !!ua j!

2~ ã iuĤ~h !uf!~ f̃u~EÎ2Ĥ~h !!uf!21

3~ f̃uĤ~h !ua j! ~20!

5A01A2BC
21

D, ~21!

where

A05~ ãu~EÎ2Ĥ0~h !!ua!, ~22!

A5~ ãu~EÎ2V̂~h !!ua!, ~23!

B5~ ãuĤ~h !uf!, ~24!

C5~ f̃u~EÎ2Ĥ~h !!uf!, ~25!

and

D5~ f̃uĤ~h !ua!. ~26!

A0 is the Hartree–Fock electron propagator in which the

reference state uN& is approximated by uHF&.
Our order analysis for the dilated electron propagator is

similar to that for the real unscaled electron propagator1,22,28

and proceeds by expressing the exact N electron reference

state uN& using a Rayleigh–Schrödinger perturbation expan-

sion with

uN&5uHF&1u01&1u02&1¯ , ~27!

where uHF& is the Hartree–Fock ground state wave function,

u01& is the first order Moller–Plesset correction given by

u01&5 (
p,q

(
a,b

Kab
pqp†q†abuHF&, ~28!

with

Kab
pq

5
^abipq&

ea1eb2ep2eq

. ~29!

a , b , c , d denote occupied orbitals, p , q , r , s denote un-

occupied orbitals and i , j , k , l denote unspecified orbitals.

The second order Moller–Plesset correction u02& is given by

u02&5(
p

(
a

Ka
pp†auHF&, ~30!

where

Ka
p
5

1

2 F(
c

(
q

(
r

^qrica&^pciqr&

~ea2ep!~ec1ea2er2eq!

1(
c

(
b

(
q

^cbiaq&^qpibc&

~ea2ep!~eb1ec2ep2eq!G . ~31!

The contributions from the first order (A1) and second

order (A2) energy independent terms are zero. The energy

dependent terms in the self-energy matrix can be evaluated

from BC
21

D. To obtain the second order terms, we use the

Hartree–Fock ground state to obtain B and D through first

order. We separate C into C0 and C1 such that C5C02C1

where

C05~ f̃u~EÎ2Ĥ0~h !!uf! and C15~ f̃uV̂~h !uf !. ~32!

By expansion of C
21, terms through all orders may be

generated.29 If one retains only h3 in f and approximates uN&
by uHF& this expansion is terminated in zeroth order and one

obtains the second order (S2) self-energy term B1C0
21

D1

where

~B1! i ,apq5^iaipq&, ~33!

~C0!pqa ,p8q8a8
5~E1ea2ep2eq!dpp8

dqq8
daa8

, ~34!

~D1!pqa , j5^pqi ja& ~35!

for the two hole one particle part resulting from the choice of

h35$ap∧aa
⌊a

b
⌊% and

~B1! i ,pab52^ipiab& , ~36!

~C0!pab ,p8a8b8
5~E1ep2ea2eb!dpp8

daa8
dbb8

, ~37!

~D1!abp , j52^abi jp& ~38!

from the two particle one hole component resulting from the

choice of h35$aa⌊a
p∧aq∧%. By multiplying the matrices

B1 , C0
21 and D1 , we obtain the elements of the self-energy

matrix12 correct through second order (S2) which is given

by

S i j
2 ~h ,E !5

1

2 F(
a

(
b

(
p

^ipiab&^abi jp&

E1ep2ea2eb

1(
a

(
p

(
q

^iaipq&^pqi ja&

E1ea2ep2eq
G , ~39!

where the antisymmetric two-electron integral

^i jikl&5h21E c i~1 !c j~2 !@~12P12!/r12#

3ck~1 !c l~2 !dx1 dx2 . ~40!

The lack of complex conjugation stems from the bi-

orthonormal sets of orbitals resulting from bi-variational

SCF being the complex conjugate of each other

$f i5c i
*%.21,23 Similarly, diagonal 2ph-TDA decoupling of

the dilated electron propagator17 gives a formula entirely

similar to that for the undilated case2,3

S i j
2ph-TDA~h ,E !5

1

2 F(
a

(
b

(
p

^ipiab&^abi jp&

E1ep2ea2eb2D1

1(
a

(
p

(
q

^iaipq&^pqi ja&

E1ea2ep2eq2D2
G ,

~41!

where

D152
1
2^abiab&1^bpibp&1^apiap&

and

D25
1
2^pqipq&2^aqiaq&2^apiap&,

except that the transformed two electron integrals and

the orbital energies obtained from bi-variational SCF are

complex.

These developments have made it obvious that the bi-

orthogonal dilated electron propagator formulas are identical

to those obtained for the real undilated electron propagator

37J. Chem. Phys., Vol. 114, No. 1, 1 January 2001 Dilated electron propagation
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except that the underlying integrals, expansion coefficients

and orbital energies are complex and bi-orthonormality re-

places normality. Therefore, to simplify our notations and

emphasize the exact parallelism between the formulations of

all bi-orthogonal dilated electron propagator and real elec-

tron propagator decouplings we shall use the prevalent nota-

tions of the real electron propagator development3 with the

complexity and bi-orthogonality being implicitly understood,

e.g.,

p†q†ab5ap∧aq∧aa
⌊a

b
⌊ , and ^f iuc j&5d i j ~42!

in further analysis. It is this exact parallelism of the bi-

orthogonal dilated electron propagator decouplings with

those of the undilated real electron propagator decouplings

that separates it from other approaches to the construction of

the complex scaled electron propagator9,10 where even the

second order decoupling involves more complicated formu-

lation. Higher order and renormalized decouplings from

these alternative approaches9,10 may be still more compli-

cated and have not been attempted.

The contribution of third order terms of A arises by con-

sidering the first order double excitation and second order

single excitation configurations in the Rayleigh–Schrödinger

expansion of the ground state wave function. The third order

energy dependent part of the dilated self-energy matrix once

again emerges as:

S
ED

3 ~h ,E!5B2C0

À1
D11B1C0

À1
D21B1C0

À1
C1C0

À1
D1, ~43!

where the subscript ED denotes energy-dependent self-

energy matrix and implicit dependence of all terms in Eq.

~43! on h has been suppressed. Matrices B2 , C0
21, D1 and

C1 are evaluated with vector space f truncated to h3 , i.e.,

$p†ab% and $ap†q†%:

~B2! i ,pab52
1

2 (
q

(
r

^ipiqr&^qriab&8

2(
q

(
c

^iciqa&^qpibc&8

1(
q

(
c

^iciqb&^qpiac&8, ~44!

with

^abiqr&85
^abiqr&

ea1eb2eq2er

, ~45!

~D1!abp , j52
1

2 (
a

(
b

(
p

^abi jp&, ~46!

~C1!pab ,p8a8b8
52dpp8^ab8ia8b&2daa8^pb8ip8b&

1dbb8
~apia8p8!. ~47!

By combining the appropriate matrices and using the adjoint

of B2 and D1 , i.e., D2 and B1 , we can express the 2hp

terms, i.e., B2C0
21

D1 , B1C0
21

D2 and B1C0
21

C1C0
21

D1 , re-

spectively, as shown below:

~B2C0

À1
D1! i j5

1

4(a
(

b
(

p
(

q
(

r

^ipiqr&^qriab&^abi jp&

~E1ep2ea2eb!~ea1eb2eq2er!
~48!

2(
a

(
b

(
c

(
p

(
q

^iciqb&^qpiac&^abi jp&

~E1ep2ea2eb!~ea1ec2ep2eq!
, ~49!

~B1C0

À1
D2! i j5

1

4 (
a

(
b

(
p

(
q

(
r

^ipiab&^abiqr&^qri jp&

~E1ep2ea2eb!~ea1eb2eq2er!
~50!

2(
a

(
b

(
c

(
p

(
q

^iqiac&^abipq&^pci jb&

~E1eq2ea2ec!~ea1eb2ep2eq!
, ~51!

~B1C0

À1
C1C0

À1
D1! i j52

1

4 (
a

(
b

(
c

(
d

(
p

^ipiab&^abicd&^cdi jp&

~E1ep2ec2ed!~E1ep2ea2eb!
~52!

1(
a

(
b

(
c

(
p

(
q

^iqicb&^cpiaq&^abi jp&

~E1ep2ea2eb!~E1eq2eb2ec!
. ~53!

When B2 , C0
21, D1 , and C1 are evaluated with h3 as $ap†q†%, we have

~B2! i ,apq52
1

2 (
b

(
c

^iaibc&^bcipq&82(
b

(
r

^iribp&^baiqr&81(
b

(
r

^iribq&^baipr&8, ~54!

~D1!pqa , j5
1

2 (
p

(
q

(
a

^pqi ja&, ~55!

~C1!apq ,a8p8q8
51dpp8^aq8ia8q&1daa8^pq8ip8q&2dqq8^paip8a8&. ~56!

The three 2ph terms can be expressed as:

38 J. Chem. Phys., Vol. 114, No. 1, 1 January 2001 Venkatnathan, Mahalakshmi, and Mishra
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~B2C0

À1
D1! i j5

1

4 (
a

(
b

(
c

(
p

(
q

^iciab&^abipq&^pqi jc&

~E1ec2ep2eq!~ea1eb2ep2eq!
~57!

2(
a

(
b

(
p

(
q

(
r

^iriaq&^abipr&^pqi jb&

~E1eb2ep2eq!~ea1eb2eq2er!
, ~58!

~B1C0

À1
D2! i j5

1

4 (
a

(
b

(
c

(
p

(
q

^iaipq&^pqibc&^bci ja&

~E1ea2ep2eq!~eb1ec2ep2eq!
~59!

2(
a

(
b

(
p

(
q

(
r

^ibipr&^pqiab&^ari jq&

~E1eb2ep2er!~ea1eb2ep2eq!
, ~60!

~B1C0

À1
C1C0

À1
D1! i j5

1

4 (
a

(
p

(
q

(
r

(
s

^iaipq&^pqirs&^rsi ja&

~E1ea2er2es!~E1ea2ep2eq!
~61!

2(
a

(
b

(
p

(
q

(
r

^ibirq&^raipb&^pqi ja&

~E1ea2ep2eq!~E1eb2eq2er!
. ~62!

The third order energy independent dilated self-energy is also formally similar to the real undilated electron propagator11

formulas, i.e.,

@S
EI

3 ~h !# i j5(
k

(
l

^iki j l&gkl ~63!

with

gkl5^Nuk†luN&. ~64!

Using uN&5uHF&1u01&1u02& we generate the third order energy independent self-energy matrix, which is

@S
EI

3 ~h !# i j5(
k

(
l

^iki j l&^01uk†lu01&1(
k

(
l

^iki j l&^02uk†luHF&1(
k

(
l

~ iki j l !^HFuk†lu02&. ~65!

By expanding Eq. ~65! and summing over all spins, we finally get

S
EI

3 ~h !5
1

2 (
a

(
b

(
p

(
q

(
r

^iri jp&^abirq&^pqiab&

~ea1eb2ep2eq!~ea1eb2eq2er!
~66!

2
1

2 (
a

(
b

(
c

(
p

(
q

^iai jc&^cbipq&^pqiab&

~ea1eb2ep2eq!~eb1ec2ep2eq!
~67!

1
1

2 (
a

(
b

(
p

(
q

(
r

^ipi ja&^abiqr&^qripb&

~ea1eb2eq2er!~ea2ep!
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q

^ipi ja&^bcipq&^aqibc&

~eb1ec2ep2eq!~ea2ep!
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1

2 (
a

(
b

(
p

(
q
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r

^iai jr&^rbipq&^pqiab&

~ea1eb2ep2eq!~ea2er!
~70!

2
1

2 (
a

(
b

(
c

(
p

(
q

^ici jp&^pqiab&^abicq&

~ea1eb2ep2eq!~ec2ep!
. ~71!

The Outer Valence Green’s Function ~OVGF-A!2,5 ap-

proximation is based on full third order approximation to S
and also contains a geometric approximation for higher order

contributions. No matrices need to be diagonalized. We de-

fine

Z52(
I51

4

~g i1k i!/S2, ~72!

where Z is a screening parameter and expressions for $g i% i51
4

and $k i% i51
4 are collected as Eqs. ~48!–~51! and ~57!–~60!,

respectively. Finally

SOVGF
eff

5S2
1~11Z !21S3. ~73!

In terms of the spin-orbitals obtained from the bi-variational
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SCF procedure, combining Eqs. ~17! and ~20! we write the

matrix electron propagator as

G
21~h ,E !5E12e~h !2S~h ,E ![E12L~h ,E ! ~74!

with S being the self-energy approximant resulting from

chosen decoupling ~S2, S3, S2ph2TDA, Sq
2, Sq

3 , etc.! for its

construction, or in operator form

G~h ,E !5~E2L~h ,E !!21, ~75!

whereby in terms of the eigenfunctions and eigenvalues of

L(h ,E)

L~h ,E !xn~h ,E !5En~h ,E !xn~h ,E !. ~76!

The spectral representation of G is given by

G~h ,E !5~E2L~h ,E !!21(
n

uxn&^xnu

5(
n

uxn&^xnu

E2En~h ,E !
~77!

and the eigenvalues of L therefore represent the poles of G.

Accordingly, the dilated electron propagator calculations

proceed by iterative diagonalization

L~h ,E !xn~h ,E !5En~h ,E !xn~h ,E !, ~78!

with

L~h ,E !5e~h !1S~h ,E !, ~79!

FIG. 1. ~a! Theta trajectories from dif-

ferent decouplings of the dilated elec-

tron propagator for the 2P Be2 reso-

nance using the 14s11p basis.

Complex scaling parameter h5ae iu.

Optimal a value (aopt) is 0.915 for

S0, 0.8 for S2, 0.9 for Sq
2 and 0.85 for

the S3, Sq
3 and SOVGF

3 decouplings. u
50.0 on the real line and u increments

are in steps of 0.02 radians. ~b! Radial

probability densities and ~c! difference

in radial probability density for the
2P Be2 resonant FDA from the S0,

S2, and S3 decouplings.
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where e~h! is the diagonal matrix of orbital energies and S is

the self-energy matrix from the desired decoupling. The

propagator pole E is obtained by repeated diagonalizations

such that one of the eigenvalues En(h ,E) of L(h ,E) fulfills

the condition E5En(h ,E).12 These En(h ,E) represent the

poles of the dilated electron propagator G(h ,E). From

among these poles, the resonant pole Er(h ,E) and the corre-

sponding eigenvector ~FDA! xr(h ,E) are selected as per the

prescription of the complex scaling theorems7,8 whereby

those roots which are invariant to changes in the complex

scaling parameter h are to be associated with resonances. In

a limited basis set calculation, instead of absolute stability

one finds quasi-stability where the u trajectory displays

kinks, cusps, loops or inflections which indicate the proxim-

ity of a stationary point.30 In this work the resonance at-

tributes have been extracted from the value at the kink in

u-trajectories (]Er /]u50). The real part of the resonant

pole furnishes the energy and the imaginary part the half

width of the resonance.

The quasi-particle (Sq
3) approximation31 for dilated elec-

tron propagator32 results from a diagonal approximation to

the self-energy matrix S(h ,E) with poles of the dilated elec-

tron propagator given by

E~h !5e i1S ii~h ,E !, ~80!

which are determined iteratively beginning with E5e i and

S ii may correspond to any perturbative (S2,S3) or renor-

malized decoupling like the diagonal S2ph-TDA.

In the bi-variationally obtained bi-orthogonal orbital ba-

sis $c i%, the FDA xn is a linear combination

xn~r!5(
i

C inc i~r!, ~81!

where the mixing of the canonical orbitals allows for the

incorporation of relaxation effects and nondiagonal correla-

tion effects. In the zeroth order (S50) and the quasi-particle

approximations ~diagonal S!, there is no mixing. The differ-

ence between perturbative second order (S2) or renormal-

ized diagonal 2ph-TDA (S2ph-TDA) decouplings manifests

itself through differences between the mixing coefficients C in

from these approximations.

III. RESULTS AND DISCUSSION

The use of complex scaling (h5ae iu) in the character-

ization of resonances requires that, once uncovered, resonant

poles be stable with respect to further variations in the com-

plex scaling parameter.7,8 However, in calculations utilizing

a limited basis set only quasi-stability in a narrow range of a
and u values is observed.30 The resonances are therefore

identified by plotting the complex poles as a function of u
~theta trajectory! for optimal a and the value of the resonant

pole at the inflection point (uopt) in the quasi-stable region of

the theta trajectory is associated with the resonance energy

~the real part! and half-width ~the imaginary part!. In this

work, we apply the third order (S3), the Outer Valence

Green’s Function (SOVGF
3 ) and quasi-particle third order

(Sq
3) decouplings of the dilated electron propagator to study

the 2P Be2 and the 2P Mg2 shape and the 2S Be1 (1s21)

Auger resonances. The radial density profiles of the resonant

FDAs are examined to elicit information about the factors

affecting the formation and decay of these resonances.

The 2P Be2 ~Refs. 10, 17, 33–37! and the 2P Mg2

~Refs. 12, 33, 34, 38–41! shape resonances have been the

prototypical systems used to test the efficacy of most new

approaches to the theoretical treatment of shape resonances.

Similarly, the only Auger resonance to be treated using the

complex scaling technique has been the 2S Be1 (1s21)

Auger resonance42,43 and these are our systems of choice as

well to enable a comparison of our results with those from

varied theoretical and experimental techniques.

The basis sets employed are those tested earlier44 for

effective and economic saturation both with respect to the

resonance energy and width of the shape resonance in e-Be

and e-Mg scattering as well as correctness of the nodal to-

pology of the resonant FDAs.44 The 2P shape resonances in

e-Be and e-Mg have been studied extensively and their en-

ergetics and orbital density profiles are examined first. The

Auger resonances have been comparatively less well exam-

ined by complex scaling methods and results from our study

of 2S Be1 (1s21) Auger attributes using three different bases

and different decouplings are offered next.

A. The 2P BeÀ shape resonance

Theta trajectories from third order and other decouplings

utilizing the near saturated 14s11p basis44 are plotted in Fig.

1. The resonance energies and widths from the quasi-stable

inflection points in these trajectories are collected in Table I

along with those from other theoretical methods. It can be

seen from Fig. 1 and Table I that both the energy and width

obtained from the S3, SOVGF
3 and Sq

3 decouplings are ex-

tremely close to each other and the much more economic Sq
3

and SOVGF
3 decouplings are equally effective. The third order

TABLE I. Energy and width of the 2P shape resonances in e-Be scattering.

Method/reference

Energy

~eV!

Width

~eV!

Previous calculations:

Static exchange phase shift ~Ref. 33! 0.77 1.61

Static exchange plus polarizability

phase shift ~Ref. 33!

0.20 0.28

Static exchange cross section ~Ref. 34! 1.20 2.6

Static exchange plus polarizability

cross section ~Ref. 34!

0.16 0.14

Complex DSCF ~Ref. 35! 0.70 0.51

Singles doubles and triples complex CI ~Ref. 38! 0.32 0.30

S-matrix pole (Xa) ~Refs. 36, 37! 0.10 0.15

Second order dilated electron

propagator based on real SCF ~Ref. 10!

0.57 0.99

Bi-orthogonal dilated

electron propagator ~Ref. 17!

0.67 0.88

Second order/diagonal 2ph-TDA 0.64/0.67 0.60/0.66

Present calculations: ~14s11p basis!

Zeroth order 0.62 1.00

Quasi-particle second order 0.61 1.00

Second order 0.48 0.82

Quasi-particle third order 0.54 0.82

OVGF third order 0.54 0.78

Third order 0.53 0.85
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results fall between those from S0 ~bi-variational SCF! and

S2 decouplings and we can surmise that the S3 decouplong

perhaps corrects the extra stabilization ~lowering of energy!
provided by the S2 decoupling. This feature is mirrored in

the radial density profiles from decouplings presented in Fig.

1~b! where the S3 density profile again is between those

from the S0 and S2 decouplings. All of the radial density

profiles have similar attributes and if we note that multipli-

cation by r2 exaggerates the density magnitude for large r

values lifting numbers close to zero at 15 a.u. from the

nucleus off the real line, the resonant orbital is primarily of

2p type with mixing from 3p and 4p providing for a shoul-

der at ;7.5 a.u. and an additional peak at 20 a.u. and nodes

at ;15 a.u. and ;30 a.u. from the nucleus. These results

corroborate our earlier surmise17 that the shape resonance

formation is a multi-orbital phenomenon with lower energy

orbitals below the centrifugal barrier providing for binding

and the higher energy orbital above the barrier assisting in its

decay. The density differences plotted in Fig. 1~c! reveal an

intricate redistribution of electron density over a consider-

ably broad span of electron-nucleus distance and we infer

that only primitive basis sets with sufficiently large number

of both tight and diffuse GTOs can correctly describe shape

resonances.

The results from a variety of theoretical approaches col-

lected in Table I show a large scatter but if the somewhat

unrealistic results from Static Exchange Phase Shift33 and

Static Exchange Cross-Section34 are neglected ~it is difficult

FIG. 2. ~a! Theta trajectories for the
2P Mg2 resonant root from different

decouplings using the 8s13p basis set.

aopt is 1.05 for S0, 1.025 for S2, 1.04

for Sq
2, 1.025 for S3 and 1.04 for Sq

3

and SOVGF
3 decouplings. ~b! Radial

probability density plots and ~c! the

difference in radial probability densi-

ties from S0, S2, and S3 decouplings.
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to see a resonance centered at 0.77 eV with a width of 0.80

eV on both sides!; all other results can be taken to describe

various parts of the same resonant wave packet centered at

;0.54 eV and a width of ;0.42 eV on both sides. The satu-

rated nature of our basis and high order (S3) of the decou-

pling employed here gives us confidence that this system

which has not been investigated experimentally so far due to

its toxic nature, if experimented with should give the at-

tributes elicited from this investigation.

B. The 2P MgÀ shape resonance

The 2P Mg2 shape resonance is a well characterized39

system which has been extensively studied using many dif-

ferent theoretical techniques.17,33,34,36,37,40,41,45 The theta tra-

jectories from different decouplings in Fig. 2~a! and the ra-

dial density profiles from Fig. 2~b! show that this is indeed a

prototype shape resonance with electron density peaking at

22 a.u. to provide loose binding which does not disturb the

other electrons and with considerable amplitude also at large

distances facilitating decay. The lack of change between S0,

S2 and S3 decoupling results confirms the classic picture of

shape resonance as temporary electron attachment in an

empty orbital without initiating major relaxation and corre-

lation in the target. As seen in Fig. 2~c!, the different decou-

plings do lead to variations in density distribution but the

small magnitude of these changes has minimal impact on

resonance energies and widths which are almost identical

~Table II!. Although, some second order dilated electron

propagator calculations including our own46 provide energy

and width in much better agreement with the experimental

results this has been shown44,45 to be serendipitous and the

S3 results presented here may be taken to be a benchmark

for dilated electron propagator calculations.

C. The 2S Be¿ „1sÀ1… Auger resonance

One of the major advantages of the electron propagator

formalism is its unique ability to provide information about

both electron attachment and detachment from a single

calculation.1–6 Apart from the 2P Be2 shape resonance, the
2S Be1 (1s21) Auger resonance has also served as a proto-

typical system to investigate the effectiveness of different

theoretical schemes in the investigation of Auger

resonances.42,43,47 Application of the third order decoupling

of the dilated electron propagator to the 2S Be1 Auger reso-

nance is therefore an obvious adjunct for ascertaining its util-

ity and, to begin with, we used the 14s11p basis employed

earlier for the investigation of the 2P Be2 shape resonance to

investigate the 1s21 Auger hole as well. The u-trajectories

for the 1s21 Auger hole from S2, Sq
2, S3 and Sq

3 decou-

plings using the 14s11p basis are plotted in Fig. 3~a! and the

values for the energy and width obtained from the quasi-

stable portion of the theta trajectories along with experimen-

tal and some other theoretical results are collected in Table

III. Since the second order energy and width obtained using

this basis set was at large variance with those obtained using

other theoretical approaches42,47 and an earlier second order

dilated electron propagator calculation employing a different

(10s6p) basis,43 we repeated the Sq
3 and S3 calculations

using the 10s6p basis and the 16s6p basis obtained from the

10s6p basis by uncontracting all CGTOs in the s-block. The

theta trajectories from the 10s6p and 16s6p bases are pre-

sented in Figs. 3~b! and 3~c! and the energy and width from

all the three ~14s11p , 10s6p and 16s6p! bases have been

collected in Table III. As can be seen from Figs. 3~a!–~c! the

much more economic quasi-particle decouplings closely par-

allel the S2 and S3 decouplings and therefore results from

the Sq
2 and Sq

3 decouplings have not been tabulated sepa-

rately.

The large impact of both the basis set variations and the

order of the decoupling is easily seen from the results listed

in Table III. The basis set effects within the same order and

difference between results obtained from different decou-

plings for the same basis (S2
2S3) are considerably large

for all the three bases with the difference between results

from the 14s11p and the 10s6p bases being remarkable both

for the energy and the width. The lowering of 0.29 eV in

energy and increase of 0.54 eV in width induced by the S3

decoupling for the 14s11p basis in comparison to the S2

results from the same basis underscores the importance of

correlation and relaxation effects incorporated by the S3 de-

coupling. The S3 result for the 16s6p basis provides the

theoretical resonance energy ~124.09 eV! closest to the ex-

perimental value obtained so far. However, even with the S3

decoupling and a fairly large 16s6p basis the theoretical re-

sults are 0.46 eV higher than the experimental results. The

width obtained with the 16s6p basis and the S3 decoupling,

however, is larger than those obtained using other theoretical

methods.42,43,47

An attempt to understand these differences has been

made by plotting the radial probability densities for the reso-

nant FDA from different bases and decouplings correspond-

ing to the 1s21 Auger pole. To begin with, we have plotted

TABLE II. Energy and width of the 2P shape resonances in e-Mg scatter-

ing.

Method/reference Energy ~eV! Width ~eV!

Experiment ~Ref. 39! 0.15 0.13

Previous calculations:

Static exchange phase shift ~Refs. 33, 34! 0.46/0.46 1.37/1.53

Static exchange plus polarizability

phase shift ~Refs. 33, 34!

0.16/0.14 0.24/0.24

Static exchange cross section ~Ref. 34! 0.91 2.30

Static exchange plus polarizability

cross section ~Ref. 34!

0.19 0.30

CI ~Ref. 40! 0.20 0.23

S-matrix pole (Xa) ~Refs. 36, 37! 0.08 0.17

Complex DSCF ~Ref. 41! 0.51 0.54

Dilated electron propagator based

on real SCF ~Ref. 45!

0.14 0.13

Second order ~Ref. 17! 0.15 0.13

Diagonal 2ph-TDA ~Ref. 17! 0.15 0.13

Present calculations: ~8s13p basis!

Zeroth order 0.25 0.10

Quasi-particle second order 0.24 0.10

Second order 0.23 0.10

Quasi-particle third order 0.24 0.10

OVGF third order 0.24 0.10

Third order 0.23 0.10
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the radial density for the Be111(1s) @Energy

5(4)2*13.6 eV5217 eV# labeled Ref and those from the

resonant 1s21 FDAs from the S3 decoupling for all the three

bases in Fig. 4~a!. That the resonant FDA isolated by the S3

decoupling is of the 1s type is evident from the radial den-

sity profiles from all the three bases plotted in Fig. 4~a!. The

difference between the hydrogenic Be111 reference density

and those from the 1s21S3 FDAs from different bases has

been plotted in Fig. 4~b! and the crucial role of relaxation in

lowering of binding energy from 217.6 eV in Be111 to

;124.3 eV in Be (1s) is clearly brought out by depletion of

electron density from the vicinity of the nucleus and its

buildup farther away. The radial density profiles from differ-

ent bases in Fig. 4~a! look identical on the scale of the plot

but as can be seen from Fig. 4~c! and Table III, the difference

of ;1023 in radial density magnitude can translate into a

difference of ;0.3 eV in the binding energy. The magnitude

of difference between radial distribution profile from differ-

ent bases in Fig. 4~c! correlates well with the differences in

energy and widths obtained from them. The higher order

decouplings provide for greater relaxation and thereby low-

ering of resonance ~binding! energy and this is shown by the

radial and difference density plots from the S0, S2 and S3

decouplings for the 14s11p basis in Figs. 5~a! and 5~b!, re-

spectively. The different decouplings play an identical role

for the 10s6p and 16s6p bases as well and these profiles

have therefore not been displayed separately.

The effect of complex scaling and the changes in radial

FIG. 3. Theta trajectories from differ-

ent decouplings of the dilated electron

propagator for the 2S Be1 (1s21)

resonant FDA using: ~a! 14s11p basis.

aopt is 0.85 for all the decouplings. ~b!

10s6p basis. aopt is 0.85 for S2, Sq
2,

and 0.93 for S3 and Sq
3 decouplings.

~c! 16s6p basis. aopt is 0.89 for S3

and Sq
2 and 0.86 for S3 and Sq

3 decou-

plings.
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density profiles accompanying uncovering of resonances for

optimal h are traced by plotting density profiles for the S3

decoupling from the different bases for u50.0 ~on the real

line! for h5a51.0 in Fig. 5~c! and for h5aopt in Fig. 5~d!.
The difference densities plotted in Fig. 5~e! underline the

role of optimal a in stabilizing the resonance by providing

superior relaxation and comparatively more balanced nature

of the 10s6p basis in the characterization of the 1s21 reso-

nance may be attributed to the lower relaxation required by

change in a from a51.0 to a5aopt for this basis. The trends

correlate well with the corresponding binding energies col-

lected in Table IV.

It can also be seen from Table IV that the difference

between binding energy obtained using a51.0 and a5aopt

is minimal and very close to the energy values listed in Table

III for hopt . The shift from real line ~u50.0! into complex

plane to uncover the resonance at a5aopt and u5uopt may

therefore be taken to impact mostly on the width. The reso-

nance is fully uncovered in the complex plane for a5aopt

and u5uopt ~i.e., hopt5aopte
iuopt! and an attempt to study the

effect of basis sets and decouplings on the width is made by

plotting the radial density profiles for different decouplings

and the difference between densities for the S2 and S3 de-

couplings for the 14s11p basis in Figs. 5~f! and 5~g! and the

difference between the resonant FDAs from S3 decoupling

using the 14s11p basis ~aopt50.85, uopt50.38 radians! and

10s6p basis ~aopt50.93, uopt50.08 radians! in Fig. 5~h!.
The inference that can be drawn from this limited investiga-

tion is that the bases and decouplings forcing a larger con-

finement of electron density near the nucleus, i.e., providing

lesser relaxation destabilise the resonance by forcing both

the 1s electrons to share a smaller spatial span thereby low-

ering its lifetime and increasing its width. However a more

systematic and extensive investigation of the basis set effects

for Auger resonances is required and we conclude by repeat-

ing that the desirable basis set attributes for treating shape

and Auger resonances seem to be different and the basis set

and the higher order decouplings which incorporate greater

relaxation and correlation effects are much more critical to

the description of Auger resonances. Also, just as in the case

of shape resonances, the quasi-particle decouplings provide

almost identical values for the energy and width of the Auger

resonance as well and these more economic decouplings can

be utilized with advantage. However, the mechanistic inves-

tigation based on radial density plots from the resonant am-

plitudes requires the full decouplings since the diagonal

quasi-particle decouplings do not provide for the mixing of

orbitals. We believe that determination of hopt from a much

more economic Sq
3 theta trajectory followed by construction

of full S3 propagator only for the single hopt value may be a

reasonable and economic alternative.

IV. CONCLUDING REMARKS

The third order, the related quasi-particle and Outer Va-

lence Green’s Function ~OVGF! decouplings of the bi-

orthogonal dilated electron propagator have been formulated

and implemented for the first time. Investigation of the pro-

totypical 2P Be2 and 2P Mg2 shape and the 2S Be1 (1s21)

FIG. 4. ~a! Radial probability densities and ~b! difference in radial probabil-

ity density for the 2S Be1 (1s21) resonant FDA from the 14s11p , 10s6p

and 16s6p basis sets obtained using S3 decoupling and the hydrogenic

Be1111s orbital. ~c! Difference in radial probability density for the reso-

nant 1s21S3FDA using the 14s11p , 10s6p and 16s6p basis sets.

TABLE III. Energy and width of the Be1 (1s21) 2S Auger resonance.

Method/reference Energy ~eV! Width ~eV!

Experiment ~Refs. 50, 51! 123.63 ¯

Previous calculations:

Many-body perturbation theory

~Ref. 47!

¯ 0.09

Second order electron propagator

with Siegert boundary condition

~Ref. 42!

125.47 0.02

Second order dilated

electron propagation ~Ref. 43!

124.98 0.05

Present calculations:

(14s11p/10s6p/16s6p)

Second order 125.34/124.98/124.85 0.22/0.05/0.03

Third order 124.63/124.35/124.09 0.76/0.07/0.22
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Auger resonances using the S3 and Sq
3 decouplings show

different extent of improvement to the energy and the width

calculated using the second order decoupling alone. The

much more economical Sq
3 decoupling provides value for the

energies and the widths almost identical to those from the

much more demanding full S3 decoupling. However, the Sq
3

approximant being diagonal, does not provide for mixing of

orbitals required for redistribution of electron density and

thereby a complementary test of the effectiveness of different

decouplings. The second order decoupling provides almost

identical results for energy and width of the 2P Be2 and
2P Mg2 shape resonances which are close to those for the

third order (S3) decoupling but the third order FDAs incor-

porate additional correlation and relaxation effects which

provide for subtle redistribution of electron density to ac-

commodate the contradictory pulls of binding and decay re-

quired for accurate description of resonances. The proximity

of energy and width obtained from different decouplings for

the 2P Be2 and the 2P Mg2 shape resonances lends credence

to the simple picture of shape resonance resulting from elec-

tron attachment unaccompanied by large disturbances in the

target. However, we should add that although the energies

from different decouplings are similar there are subtle differ-

ences in the corresponding electron density distributions and

the energy alone may be not be a sufficiently sensitive test of

the efficacy of these decouplings.

The Auger resonances resulting from a core hole neces-

sitate considerable redistribution of electron density and the

S3 decoupling as expected provides superior agreement with

the experimental result. These results, however, are sensitive

to the choice of primitive basis and a limited study of basis

set effects undertaken reveals that the primitive bases provid-

ing a reasonable description of Auger resonances may differ

considerably from those optimized for describing shape reso-

nances and a methodical study of the type undertaken for

shape resonances44 will be useful. For Auger resonances, the

S3 decoupling provides large correction to results obtained

using the S2 decoupling alone and recommends itself for

FIG. 5. ~a! Radial probability density

and ~b! difference density for the
2S Be1 (1s21) resonant FDA from

different decouplings employing the

14s11p basis. Radial probability den-

sities at a51.0 ~c! and a5aopt ~d!.
Difference in radial densities from the

S3 decoupling using the 14s11p ,

10s6p and 16s6p bases ~e!. Radial

probability densities at a5aopt , u
5uopt ~f!, difference in radial prob-

ability densities at a5aopt using S2

and S3 decouplings from 14s11p ba-

sis ~g!, and difference in radial prob-

ability densities between the 14s11p

and 10s6pS31s21 resonant FDAs(h
5hopt) ~h!.

TABLE IV. Be (1s) binding energy on the real line (u50.0) for a51.0

and a5aopt .

Method/reference a51.0 a5aopt

Present calculations:

(14s11p/10s6p/16s6p)

Zeroth order 128.78/128.80/128.76 128.78/128.70/128.75

Second order 125.37/124.96/124.87 125.34/125.01/124.85

Third order 124.72/124.38/124.22 124.59/124.34/124.03
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investigation of other atomic/molecular Auger resonances.

The best value for the (1s21) Be1 Auger resonance en-

ergy obtained using the S3 decoupling is, however, still 0.46

eV higher than the experimental value and application of an

infinite order renormalized decoupling like the full

2ph-TDA15 is appealing. However, due to the large dimen-

sion of the h3 manifold, the full 2ph-TDA requires either

inversion of a very large complex C matrix @Eqs. ~21! and

~25!# using a full diagonalization to obtain all eigenvectors or

repeated diagonalizations of the superoperator Hamiltonian

matrix1
H. Even for modest basis sets, both C and H will

have a very large dimension with the largest block even after

exploiting spatial and spin symmetry most likely to be of the

order of 103 and higher and repeated diagonalizations of

these large complex matrices for many values of E and ;150

different values of h is much too demanding. Furthermore,

although the full 2ph-TDA is complete in second order, it is

incomplete in third and higher orders and since the choice of

the superoperator metric1 required to obtain the 2ph-TDA

and S3 decouplings are quite different, a simple algebraic

reconciliation to obtain a biorthogonal ADC~3!2 type exten-

sion may not be easy to formulate. A new48 variant seems

promising but nonavailability of Davidson’s type diagonal-

ization algorithms applicable to large non-hermitian complex

symmetric matrices coupled with the need for iterative con-

struction for many ~;150! h values keeps it out of our reach

for the time being. The matrices constructed for the S3 de-

coupling can provide a partial fourth order (Sp
4)

correction28,49 and an attempt to incorporate the (Sp
4) decou-

pling for a more accurate treatment of Auger resonances is

an obvious extension of this work. An effort along these

lines is underway in our group.
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