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Abstract

Wireless sensor networks (WSNs) are expected to find extensive applicability and acceler-

ating deployment in the future. However, the main challenge faced in WSN is its perishing

lifetime. The process of clustering a network is a popular mechanism employed for the

purpose of extending the lifespan of WSNs and thereby making efficient data transmis-

sion. The main aim of a clustering algorithm is to elect an optimal cluster head (CH). The

recent research trend suggests meta-heuristic algorithms for the selection of optimal CHs.

Meta-heuristic algorithms possess the advantages of being simple, flexible, derivation-free,

and avoids local optima. This research proposes a novel hybrid grey wolf optimiser-based

sunflower optimisation (HGWSFO) algorithm for optimal CH selection (CHS) under cer-

tain factor constraints such as energy spent and separation distance, such that the net-

work lifetime is enhanced. Sunflower optimisation (SFO) is employed for a broader search

(exploration) where the variation of the step-size parameter brings the plant closer to the

sun in search of global refinement, thus increasing the exploration efficiency. Grey wolf

optimisation (GWO) is employed for a narrow search (exploitation), where the parame-

ter coefficient vectors are deliberately required to emphasise exploitation. This balances

the exploration-exploitation trade-off, prolongs the network lifetime, increases the energy

efficiency, and enhances the performance of the network with respect to overall through-

put, residual energy of nodes, dead nodes, alive nodes, network survivability index, and

convergence rate. The superior characteristic of the suggested HGWSFO is validated by

comparing its performance with various other existing CHS algorithms. The overall perfor-

mance of the proposed HGWSFO is 28.58%, 31.53%, 48.8%, 49.67%, 54.95%, 70.76%,

and 87.10%, better than that of GWO, SFO, particle swarm optimisation (PSO), improved

PSO, low-energy adaptive clustering hierarchy (LEACH), LEACH-centralised, and direct

transmission, respectively.

1 INTRODUCTION

Wireless sensor network (WSN) consists of low-power and

low-cost sensor nodes (SNs). The SNs are located in a spe-

cific region and organise themselves to generate a WSN. In

many fields, the WSNs have identified a variety of uses that

include surveillance in the battlefield, industrial observation

units, threat detection, healthcare monitoring and so forth

due to their efficient communication. Furthermore, the energy,
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computational abilities, and bandwidth are few numbers of

the sources that facilitate the overall WSN control. In such

a way, a WSN has systematised accurate sensing and signi-

fies incorporation of wireless communications with numerous

nodes. WSN has got several benefits like communication flexi-

bility, deployment flexibility, low cost, and less consumption of

power [1–3].

WSN comprises numerous SNs. These SNs run on a non-

rechargeable battery. Hence, for providing the object of load
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balancing, fault tolerance as well as network connectivity, node

grouping is necessary. Clustering is the procedure for parti-

tioning SNs into groups depending on a variety of parame-

ters, and the choice of a group leader from all groups. The

groups are known as clusters while group leaders are known

as cluster heads (CHs) of the clusters. Factors for creating the

clusters comprise the intra-cluster communication cost, the dis-

tance among CH and its members, location of nodes with

respect to the base station (BS), residual energy of SNs and so

forth [4].

Different schemes were employed in addressing the problem

of CH selection (CHS). These schemes can be categorised into,

normal CHS methods and optimal CHS methods. The opti-

mal CHS methods can still be categorised into meta-heuristic

and heuristic techniques [5]. These techniques are established

to bring solutions to an optimisation problem with compact

and simple theories, often based on empirical nature. Numer-

ous heuristic algorithms were recommended in the literature to

handle the heterogeneity. The shortcoming found in the heuris-

tic approaches is the numerical inefficiency of the search pro-

cess, especially for high-dimensional and large scale problems.

In contrary, the meta-heuristic schemes of optimisation have

become more popular over the recent decades. Meta-heuristic

algorithms are developed to solve big-dimensional complex

optimisation problems and to bring improved evolution in the

search region [6]. The major advantages of metaheuristic algo-

rithms are flexibility, simplicity, local optima avoidance, and

derivation-free mechanism [7].

1. Flexibility is known as the applicability of the meta-heuristic

techniques to several optimisation problems lacking dis-

tinct modifications in the procedure’s structure. Meta-

heuristics are applicable readily to several problems because

these methods often consider the problems as the black

boxes.

2. Meta-heuristics are generally very simple. They are devel-

oped from the inspiration of very simple ideas. These inspi-

rations are often associated with some physical phenomena,

animals’ behaviours, or evolutionary concepts.

3. Meta-heuristics possess superior capabilities to prevent local

optima when compared to the traditional approaches of opti-

misation. This is because of the stochastic behaviour of

meta-heuristic protocols that permit them to prevent from

being stuck in the local best optima and explore the whole

search space widely. A majority of meta-heuristic algorithms

have techniques without any derivations. Contradictory to

the gradient-based techniques of optimisation, the meta-

heuristic algorithms optimise problems in a stochastic man-

ner.

Generally, meta-heuristic protocols may be categorised into

two major types: Population- and single-solution-based types.

These can also be categorised based on nature inspiration into

evolutionary-based, physics-based, and bio-inspired algorithms.

Irrespective of the dissimilarities among the meta-heuristic pro-

tocols, a common attribute helped in the segmentation of

the search procedure into two stages: Exploitation and explo-

ration [8, 9]. The exploration stage is the method of inspect-

ing promising areas of entire search location extensively. On

the other hand, exploitation is defined as the local search-

ing ability around the promising areas attained in the stage of

exploration. Determining an appropriate stability among explo-

ration and exploitation is considered a challenge because of

the stochastic behaviour of meta-heuristic techniques. Among

the numerous techniques proposed by researchers, most of

the techniques were employed to perform the CHS in WSNs.

However, stabilisation of energy and enhancement of the life-

time of WSNs require further improvements. With the motiva-

tion of meta-heuristics into play, this study proposes a hybrid

grey wolf optimiser based sunflower optimisation (HGWSFO)

scheme for the energy-efficient selection of optimal CHs in

WSNs.

Grey wolf optimisation (GWO) algorithm is the latest

renowned optimiser unit that works on the hunting nature of

grey wolves (GWs). These GWs have the capacity of locat-

ing preys and encircling them. This hunting behaviour is an

inspiration for GWO algorithm. Hence for exploitation, GWO

algorithm is employed. For a further broader search, sunflower

optimisation (SFO) is employed in the proposed study. SFO

algorithm is based on the peculiar behaviour of sunflowers

and examines their finest alignment of facing the direction of

the sun. The primary aim of the integration is the prolonged

lifespan of modelled WSN by employing GWO for exploita-

tion and SFO for exploration. This proposed HGWSFO tech-

nique combines the advantages of both SFO and GWO,

bringing the balance between the exploitation and exploration

phases of optimisation, resulting in better performance of the

network.

The remaining portions of the research article are arranged in

a manner listed as Section 2 that explains the associated studies

proposed in the literature. Section 3 elaborates on the method

suggested; Section 4 explains the outcomes and discussion of

the simulation; Section 5 presents the conclusion of the study

implemented and scope to extend further.

2 LITERATURE REVIEW

Several studies are available in the literature that attempted an

effort to enhance the lifespan of network and efficiency of

WSNs energy using clustering approaches. These methods are

categorised in Figure 1.

2.1 Normal CHS methods

Heinzelman et al. [10] proposed a protocol called centralised

low-energy adaptive clustering hierarchy (LEACH-C) on which

the decisions like the selection of CH, information distribu-

tion and formation of a cluster to the network was performed.

Because of the fact that the steady-state phase is entirely imple-

mented at the BS, SNs are not affected by overheads dur-

ing the time of formation of the cluster. Handy et al. [11]

proposed LEACH-deterministic CHS (LEACH-DCHS) for



386 NAGARAJAN AND THANGAVELU

FIGURE 1 Classification of clustering algorithms

prolonging the lifetime of the network. This is achieved by

making two alterations in the protocol of LEACH: (i) Modi-

fying the CHS threshold value by multiplying the balance fac-

tor of energy, and (ii) using rotational CHs to extend the net-

work lifetime. The negatives of LEACH protocol are that it

performs random CHs selection, which leads to bad CHS and

hence leads to inefficient energy and lifetime retention by the

network.

Devulapalli and Nayak [12] proposed a fuzzy inference

engine, using which, a super CH was chosen among CHs that

can transfer the data to mobile BS through opting the best

descriptors like mobility of BS, remaining battery power and

cluster centrality. The network encounters energy depletion

faster during data transmission to the BS. Haseeb et al. [13]

presented a grid-based CHS technique through segmenting the

field of the network into M × N dividers of uniform sizes that

focus to reduce the dissipation of energy of sensors and enhanc-

ing network lifetime. This method works in a centralised fashion

and requires details of the location of the network nodes, such

that all nodes send their locations to the sink node. Energy is

not considered for the process of CHS.

Younis and Fahmy [14] proposed a hybrid energy-

efficient distributed (HEED) algorithm. The nodes intra-

communication rate and residual energy are two main factors

that have been utilised in this approach for the CH chosen in

SN. HEED provides even distribution of CHs, and the chances

for two nodes within the same communication range can be

selected as CHs is very low. The major drawback found in this

method is the overhead caused by energy dissipation. Lind-

sey and Raghavendra [15] presented a power-efficient gath-

ering in sensor information systems, an enhanced variant of

LEACH. It creates a chain of a group of SNs and every node

receives and transmits information from the neighbouring node

and takes a turn being a leader for transmission to the des-

tination. Only one node can send the data to the destina-

tion at a time. However, latency is found to be high in this

approach. This method of CHS does not consider the energy of

nodes.

2.2 Optimal CHS methods

Rao et al. [16] proposed an energy-efficient CHS (ECHS) pro-

tocol that is developed using particle swarm optimisation (PSO)

called PSO-ECHS. This protocol is designed with an effective

mechanism for encoding particles and objective function. In

order to improve the energy efficiency of the suggested PSO

algorithm, numerous constraints are considered, namely, sink

distance, residual energy and intra-cluster distance between SNs.

The drawback of this approach is that a set of nodes are selected

initially as candidates for CHs in a random manner. Following

this random selection, PSO-based CHS was formulated.



NAGARAJAN AND THANGAVELU 387

Tabibi and Ghaffari [17] developed PSO-based selection of

optimal rendezvous points for a network as an effort to effi-

ciently manage the resources of the network. This is done by cal-

culating weights for each node on the basis of the total number

of packets received from the rest of the nodes in the network.

Dong and Zeng [18] developed an Improved harmony search-

based energy-efficient routing protocol for WSNs. This work

improves the performance of harmony search algorithm (HSA)

by introducing dynamic adaptation to the parameter harmony

memory-considering rate (HMCR). The method focused on

improving accuracy; however, the speed of convergence is not

enhanced.

Ahmad et al. [19] presented an approach for CHS based on

an optimisation technique called artificial bee colony (ABC)

method. The ABC’s fitness function is evaluated on the basis

of three parameters, that is, intra-cluster length, sink station dis-

tance and residual energy. Wang and Dong [20] presented a reli-

able and efficient clustering algorithm to WSNs on the basis

of ABC algorithm for node density, the energy consumption of

balanced network and increasing the network lifetime. The work

focused on data acquisition and network clustering of mobile

WSN. The disadvantage of the ABC algorithm is that it con-

verges at a slow speed during the search process. Baskaran and

Sadagopan [21] proposed an altered firefly heuristic and syn-

chronous firefly optimisation to enhance the network perfor-

mance. Firefly algorithm has the advantage of avoiding multi-

ple local optima. Hence, it performed better when compared

to LEACH algorithm. The CH gathers the information before

forwarding it to BS. This additional work leads to a high drain

of energy resulting in uneven network deprivation. Daneshvar

et al. [22] proposed a clustering technique that chooses CHs by

GWO. For selecting CHs, the results are determined by antici-

pated energy consumption and the residual energy of all nodes.

For the purpose of improving the efficiency of energy, the sug-

gested scheme utilises the same method of clustering for numer-

ous consecutive stages. This encourages the algorithm to con-

serve the energy that is required for reforming the clustering

algorithm. In this approach, the first node dies in less than

200 rounds; hence, improvement is required for prolonging the

network lifespan. Varsha et al. [23] used REAC-IN (regional

energy-aware clustering by isolated nodes) protocol for cluster-

ing in WSN. In REAC-IN, the selection of the CH is made by

weight and weight is measured by residual energy of every sen-

sor and average regional energy of all SNs in the clusters. The

technique proposed in this work has the ability for overcoming

the limitation of REAC-IN routing protocol by using clustering

and Tabu search.

Yuan et al. [24] provided a GA-based, self-organising net-

work clustering (GASONeC) framework for optimising WSN

clusters dynamically. In GASONeC, residual energy, BS dis-

tance, estimated expenditure of energy, the total count of the SN

are applied in the search for a dynamic, optimal structure. The

time taken for performing optimisation is long in this approach.

Kim et al. [25] proposed inter-cluster ant colony optimisation

(ACO) protocol that depends on ACO algorithm in order to

route data packet in WSN, and the effort was taken for reducing

the attempts wasted in transmitting the information forwarded

through SNs that lie in nearness in an intensely deployed WSN.

In this method, the nodes start to die in less than 1000 rounds

of data transmission.

Sekhar and Prasad [26] presented a cuckoo search algorithm

(CSA) for selecting the optimal CHs in trust predicted routing

framework. This framework was established to secure mobile

ad hoc networks. Khabiri and Ghaffari [40] proposed CHS

scheme based on CSA. In this work, the optimal selection of

CHs depends on four parameters, namely, residual energy of

nodes, distance from the node to the BS, distance within clus-

ters, and the distance between clusters. Search solutions falling

into local optima very easily is one of the drawbacks found in

CSA. Mittal et al. [27] proposed an improved flower pollination

algorithm for accelerating threshold sensitive energy-efficient

clustering protocol in WSNs. This was aimed at maintaining

the stability of the network for a prolonged time duration. In

the proposed protocol, though the last node dies later, the first

node dies earlier than the existing models. Another recent and

evolving optimisation algorithm is the squirrel search algorithm

[28], inspired by the foraging behaviour of flying squirrels and

is employed in applications such as micro electronic mechanical

systems (MEMS) [29], memory populations [30] and so forth.

Zahedi and Parma [31] proposed the energy-aware trust-based

gravitational search algorithm (ETGSA) in WSN for energy-

saving issues, increasing the trustworthiness against attacks in

the network and reduction of computational overhead. They

suggested evaluating the ETGSA technique in clustered WSN

with multiple sink nodes. The drawback of GSA algorithm is

that it takes a long time for the convergence of the optimal

solution.

Several works suggested the integration of two optimisa-

tion algorithms to overcome the disadvantages of algorithms

working independently. Shankar et al. [32] suggested a hybrid

HSA-PSO, bringing exploration-exploitation trade-off in the

optimisation problem of CHS in WSNs. This method com-

bines HSA’s high search efficiency and PSO’s dynamic nature to

produce an improved performance. The performance in terms

of the initial dead node (DN) is good. However, the last DN

round number needs improvement. Murugan and Sarkar [33]

proposed a hybrid optimisation using firefly algorithm and grey

wolf optimisation, called firefly cyclic grey wolf optimisation.

The work focused on the regulation of energy and lowering of

separation distance and minimisation of delay. Rajagopal et al.

[34] suggested the integration of bacterial foraging optimisa-

tion (BFO) with bee swarm optimization, for optimal CHS

problem, to improve data aggregation. The work aims to elect

optimal CHs with minimum transmission cost and energy. The

death of the first node for this method occurs in less than 500

rounds of data transmission. Kumar and Kumar [35] presented

a hybridisation of swarm intelligence algorithms such as ABC

and ACO. The hybrid algorithm works on three phases: (1)

Selection of an optimal number of clusters, (2) selection of CHs

using ABC, and (3) data transmission using ACO. But balance

among exploration and exploitation is not taken into consid-

eration in this work. This leads to the death of the last node

earlier than the LEACH algorithm. Kapoor et al. [36] suggested

a hybrid scheme that uses Quadrature LEACH with optimi-

sation algorithms: genetic algorithm (GA) and BFO. Hybrid

QLEACH-GA and QLEACH-BFO were employed for
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FIGURE 2 The framework of the proposed method

choosing optimal CHs. BFO and GA have their own drawbacks

where BFO is vulnerable in perceiving the environmental

changes, and the performance of GA depends completely on

the fitness function.

The single optimisation methods either excel in the explo-

ration phase of optimisation or the exploitation phase but lags at

bringing any balance among exploitation and exploration phase.

The hybrid optimisation techniques require improved perfor-

mance in enhancing network lifespan. Hence, the proposed

work presents the hybridisation of SFO and grey wolf optimiza-

tion (GWO) for balancing exploration and exploitation, thereby

providing better performance in the optimal selection of CHs

in WSN.

3 PROPOSED METHODOLOGY

This study focuses on extending the lifetime of the network by

choosing optimal CHs for data transmission. The flow chart of

the entire work is displayed in Figure 2.

3.1 Network model

WSN comprise of various SNs where every SN is motionless

and has equivalent skills. Throughout the information commu-

nication, nodes may perform both as a CH and functioning sen-

sor. All in all, the WSN module is related by radio correspon-

dence, sensor allocation, information sensing, topology features

and energy consumption. In area utilisation, a sensor might be

situated arbitrarily or physically. The way-gathering SNs may

be named as clustering. It is an eminent strategy to expand

the future of WSN. In the procedure of clustering, clusters are

shaped through collecting the SNs. This pattern of CHS is made

for all the clusters present in the network. The nodes in a spe-

cific group are shaped dependent on the state of minimum CH

distance. Throughout the activity, all SNs gather data from a ter-

ritory and move to CH. Moreover, a specific CH takes the data

to BS.

3.2 Distance model

At first, the whole CHs inside the system transfers advertise-

ment packet to pronounce that they possess the role of CH.

In this condition, each SN in the system finds out the CH dis-

tance. In this way, a node has a place with the specific clus-

ter by guaranteeing that its transmission distance from CH of

the particular cluster is low, and hence it transfers the infor-

mation to CH. The SNs transfers the information straight-

forward to BS if the transmission distance among CH and

the node is greater than transmission distance between BS

and node. This is the configuration of shaping a cluster on

basis of calculation of close transmission distance. Thus, nodes

may be re-bunched in the system by the chosen CH utilising

a transmission distance and determined utilising the equation

below:

d = cos (𝜃) = (XY ) ∕ ‖X ‖ ‖Y ‖ (1)

where X is the coordinate of the node and Y is the coordinate

of the CH.

3.3 Energy model

Energy consumption is a primary issue in WSN. WSN battery

cannot be recharged that means that there is a chance for no

power supply when the battery is removed. Additional energy

is needed for transferring information from SNs to BS. The

network takes a huge quantity of energy since it does multiple

operations like reception, transmission, aggregation and sens-

ing. The module of energy necessary for information transition

is explained in the below equation:

ETX (N : d ) =

⎧⎪⎨⎪⎩

(Eelec × N ) +
(
E fs × N × d 2

)
, if d < d0

(Eelec × N ) +
(
Epw × N × d 4

)
, if d ≥ d0

(2)

where d0 =

√
E fs

Epw

is the threshold distance, Eelec = ETX+Eagg,

ETX (N:d) indicates the entire energy consumption needed for

transmitting packets of N bytes to a d distance, E fs is the ampli-

fication coefficient of the transmission amplifier for the free

space model, Epw is used when the distance is greater than the

threshold distance, Eelec specifies the electronic energy based on

diverse factors include spreading, digital coding, filtering and so

forth.

3.4 Cluster head selection

3.5 Objective function

The transmission distance among the selected CH and node and

energy needed for transmitting the information among nodes

should be low. The energy in the network must be huge, that is,

it must spend limited energy when data passing on. The follow-

ing constraints are considered for designing the WSN for the

simulation work.
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(i) Alive node constraint: A sensor node in the network is said

to be alive when its energy is higher than zero.

Ei > 0 i = 1, 2,… , n

(ii) Distance constraint: fdis is the maximum of the distance

of nodes ‘nodei ∀i ∈ cluster Clusterk’ to their cluster heads

‘CHk’ and ‘∥Clusterk ∥’ is the number of nodes that belong

to cluster ‘Clusterk’.

fdis = maxk

{ ∑
∀,node,i∈Ck

d (nod ei ,C Hk )

||Clusterk||
}

;

(iii) Energy constraint: fen is the ratio of the initial energy of all

nodes alive, E (nod ei ) in the network with the total current

energy of the cluster head E (C H j ) in the current round.

fen =

∑N

i=1
E (nod ei )

∑k

j=1
E
(
C H j

) ;

The objective function of the suggested selection of cluster is

mentioned as

fob j =
(
𝜎1 × fdis

)
+
(
𝜎2 × fen

)
(3)

where 𝜎2 = 1 − 𝜎1;

The value of 𝜎1 should be in the range of 0< 𝜎1 < 1. The fit-

ness evaluation of each search agent in the proposed algorithm

of CH selection is computed using Equation (3). This fitness

depends on two parameters, distance and energy, expressed in

fdis and fen.

3.5.1 Grey wolf optimization

Grey wolf (GW) is known as the apex predator, which means

that they represent the top of the biological food chain. GWs

often choose to survive. The average size of a group is 5–12.

The pack leaders are female and a male termed as alpha (α)

wolves. The α wolf usually takes the decision about the place

of sleeping, time of waking, hunting and so forth. The decisions

made by the α are being informed to the whole pack. Nonethe-

less, some democratic behaviour is also seen. The α wolf leads

other wolves in packs. In gatherings, the entire pack identifies

the α through holding their extremities. It shows the discipline

and organisation of the pack that are considerably significant

than its strength [37]. The beta (β) wolves are secondary wolves

that aid the α in other activities or in making decisions. The β
wolf may be female or male, and he/she is most likely the better

one if the αwolves reach old age or die. The βwolf must respect

the α and also commands the bottom-stage wolves. It under-

takes the role of disciplining the pack and also a consultant to α.

The β enforces the α’s directions through the pack and passes

the response to α. The least arranged GW is omega (ω) and it

undertakes the job of a scapegoat. The ω is not essential and

is separate in the pack; however, the entire pack faces interior

battling and issues in the absence of ω. It helps in fulfilling the

whole pack and keeping up the predominance configuration. If

a wolf is not α, β, or ω, then he/she is termed delta (δ). The δ
wolves should submit to β and α wolves, however, it dominates

ω. Sentinels, scouts, hunters, caretakers and elders belong to this

group. Scouts watch the territory boundaries and warn pack of

danger. The following steps are implemented in the GWO algo-

rithm:

Encircling prey
In GWO algorithm, hunting is done on the basis of α, β, and δ
wolf’s location. The x wolves tail these three wolves. The GW

surrounds the prey while in hunt. The encircling behaviour of

GW is mentioned in the following equation:

E =
|||F ⋅ Xp (i ) − X (i )

||| (4)

X (i + 1) = Xp (i ) − BE (5)

where i indicates the current iteration, B and F are coefficient

vectors, Xp is the prey’s position vector, and X indicates the

GW’s position vector. The vectors B and F are computed in

the following manner:

B = 2a ⋅ rand1 − a (6)

F = 2 ⋅ rand2 (7)

The variable a is linearly decremented from 2 to 0 during the

search iterations; rand1 and rand2 are randomly generated vec-

tors in [0, 1].

Hunting
The ability of prey-position recognition helps the GW to

surround the prey. The successful hunt is regularly directed

through the α. In addition, the δ and β may contribute to the

hunting behaviour intermittently. For investigating the hunting

behaviour of GW, the α, β, and δ should have awareness about

the position of prey. Hence, the first three finest values achieved

so far are stored, and the rest of the search agents are subjected

to update on their own locations with respect to the location

of finest search agents. The expressions given below are being

suggested [7].

E𝛼 = |(F1 ⋅ X𝛼 ) − X | (8)

E𝛽 =
|||(F2 ⋅ X𝛽 ) − X

||| (9)

E𝛿 = ||(F3 ⋅ X𝛿 ) − X || (10)

X1 = X𝛼 − (B1 ⋅ E𝛼 ) (11)

X2 = X𝛽 − (B2 ⋅ E𝛽 ) (12)
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X3 = X𝛿 − (B3 ⋅ E𝛿 ) (13)

X (t + 1) =
X1 + X2 + X3

3
(14)

The α, β, and δ evaluate the location of prey, and the rest of

the wolves randomly update their locations around the prey.

Attacking prey
When the prey stops the movement, the GW initiates the prey-

attacking process. For the purpose of modelling the process of

the imminent attack of the prey mathematically, the range of a

is decreased to taper the B from the maximum value. In further

|B| < 1 pushes the GW to attack (exploitation) in the direction

of the prey. This increases the efficiency of the GWO for per-

forming a local search.

Search for prey
GWs generally search for the best candidate based on the loca-

tions of α, β, and δwolves. They are diverged (exploration) from

each other for searching the prey and are converged (exploita-

tion) together to attack the prey. The random coefficient vec-

tor (B) lies above 1 or below –1 to force the search agent to

diverge from prey. In addition, the random coefficient vector F

also contributes GWO to obtain better random behaviour dur-

ing optimisation and prevent local optima. It is notable that F

is non-linearly reduced, unlike the parameter B. The parame-

ter F is deliberately needed for providing randomly generated

values every time for the purpose of emphasising exploration

phase.

Sunflower optimisation
The pattern of the sunflower is consistent: They daily go with

the sun like the clock needles. Around evening time, they travel

the other way to stand by again for their departure of the follow-

ing morning. Yang [38] suggested a flower pollination algorithm

dependent on the bloom fertilisation procedure of blossom-

ing plants considering the natural reproduction process. The

researcher focuses on the speciality of sunflowers’ motion in

the exploration for the finest orientation in the direction of

the sun. The random fertilisation is considered between the

marginal distances of sunflower i and i+1. In general, millions of

pollen gametes is frequently released by every flower patch. For

easiness, we consider that every sunflower generates only one

gamete of pollen and reproduces individually. Another signifi-

cant point about nature-based optimisation is the inverse square

law radiation. The law states that the received power is inversely

related to the square of separation and it takes larger step values

to orient towards the sun (global optimum) [39].

The quantity of received power for all sunflowers is specified

by

Qi =
P

4𝜋r2
i

(15)

where P is the source power and ri the distance among the

present best and the plant i.

The sunflowers orientation in the direction of the sun is

si =
X ∗ − Xi

X ∗ − Xi
, i = 1, 2,… , n (16)

The step of the sunflowers towards the sun is computed by

di = 𝜆 × Pi (Xi + Xi−1 ) × Xi + Xi−1 (17)

where 𝜆 describes an ‘inertial’ displacement of the plants,

Pi (Xi + Xi−1 ) is the pollination probability.

The maximum step size followed by the sunflowers to

enhance the exploration is given as

dmax =
Xmax − Xmin

2 × Npop
(18)

where Xmax and Xmin are the upper and lower bounds values,

and Npopis the total count of plants of the overall population.

The updated location of the sunflower (new plantation) is

given as

Xi+1 = Xi + (di × si ) (19)

The algorithm starts with the arbitrary initialisation of a pop-

ulation of individuals in the search region. The fitness values

of all the individual are evaluated and best among all the indi-

vidual is nominated as the sun. Then, the entire individual in

the population will update its location towards the sun. The

step-size variation emphasises the exploration phase by bringing

the plant closer to the sun in search of global refinement. This

variable deliberately is needed for the purpose of emphasising

exploration phase not only in the initial iterations but also in

the final search iterations. It allows the solution to escape from

local optima and to improve the global optimum prediction of

the algorithm.

3.5.2 Proposed HGWSFO algorithm for
CHS

In the considered application scenario, 100 SNs are deployed

randomly and 5% of the total nodes act as cluster head [21,

32, 33 and 35]. The cluster head selection process for the pro-

posed study is carried out by integrating the best characteris-

tics of SFO and GWO algorithm using an index search. The

sunflower method follows the inverse square law radiation to

minimise the distance between the plant and the sun to get sun-

light and to stabilise them in its vicinity. In addition, the vari-

ation of the step-size parameter brings the plant closer to the

sun in search of global optima, thus increasing the exploration

efficiency. Even though SFO can perform the global optimal,

it suffers from slow convergence and has poor local searcha-

bility. In GWO, exploration and exploitation are controlled by

coefficient vectors (B and F). The GWO algorithm excels in

the exploitation phase; the wolves attack the prey (exploita-

tion) when the coefficient vectors are less than one. On the
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other hand, the GWO algorithm performs lesser in the explo-

ration when compared to the exploitation since the informa-

tion of candidate solutions from search space as limited infor-

mation is shared among the solutions in the pack. A criti-

cal index value of 5 is set with reference to [33], to choose

between SFO and GWO method of CHS. The index search

enables the exploration for the best fitness (index <5) to find

the global best CH using the SFO method and other fitness

(index >5) to perform the GWO algorithm (exploitation). This

process is repeated for each round of data transmission. The

narrow process of search starts by creating a grey wolf’s arbi-

trary population in the GWO algorithm. During the search iter-

ations, α, β, and δ wolves calculate the possible prey. Every

solution of candidate updates their distance with respect to the

prey. The parameter a is minimised from 2 to 0 for empha-

sising the phase of exploration. Candidate solutions are more

likely to diverge from the prey under the condition |B| > 1

and are more likely to converge towards the prey under the

condition |B| < 1.

The α, β, and δ wolves’ positions are updated. The GWO

algorithm is terminated by the satisfaction of a convergence cri-

terion. For a broader search, a random population of plants is

created. These plants are oriented towards the sun, and the fit-

ness of each plant is calculated. The mortality rate is monitored

for removing the dead plants. Steps are calculated, and the pro-

cess of pollination is carried out for generating new plants. The

fitness values of the new plants are evaluated. The best fit plant

is set as the sun node. The SFO algorithm is completed by the

satisfaction of a convergence criterion. The following steps are

implemented in the HGWSFO and the flowchart of the pro-

posed algorithm is provided in Figure 3.

Step 1. Nodes deployment: A total of 100 nodes are

deployed in the network model where each sensor is sta-

tionary and homogeneous fashion.

Step 2. Evaluate fitness: Fitness is evaluated for each node

by energy and distance. The values are sorted consistent

with the ascending order of the index.

Step 3. Index check: If the index is less than 5, SFO is ini-

tiated. If the index is greater than or equal to 5, then

GWO is initiated.

Step 4. Optimal Cluster head selection: (1) GWO: Initialise

GWO population. The population of GWs is initialised.

These GWs are the search agents that find the best solu-

tion in the exploitation region.

Evaluate Fitness: Fitness for each GW is evaluated and

sorted. The first best search agents are categorised as α wolves,

whereas the second and third best agents are categorised as β
and δ wolves, correspondingly.

Update GWO parameters: The values a, B, and F are

updated according to Equations (6) and (7).

Update α, β and δ positions: The final positions of α, β
and δ wolves are updated with respect to the obtained fitness

values.

Optimal solution: The first five nodes having minimum fit-

ness values are set as CHs.

ALGORITHM 1 GWO algorithm for CHS

rmax ← Number of iterations for data transmission

NI ← Internal iteration for CHS using GWO

for t ← 1 to rmax do

To construct an arbitrary determination of normal nodes

for i ← 1 to NI do

GWO(j,:) ← Arbitrarily chosen CH for GWO.

fObj(j) ← Fitness standards for GWO(j,:)

Update Alpha−score, Beta−score and Delta score

Update a, A and C values

Update the positions of Alpha, Beta, and Delta wolves

end

Selecting the best Cluster heads from the Alphas for

Data Transmission

end

Stop criterion: The procedure is repeated for a predefined

number of search iterations.

(2) SFO: Initialisation of SFO population. The population of

plants is initialised. These plants are the search agents that find

the global best solution.

Evaluate Fitness: The orientation of each plant is done in

the direction of the sun. The fitness of each plant is calcu-

lated. The mortality rate is monitored, and the dead plants are

removed. Steps are calculated according to Equation (17). Polli-

nation is carried out for the generation of new plants, followed

by the evaluation of fitness for those new plants using the Equa-

tion (19).

Update SFO parameters: The plant with the best fitness

value is transformed into the sun.

Optimal solution: The first five nodes having minimum fit-

ness values are set as CHs.

Stop criterion: The procedure is recurrently executed for a

defined number of search iterations.

Step 5. Data Transmission: Data transmission is initiated

between the optimal CHs and the sink node. This pro-

cedure is repeated for every round of data transmission

and is continued until the iteration reaches a maximum

number of rounds.

Pseudocode for GWO algorithm:

Pseudocode for SFO Algorithm:

Pseudocode for HGWO-SFO algorithm:

4 RESULTS AND DISCUSSION

The experimental of optimal CHS in WSN is carried out in

MATLAB R2018a. The parameters considered for the simula-

tion and the initialised values are listed in Table 1 given below.

The performance of the proposed HGWSFO technique of

selecting cluster heads is related with other existing algorithms
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FIGURE 3 Flowchart of hybrid grey wolf optimisation (GWO)-based sunflower optimisation (SFO) cluster head selection (CHS) algorithm

like DT, LEACH, LEACH-C [41], PSO, improved PSO [42],

GWO, and SFO.

The performances of these different algorithms are assessed

in terms of six parameters such as throughput produced by

the network, number of alive nodes, number of DNs, residual

energy of the network, network survivability index (NSI), and

convergence rate. Throughput of the network is defined as the

number of alive nodes at a particular round and is multiplied by

the data packet length (bits). A node is said to be dead when its

energy is dropped to zero. The number of alive nodes is found

by calculating the total number of nodes that are alive. And the

number of DNs is found by calculating the total number of

nodes that are drained out of energy (i.e. dead). The residual

energy of the networks is defined as the sum of the remaining

energy of all the nodes present in the network at a particular

round. Network lifetime is defined in many ways; however, in

the proposed study, we consider it as the number of rounds until

the last node death. NSI can be defined as the ratio of the num-

ber of nodes that are alive to the total number of nodes in the

network. The convergence rate describes how quickly the opti-

misation algorithm finds the global best without being struck in

the local minima or maxima.

The DT method permits the nodes in the network to com-

municate with the BS directly. In contrast, the LEACH protocol

follows a random selection of CHs. Hence, the performances of

these two methods were poorer than the meta-heuristics. The

PSO-CHS method faces high-dimensional optimisation limita-

tion; it is difficult to explore every possible region of the search

space (poor exploitation). In SFO, the variation of the step-

size parameter brings the plant closer to the sun in search of
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ALGORITHM 2 SFO algorithm for CHS

rmax ← Number of iterations for data transmission

NI ← Internal iteration for CHS using SFO

for t ← 1 to rmax do

To construct an arbitrary determination of normal nodes

Calculate fitness and sort according to the index value

for i ← 1 to NI do

SFO(j,:) ← Randomly chosen CH for SFO.

fObj(j) ← Fitness values for SFO(j,:)

Update the positions of Plants using SFO parameters

Update the position of best Plant as the Sun

end

Selecting the best CHs from the positions of the Sun

for data transmission

end

ALGORITHM 3 HGWO-SFO algorithm for CHS

Initialise the parameters of SFO and GWO.

rmax ← Number of iterations for data transmission

NI ← Internal iteration for CHS

for t ← 1 to rmax do

To construct an arbitrary determination of normal nodes

Calculate fitness and sort according to the index value

if index > 5 Begin GWO exploitation

for i ← 1 to NI do

GWO(j,:) ← Randomly chosen CH for GWO.

fObj(j) ← Fitness values for GWO(j,:)

Update Alpha−score, Beta−score and Delta score

Update a, A and C values

Update the positions of Alpha, Beta, and Delta wolves

end

else Begin SFO Exploration

for j ← 1 to NI do

SFO(j,:) ← Randomly chosen cluster head for SFO.

fObj(j) ← Fitness values for SFG(j,:)

Update the positions of Plants using SFO parameters

Update the position of best Plant as the Sun

end

end

global optima, thus increasing the exploration efficiency. Even

though SFO can perform the global optimal, it suffers from

slow convergence and has poor local searchability. In GWO,

the exploration and exploitation is controlled by coefficient vec-

tors (B and F) and the wolves attack the prey (exploitation)

when the coefficient vectors are less than 1. On the other hand,

the performance of GWO in exploration is poorer compared

to exploitation. These single optimisation methods either excel

TABLE 1 Simulation parameters

Parameter Value

Area covered by wireless sensor networks (m2) 200 × 200

Eo (Initial energy of nodes) (J) 0.5

Eamp (pJ/bit/m2) 120

Eelec (nJ/bit) 100

Energy data aggregation (nJ) 5

Number of cluster heads selected 5%

Number of rounds 3000

Number of search iterations 5

Exploration control parameter (a) Decreases from 2

to 0

Coefficient vector ‘F’ Range [0, 2]

Mortality rate ‘m’ (%) 0.1

Pollination rate ‘p’ (%) 0.05

FIGURE 4 Comparison of throughputs obtained for different CHS algo-

rithms

in the exploration phase of optimisation or the exploitation

phase but lags at bringing any balance between the exploitation-

exploration and fast convergence. Hence, the CHS process for

the proposed study is carried out by integrating the best charac-

teristics of SFO and GWO algorithm using index search.

Figure 4 shows the comparative illustration of the per-

formance of the different algorithm in terms of throughput

obtained in bps for an increasing number of rounds of data

transmission. The throughput in the WSN for all the algo-

rithms at the initial round is 409,600 bps. When 1600 rounds

are reached, the throughput of the proposed HGWSFO is

409,600 bps, whereas for the algorithms, GWO and SFO, the

throughputs are 294,900 and 401,400 bps, respectively. The

throughput of IPSO, PSO, LEACH-C, LEACH, and DT at the

round number 1600 is 0 bps. The throughput of the proposed

HGWSFO declines to zero at the round number 2442, while

the algorithms GWO, SFO, IPSO, PSO, LEACH-C, LEACH,

and DT, declines at 1744, 1672, 1250, 1229, 1100, 714, and 315,

respectively. The throughput lifetime of proposed HGWSFO

is 28.58% more than the GWO algorithm, 31.53% more than

the SFO algorithm, 48.8% more than IPSO algorithm, 49.67%

more than the PSO algorithm, 54.95% more than LEACH-C
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FIGURE 5 Comparison of dead nodes obtained for different CHS algo-

rithms

FIGURE 6 Comparison of alive nodes obtained for different CHS algo-

rithms

protocol, 70.76% more than the LEACH protocol, and 87.10%

more than the DT.

Figure 5 shows the comparative illustration of the perfor-

mance of the different algorithm in terms of count of the DNs

for an increasing number of rounds of data transmission. The

first node in the WSN for the proposed HGWSFO dies at the

round number 2227, whereas for the algorithms GWO, SFO,

IPSO, PSO, LEACH-C, LEACH, and DT, the nodes die at 1377,

1571, 1223, 1201, 391, 270, and 44, respectively. Half of the total

number of nodes in the WSN for the proposed HGWSFO die

at the round number 2407, whereas for the algorithms GWO,

SFO, IPSO, PSO, LEACH-C, LEACH, and DT, the nodes die

at 1649, 1669, 1240, 1222, 830, 370, and 74, respectively. All

the nodes in the WSN for the proposed HGWSFO die at the

round number 2442, whereas for the algorithms GWO, SFO,

IPSO, PSO, LEACH-C, LEACH, and DT, the nodes die at 1744,

1672, 1250, 1229, 1100, 714, and 315, respectively. The lifetime

of the nodes for the proposed HGWSFO lasts 38.16% more

than the GWO algorithm, 29.45% more than the SFO algo-

rithm, 45.08% more than the IPSO algorithm, 49.07% more

than the PSO algorithm, 82.44% more than the LEACH-C pro-

tocol, 87.87% more than the LEACH protocol, and 98.02%

more than the DT.

Figure 6 shows the comparative illustration of the perfor-

mance of the different algorithm in terms of count of the alive

nodes for an increasing number of rounds of data transmission.

The first node in the WSN for the proposed HGWSFO is alive

till the round number 2227, whereas, for the algorithms: GWO,

FIGURE 7 Comparison of residual energy obtained for different CHS

algorithms

SFO, IPSO, PSO, LEACH-C, LEACH, and DT, the nodes die

at 1377, 1571, 1223, 1201, 391, 270, and 44, respectively. Half

of the total number of nodes in the WSN for the proposed

HGWSFO are alive till the round number 2407, whereas for

the algorithms GWO, SFO, IPSO, PSO, LEACH-C, LEACH,

and DT, the nodes die at 1649, 1669, 1240, 1222, 830, 370, and

74, respectively. All the nodes in the WSN for the proposed

HGWSFO stay alive till the round number 2442, whereas for the

algorithms GWO, SFO, IPSO, PSO, LEACH-C, LEACH, and

DT, the nodes stay alive till 1744, 1672, 1250, 1229, 1100, 714,

and 315 rounds, respectively. The lifetime of the nodes for the

proposed HGWSFO lasts 28.58% more than the GWO algo-

rithm, 31.53% more than the SFO algorithm, 48.8% more than

IPSO algorithm, 49.67% more than the PSO algorithm, 54.95%

more than LEACH-C protocol, 70.76% more than the LEACH

protocol, and 87.10% more than the DT.

Figure 7 shows the comparative illustration of the perfor-

mance of the different algorithm in terms of residual energy in

J for an increasing number of rounds of data transmission. The

residual energy in the WSN for all the algorithms at the initial

round is 50 J. When 1600 rounds are reached, the residual energy

of the proposed HGWSFO is 16.33 J, whereas for the algo-

rithms GWO and SFO, the residual energies are 1.564 and 1.667

J, respectively. The residual energies of IPSO, PSO, LEACH-C,

LEACH, and DT become zero at the round number 1600. The

residual energy of the proposed HGWSFO declines to zero by

the round number 2442, while for the algorithms GWO, SFO,

IPSO, PSO, LEACH-C, LEACH, and DT, the residual energy

declines at 1744, 1672, 1250, 1229, 1100, 714, and 315, respec-

tively. The residual energy of proposed HGWSFO lasts 28.58%

more than the GWO algorithm, 31.53% more than the SFO

algorithm, 48.8% more than IPSO algorithm, 49.67% more

than the PSO algorithm, 54.95% more than LEACH-C proto-

col, 70.76% more than the LEACH protocol, and 87.10% more

than the DT.

Figure 8 shows the comparative illustration of the perfor-

mance of the different algorithm in terms of NSI. NSI is calcu-

lated for each round of transmission for all the algorithms. The

NSI value will be 1 if there are no dead nodes in the network.

The NSI for the proposed HGWSFO stays 1 till the round num-

ber 2227, whereas for the algorithms GWO, SFO, IPSO, PSO,

LEACH-C, LEACH, and DT, the NSI starts falling from 1377,

1571, 1223, 1201, 391, 270, and 44, respectively.
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TABLE 2 Table of comparison

Algorithm

First dead node

(DN; round number)

Half DNs (round

number)

Last DN (round

number)

Residual energy after

1600 rounds (J)

Throughput after

1600 rounds

(bits/round)

Direct transmission 44 74 315 0 0

Low energy adaptive

clustering hierarchy

(LEACH)

270 370 714 0 0

LEACH-centralised 391 830 1100 0 0

Particle swarm

optimisation (PSO)

1201 1222 1229 0 0

Improved PSO 1223 1240 1250 0 0

Grey wolf optimisation 1377 1649 1744 1.564 294,900

Sunflower

optimisation (SFO)

1571 1669 1672 1.667 401,400

Proposed hybrid

HGWSFO

2227 2407 2442 16.33 409,600

FIGURE 8 Comparison of network survivability index obtained for dif-

ferent CHS algorithms

The NSI becomes 0 for the WSN for the proposed

HGWSFO at the round number 2442, whereas for the algo-

rithms GWO, SFO, PSO, LEACH, and DT, the NSI falls to 0 at

1744, 1672, 1250, 1229, 1100, 714, and 315 rounds, respectively.

The survivability of the network for the proposed HGWSFO

lasts 28.58% more than the GWO algorithm, 31.53% more than

the SFO algorithm, 48.8% more than IPSO algorithm, 49.67%

more than the PSO algorithm, 54.95% more than LEACH-C

protocol, 70.76% more than the LEACH protocol, and 87.10%

more than the DT.

The convergence curve of the proposed HGWSFO and

existing algorithms such as IPSO, PSO, SFO, and GWO are

shown in Figure 9. The curves illustrate the converging prop-

erty of different optimal CHS algorithms for increasing num-

ber of iterations. The convergence of minimum best score

to minimum number iterations can be seen for the proposed

HGWSFO algorithm. Table 2 shows the comparative analysis

of the performance of various CHS methods.

5 CONCLUSION

This study proposes HGWSFO for the optimal selection of

CHs in WSN based on the index value of CHs. The HGWSFO

FIGURE 9 Convergence curve of different CHS algorithms

algorithm integrates the superior behaviour of two meta-

heuristic algorithms, namely, SFO and GWO. The energy con-

sumption and separation distance are considered for select-

ing optimal CHs. The coefficient vectors of the GWO algo-

rithm enhances the efficiency of exploitation, whereas the global

search inefficiency of GWO is compensated in a better way by

the SFO algorithm under the variable step size of the plants.

The superior performance of the proposed HGWSFO is vali-

dated by comparing its performance with various other existing

CHS algorithms in terms of throughput, residual energy, alive

nodes, DNs, NSI, and convergence rate. It is found that the

lifetime of the WSN guided by the proposed HGWSFO CHS

shows 28.58%, 31.53%, 48.8%, 49.67%, 54.95%, 70.76%, and

87.10%, enhancement when compared to GWO, SFO, IPSO,

PSO, LEACH-C, LEACH, and DT methods, respectively. The

total time complexity of the proposed HGWSFO scheme is

O(N × d × maxIter )where N is the size of the population, d

represents the dimensionality of the problem and maxIter is the

maximum iteration. Although the complexity of the proposed

scheme is higher than older algorithms like DT, LEACH and

PSO, the proposed scheme is found to exhibit better efficiency

and is able to keep the network alive for a longer period of time.

In the future, this study can be extended in the design of Inter-

net of Things for sensing applications and beyond 5G networks.
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