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Abstract: The main purpose of present paper is to investigate Holder and integral means
inequalities for a certain subclass of analytic functions based on Caputo’s fractional opera-
tor. Further we obtain the partial sum results for functions belonging to the new subclass.

Moreover we point out some new or known consequences of our main result.
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1. Introduction
Let A denote the class of functions of the form
o0
f2) =24 anz", (1)
n=2

which are analytic and univalent in the open disc U = {2z : z € C, |z| < 1}.
Also let T be a subclass of A consisting of functions of the form
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o0
z):z—Zanz”, an, >0, z €U, (2)

We recall the following definitions due to owa [13].

Definition 1. Let the function f(z) be analytic in a simply-connected
region of the z— plane containing the origin. The fractional integral of f of
order y is defined by

g L[ S©
D f( )_F(M)O/(Z—f)ludg’ >0, (3)

where the multiplicity of (z — &)!™* is removed by requiring log(z — £) to be
real when z — & > 0.

Definition 2. The fractional derivatives of order p, is defined for a func-

tion f(z), b

R
W) dz

DEf(z) = / f de 0 <l (4)
0

where the function f(z) is constrained, and the multiplicity of the function
(z — &)7# is removed as in Definition 1.

Definition 3. Under the hypothesis of Definition 2, the fractional deriva-
tive of order n + p is defined by

DIFHf(s) = SDEfE) (0 p <1, ne Ny, o)

With the aid of the above definitions and their known extensions involv-
ing fractional derivative and fractional integrals, the generalization of Salagean
[16] derivative operator and Libera integral operator [8] was given by Owa[13].
Srivastava and owa [22] introduced the operator

A A,

defined by

Qf(z2) =T(2-0)2"Dif(z) =2+ Y _ O(n,8)an2", (6)

n=2
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where

I'(n+1)I'(2—-9)
I'(n+1-9)

®(n,d) = and 6 € R, 6 #2,3,4.... (7)

For f € A and various choices of §, we get

Of(2) = f(z) =2+ ) anz", (®)
n=2
O'f(2) = 2f'(z) =2+ Y _nanz", (9)
n=2
Qf(z):=QQ 7 f(2) =2+ Y _nlanz",(j =1,2,3,...), (10)
n=2

which is known as Salagean operator (Salagean[16]). Also note that

2 [* S 2 .
z):;/o f(t)dt::z—l—;(n_’_l)anz

and

Q7 f(2) = QI f(2) =24 ) (

J
> a2, (3 =1,2,3,...) (11)

n+1

called Libera integral operator[8]. We note that the Libera integral operator is
generalized as Bernardi integral operator given by Bernardi [3] is

1+v 1 1+v
7A tV f t—Z+Z(n+1> anz (V:1,2,3,...).

Further we recall the definition of the fractional-order derivative due to
Caputos[4] given by

w1 [ )
D) = iy | e "

a

where n — 1 < R(a) < n, n € N and the parameter « is allowed to be real
or even complex, a is the initial value of the function f.
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Making use of these results and the definition of Caputo’s fractional deriva-
tive [4], recently Salah and Darus in [17], introduced the following operator

PC+n—n) uy / Qf(t)
L(n—p) o (2 —t)ptimn

where n(real number) and (n — 1 < p < n < 2). That is

INf(z) = dt, (13)

Fn+1)’r@2+n—wl2-n .,
Jnf +Z Thtn—pt+ DO(n—7n+1) anz”, (2 € U). (14)

We note that

I0f(2) = f(2) and Jif(z) = 2f'(2).

we making use of subclass TJ}(av, 3,7, A, B) of analytic functions with negative
coefficients involving the operator J}} given by (14) and discuss some usual
properties of the geometric function theory.

2. The Class TJ] (o, 8,7, A, B)

Definition 4. For fixed -1 < A < B < 1l and 0 < B < 1, let
ST (v, B,7, A, B) denote the subclass of A consisting of functions f of the
form (1) and satisfying the condition

2TUE)

Jif(z)
<pB, zeU, (15)
2(J7 f(2)) 2(J7 f(2))
i (e )5 ()

where J)| f(z) is given by (14) and

B
N E—Aa 0
0<a<l, 0<p<, <,Y§{f(3_,4)a a#0,

m a=0.

We also let TJ(a, 8,7, A, B) = SJ}(«a, 8,7, A, B)N'T, where T is given by (2)

Remark 5. By suitably specializing the values of A, B,«, 3 and v the
class TJ}(«, 8,7, A, B) leads to known subclasses studied in Aghalary and
Kullkarni[1], Khairanar and Meena[7], Owa and Nishiwaki [12] and various
new subclasses.
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For convenience in our study we consider 0 < a < 1,0< g <1,

B
B <y < 3BT a0,
2(B—-A) 1 a=0,

for fixed -1 < A< B<1and0< B <1. Further

(C(n+1)°C(2 +n — pI'(2 —n)
Fn+n—p+1)I'(n—n+1)

Cn(n, 1) = (16)

and
A2+ 17— D2 — )
Ca(n, ) = rBG+n—pwl1—-mn)"

Theorem 6. (Characterization property:) Let the function f be defined
by (2) is in the class TJ}(a, 3,7, A, B) if and only if

(17)

o0

> _128y(B=A)(n—a)+(1-BB)(n—1)]Cy (0, n)|an| < 26v(1-a)(B-A), (18)

n=2

where C,,(n, ) is given by (16).

Corollary 7. Let the function f defined by (2) be in the class TJ}(«, 8,7,
A, B), then we have

2p7(1 — a)(B — A)

‘an‘ < ) (19)
[287(B = A)(n — a) + (1 = BA)(n—1)| Caln, )
the equation (19) is attained for the function
f(Z) — 2/87(1 — a)(B — A) prg (n > 2)’
[267(B = A)(n - a) + (1 = BA)(n—1)| Culn, )
(20)
where C),(n, ) is given by (16).
For the sake of brevity, we let

and
Oy(a, 8,7, A,B) =1+4+28y(B—-A)(2—«a)— Bf (22)
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Theorem 8. (Extreme Points:) Let

fi(z) =2

and

281 —a)(B-A4) o
(I)n(Oé,,B,’)/,A,B)Cn(n’M) ’( 22)

where C,(n, 1) is given by (16). Then f € athcalTJ} (v, 8,7, A, B) if and only
if it can be expressed in the form

fn(z) =

f(z) - anfn(z)v (23)

o0
where w, >0 (n>1) and > w, = 1.

n=1
Theorem 9. (Arithmetic Mean:) Let the functions f;(j = 1,2,...m)
defined by

o0
fi(z) =2 — ZG”J 2" for a,, ; >0, z € U. (24)
n=2

be in the classes TJ} (e, 3,7, A,B) (j = 1,2,...m) respectively. Then the
function h(z) defined by

h(z):z—%z Zamj} 2" (25)
n=2 \ j=1

is in the class 77} (v, 8,7, A, B), where a = min {a;}, 0 <a; <1
1<j<m

3. Holder’s Inequality

Followed by Nishiwaki et al.[11] and Murugusundaramoorthy et al.[10] in this
section we study some results of Holder type inequalities for f € TJ](a, 8,7, A,
B). Now we recall the generalisation of the convolution due to Cho et al.[5] as
given below
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Further for functions f; € T (o, 8,7, A, B), (j = 1,2...m) given by the familiar
Holder inequality assumes the following form

§(Han]><n<nza )J, (27)
(p]>1 7 =12.m, Z—>1>

Theorem 10. AB),-1<B<A<10<acx<l

If fj € TJZ(Oé,ﬁ,’)/,
0<B<1,(j=1,2.m ) e

) then H,,(z

§<1-
(267(B - ) T - &) (1~ (1~ BE253(B - 4))

[ 278 - - &) + (1= B8)]” ealm ol = 257(B - ) [T (1 - €5

where

g > 1.

Ms

1

<.
I

1
S—Zp]>1 p]>q—(j_123 m), ¢j > 1(j = 1,2..m);

J=1
Proof. Let f; € TT}(c, 8,7, A, B),(j = 1,2...m) then we have

- 1)] cn (1, 1)

= [269(B - A)(n — &) + (1~ BA)(n .

267(1 = &)(B — A))

n=2
which in turn implies that
1

~ &)+ (1= BB)(n — 1) caln, 1)

> [289(B - A)(n _,
Qn,j =~ 1,
P 267(1 - §)(B - A4) ')
1
>1, (j=1,2,3.m),y —=1,.
q; > (j m)jzlqj }

Applying the inequality (27) we arrive at the following inequality

oo

> (%

[287(B = )(n - &)+ (1 - BB)(n —1)]
267(1 = &)(B — A)
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Thus we determine the largest £ such that

< [264(B ~ ) — &) + (1~ BAY(n ~ 1] ealn. ) .
(Z 267(1-§,)(B ~ 4) ol ) ) 1] ny =1
That is
= [267(B = A)n— &) + (1 = B0 — D]enln. ) o
(nZ; 267(1 = )(B — 4) Cn(nwu’)} jgla%' =
B [257 B—A)n—&)+ (1 —Bp)n— 1)] u o
2 [(Z 269(1-§)(B - 4) n { #)ng ) J
Since
m [ [254(B — A)(n— &) + (1 - BE)(n—1)] =
jgl 287(1 = &) (B = A) C”(n’“)} “ng = =5
1 o
(Pj - Z >0, 5= 1,2,3...m> .
We see that
ﬁ g v < ! —. ()
=1 m [%v(B—A)(n—&j)+(1—Bﬂ)(n_1)] T
Jl;ll 257(1-8) (B—A) cn (1, 1) }

This last inequality (28) implies that

26~(B — A) H2ﬂvB AP (1 = gy)Pt

— Y 2590 )B - )+ (- BAYm - )] ealm ) (1 O

J=1
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J=1

_l’_

< (ml )(1 - BB) [[26v(B - A))Pi~ (1—@W7

(n—1)28y(B — A) [ [(287(B — A))Pi~ (1-@-)%},
J=1

where

= []@8v(B — A)Pi(1 - ¢)P.

Jj=1

Which implies

{ =3 [portn - ) (B - A)(l—B@@—UY%%mwwviﬁl—as

J=1

[(nl)T (1-BB)(n—1) [[(28v(B — A)P~ (1—53-)ij'
j=1

That is
[m—nn+u—3mm—nfyww3—mw1@—@%]
o 3 [0 - &)B = )+ (1 - BA) - 1] -,
Let
[m—n%+u—3mm—nfyww3—mw10—@%]
(n)<1-— ,

Zl 267y(n — &)(B — A) + (1 — BB)(n — 1) — T
]:
which is an increasing function in n hence we have

£<B(2)=1—
(267(B ~ A)* [1(1 = &) (1~ (1 - B)267(B - A))

J=1

(1 —fj)’”.

=

[ 2698~ )2~ &) + (1= BY)]” ealn. ] — 26(B - A))

J

1]
—

?:1:
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Hence the proof. O

4. Integral Means Inequalities
In this section, we obtain integral means inequalities for the functions in the
family 7J} (o, 8,7, A, B) due to Silverman[20)].

Lemma 11. (Littlewood[9])If the functions f and g are analytic in U
with g < f, then for n > 0, and 0 < r < 1,

27 27
/ lo(re)[ a0 < / )" as. (29)
0 0

In 1975, Silverman[18], found that the function fa(z) = z — é is often
extremal over the family 7 and applied this function to resolve his integral
means inequality, conjectured in Silverman[19] and settled in Silverman [20],
that

21 2
fae®|" ao < [ | 20| ao,
0/‘ 7“6‘ O/(ﬂe(

forall f€T,n>0and0<r < 1. In Silverman[20], also proved his conjecture
for the subclasses 7*(7) and C(y) of T.

Applying Lemma 11, Theorem 6 and Theorem 8, we prove the following
result.

Theorem 12. Suppose f € TJ (o, B,7,4,B), n > 0,0 < A < 1,
0<vy<1,8>0and fo(z) is defined by

2 -a)B-4)
®2(a7/87’Y7A7B) '

foz) = 2

where ®y(a, 5,7, A, B) is given by (22), and Ca(b, ) is given by (17). Then for
z=re? 0 <r <1, we have

2w

2
/umwws/m@ww. (30)
0

0



HOLDER AND INTEGRAL MEANS INEQUALITIES... 113

Proof. For given f of the form (2), from (30) is equivalent to proving that

21 0o n 21 (1 ) "
. NEas d0</ 1— — de.
/1 2 loal: = S0, B AB)
n= 0

0
By Lemma 11, it suffices to show that
- 267(1 — o)(B — A)
1— anlz" 7t <1 — z
7122’ n’ (1)2(047/8777A7B)

Setting
S n1_ 4 2871 —a)(B - 4)
=2 el = A ) (31

and using (18), we obtain

o (Oé 5 77 A7 B n—1
B,%A B
’Z‘Zwy B Ay
< lzl,
where ®,(a, 5,7, A, B) is given by (21). O
This completes the proof by Theorem 12.
5. Subordination Results
a? 187 ,‘)/7 A

In this section we obtain subordination results for the new class TJ)(

B) due to Wilf [23].

(Subordinating Factor Sequence) A sequence {b,}22; of

Definition 13.
complex numbers is said to be a subordinating sequence if, whenever f(z)

a1 = 1 is regular, univalent and convex in U, we have

o0
> anz",
n=1

o0

ananz" < f(z), zeU.
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Lemma 14. (Wilf, [23]) The sequence {b,}5°; is a subordinating factor
sequence if and only if

%{1+2anzn}>o, zeU. (33)
n=1
For the sake of brevity , we let

wn(a7ﬁ777 AvB) = (I)n(aaﬁaﬁyaAaB)Cn(nvu) (34)
and
¢2(Q,ﬁ,7,A,B) :¢’2(04757%A73)C2("77M)- (35)

Theorem 15. Let f € TJ}(«a, 3,7, A, B) and g(z) be any function in the
usual class of convex functions CV, then

lbg(Oé,ﬁ,’Y,A,B)
2[287(1 — a)(B — A) + s (a, 8,7, A, B)]

where 0 <~y <1;>0and 0 < A< 1, and

R(f(2) > 2P0 = O‘)g(;";’);f;’ﬁ’%“l’ Bl Lecu  @n

Y2(o,3,7,A,B)

(fx9)(2) < g(2), (36)

The constant factor
a larger number.

in (36) cannot be replaced by

Proof. Let f € TJ(a, 8,7, A, B) and suppose that g(z) = 2+ > b,2" € C.

n=2
Then
Yo(a, 8,7, A, B) .
(1L —a)(B - A) + vala, By A, By L F I
_ Pa(a, 8,7, A, B) 00 i

(38)
Thus, by Definition 13, the subordination result holds true if

{ Yo, B,7, A, B) }Oo
SBA (L —a)(B — A) + (o, Br A, B)

)
n=1
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is a subordinating factor sequence, with a; = 1. In view of Lemma 14, this is
equivalent to the following inequality

3 Ya(a, 8,7, A, B)

)]anz”} >0, ze€U.

(39)
By noting the fact that v, (a, 8,7, A, B) is increasing function for n > 2 and in
particular

lbg(Oé,ﬁ,’)/,A,B) < ¢n(04757%1473)
28v(1 —a)(B—A) ~ 28y(1 —a)(B - A)’

therefore, for |z| = r < 1, we have

va(e, 8,7, A, B) o
%{1 YA @B A) + vl B A B 25 }

=1

n > 2,

o le(Oé,ﬁ,’y,A,B) -
B %{1—’_2[267(1_a)(B_A)+¢2(a75777AaB)]
+ ¢2(O‘75777A73) a Zn}
2028v(1 — a)(B = A) +42(a, 8,7, A, B)| "
> 1— ¢2(CM,,8,’Y,A,B) r
N 2[2/87(1 - a)(B - A) + ¢2(O‘7/8777 Av B)]
1
2691 - a)(B — A)ga(a. 5,7, A, B)]
n% [289(B = A)(n — a) + (1 = BB)(n — 1)]Cn(n, p)an|r"
> ¢2(O‘7/8777A7B)

= A —a)(B - A) + dala B A D)
267(1 = )(B = A)

267(1 = a)(B = A) + (e, 5,7, A, B)]
where we have also made use of the assertion (18) of Theorem 6. This evidently
proves the inequality (39) and hence also the subordination result (36) asserted
by Theorem 15. The inequality (37) follows from (36) by taking

r>0, (|z| =r),

g9(z) = - —z+Zz”€C.
n=2

1—2

Next we consider the function
2891 —a)(B-4) ,

Fe) = B A D)
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where 0 <y <1, 8>0,0 <\ < 1. Clearly F € TJ}(p,, 3,7, A, B). For this
function (36) becomes

1/)2((1,,8,’}/, AvB) L
A1 —a)(B—A) +da(a. By A B D T

p— Z :
It is easily verified that

win {9 (sgm = v s A m )} =

This shows that the constant

1
5, ZEU

¢2(a75777A7 B)
2[267(1 = a)(B — A) + ¢2(e, 8,7, A, B)]

cannot be replaced by any larger one. U

6. Convex Linear Combination

In the following theorem, we show that the classes TJ}(«, 8,7, A, B) are closed
under convex linear combination.

Theorem 16. The class TJ}(«, 8,7, A4, B) is closed under convex linear
combination.

Proof. We want to show the function
F(z) = (1 —p)fi(z) +pufa(z), 0<p <1 (40)

is in the class TJ(«, 8,7, 4, B), where f1, fo € TI}(a, 8,7, A, B) and

o0 o0
fi(z) =2=) an12", fol2) =2 =Y an22".
n=2 n=2
By (18) we have

> ®ule, 8,7, A, B)Cr(n, p)an, < 267(1 — a)(B - A)

n=2
and

Z (I)n(aa 6777 Aa B)Cn(na M)an,Q S 257(1 - a)(B - A)
n=2



HOLDER AND INTEGRAL MEANS INEQUALITIES... 117

Therefore

F(z) = (1—p)fi(z) + pfa(z)
= (1—p) <z — Zanvlz"> + i <z — Z anvgz">
n=2 n=2

[o@)
= - Z ((1 — p)an1 + ,uan,g)z”.

n=2
We must show that F'(z) with the coefficient ((1 — [)an 1 —i—uan,g) satisfy in the

relation (18) also the coefficient ((1 — p)an1 + ,uan,g> satisfy in the inequality
in Corollary 7. Further

HZ? = (14 nx = X)a] (0= s + ) EZ)):_;((S:;
— (- u)i [n — (1+n\— A)a} %am
+un§ [n— (1+n) =Nl EZ;::S’;:i n
< (= (a—1)+p(a—1)
Therefore_, it io;olv;zs thatF € TJ}\ (o, 8,7, A, B) O

7. Partial Sum Results

Silvia [21] studied the partial sums of convex functions of order . Later on,
Abubaker and Darus [2], Frasin [6], Raina and Bansal [14] and Rosy et al.[15]
determined the sharp lower bound on the real part of the quotients between the

normalized starlike or convex functions, viz., R ( ;; ((Zz))) , R (Cfé?) , R ( j:/ E?)
k z

' k
and R (;’fg) for their sequences of partial sums fi(z) = z + > anz" of the
n=2
o0
analytic function f(z) =z + > anz".

n=2
In the following theorems we discuss the results on partial sums for f € TJ(«, 5,
7, A, B).
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Theorem 17. If f of the form (1) satisfies the condition (18), then
R < f(Z) > > pk-i—l(aaﬂuvaAaB) - 2,8'}’(1 - CE)(B — A)

, zeU), (41
fk‘(z) o pk+1(a75777A7 B) ( ) ( )
where
B 26v(1—a)(B—A), , if n=23,...,k
pn_karl(a’B’%A’B)z{Pk:+1, if n=k+1,k+2,.....
(42)
The result (41) is sharp with the function given by
28v(1 — B-—A
Pk+1
Proof. Define the function w(z) by
Lvuz) _ pen [ 1) prss = 263(1— 0)(B — A)
L—w(z)  26y(1—a)(B—A) | fu(2) Ph+1
k 1 P+ 1 o 1
1+ > apz" " + <2ﬁ'y(17]2)(BfA)) ST a2
n=2 n=k+1
- (44)

k
1+ > apzn!
n=2

It suffices to show that |w(z)| < 1. Now, from (44) we can write

[o@)
Pk+ 1 n—1
(ze25t=) R
w(z) = - b .
242> apz"t+ (—QQW(ITZ)}B—AJ S apzn!
n=2 n=k+1
Hence we obtain
P+ 1 =
(s sm=) 2 lanl
w(z)] € —— S
223" faul — (i) S5 o
n§2| TL| 26y(1=a)(B=4) n=§+1| n|

Now |w(z)| < 1, if and only if

[e. 9]

k
Pl — Qnp) -
2(267(1—04)(B—A)> 2 foul <2 27122' g

n=k+1
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Or, equivalently,

k
Z lan| +
n=2

From the condition (18), it is sufficient to show that

oo

Pk+1
lan| < 1.
2 B

k 00 00
Pl+1 P
2t 3 spaam—a = L ama—am

which is equivalent to

k
pn — 2671 —a)(B — A)
Z( 25 (1—a)(B —A) )’C‘”’

n=2

- Pn — Pk+1
Y () 2o )

n=k+1

To see that the function given by (43) gives the sharp result, we observe that

for z = rei™/k
&) _ 20 —a)(B-A) | 2690 a)(B - A)
fk:(z) PEk+1 Pk+1
= Pe1” 26y~ )(B — 4) when r — 17.
Pk+1

We next determine bounds for R (fx(2)/f(2)).
Theorem 18. If f of the form (1) satisfies the condition (18), then

fi(2) Ph+1
! < f(2) > Z ot -aB-4 U (46)

where pgy1 > 207(1 — a)(B — A) and

267(1 — a)(B — A), if n=23,....k
>
pn(A,%n))_{pkH’ if n=k+1,k+2,....
(47)

The result (46) is sharp with the function given by (43).
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Proof. We write

1+w(z)  pre1+287(1 — ) (B - A) [fk(z) B Ph+1
1—w(z) 287(1 — a)(B — A) f(z)  prs1+287(1 — a)(B — A)
K 1 Pl+ 1 o 1
1+ anz""" — <+> anz"”
> THT-BA) 2
1+ > apzn!
n=2
where
P+ 1+28v(1—)(B—A) =
( 287(1—a)(B—A) ) ;k:ﬂ |an|
lw(z)| < = <1
£1=20/(1—0)(B=A) | 5~
2-2 Z lanl - (pk 25 (=) (B-A) ) 2, o
n=k+1
This last inequality is equivalent to
: - Pk
+1
Ay | + ap| < 1.
o T CENT

Making use of (18) to get (45). Finally, equality holds in (46) for the extremal
function f(z) given by (43). O

We next turns to ratios involving derivatives.

Theorem 19. If f of the form (1) satisfies the condition (18), then

f'(2) pe1 — 2By (k+ 1)1 — o)(B — A)
" (fk(z)> P41 ’ (1), (48)

and

fe(2) Pk+1 B
" (f’(Z) Z TG )B4 FEU @)

where pr+1 > 207v(k+1)(1 — a)(B — A). and

2Bvk(1 —a)(B — A), if n=2,3,...,k
>
Pk n(’,’gf), if n=k+1,k+2,....

The results are sharp with the function given by (43).
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Proof. We write

14 w(z) _ Pr+1
1—w(z) 26y(k+1)(1—a)(B—-A)

Pk+1

" [f’(Z) _ (PkJrl —26y(k+ 1)1 —a)(B - A)

fi(?)

where

Pk+ 1 ) i nanzn—l
(267(k+1)(1—a)(B—A) nF

w(z) = B
2425 naz" 4

n=2

n=k+1

Now |w(z)| < 1 if and only if

k 00
Pk+1

n=2 n=k+1

From the condition (18), it is sufficient to show that

k 00
Pk+1
n|Qp| + n |Gy
7122 [an] 26v(k+1)(1 —a)(B —A) n;m [

(25’7(/€+1QI€1+7101)(B—A) ) Y. napzt!

2 nlanl S A B Ay 2 Ml <t
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3 Pn
: nZQ 267(1 —a)(B —A) lan]

which is equivalent to

k
pn—2B7(1 —a)(B — A)n
§:< 251 —a)(B—A) )””*

n=2
[eS)

(k+1)pn_npk+1
Tl;f—l 257(143 + 1)(1 — a)(B _ A) ‘an‘ > 0.

To prove the result (49), define the function w(z) by

L+w(z)  (k+1)28v(1 —a)(B = 4) + prs

1 —w(z) 28y(k+1)(1 —a)(B—A)

y [f;é(z) Pht1

Fi(z)  2By(k+1)(1— o) (B — A) + pr1
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where

Plk+ = n—1
- (1 + Zﬁ'y(k:—l—l)(kl:a)(B—A)) ;};Ll”anz
w(z) = —

k 00 ’
2425 naz" 4 (1 - 2ﬁ'y(k+1ﬁkl+—1a)(B—A)> S napznt
n=2 n=k+1

Now |w(z)| < 1 if and only if

k

p o0
Sonlenl+ (gt ) &t st 6

n=2 n=k+1

It suffices to show that the left hand side of (51) is bounded above by the

condition
o

Pn
2 s a@-a

n=2

which is equivalent to

k

n;g (QBv(l —pan)(B yry — n> |ay|

- _ Pk+1 ol |
+n;+1<25“—a)(3 A) 2Bv(k+1)(1_a)(B_A)> jan| >0

O
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