Header menu link for other important links
Hybrid swarm intelligence for feature selection on IoT-based infrastructure
, U.S. Kumaran
Published in Inderscience Enterprises Ltd.
Volume: 9
Issue: 2-3
Pages: 216 - 231
Swarm intelligence techniques are deployed to estimate the fitness on the search spaces and estimates the optimisation. Since the evolution of the genetic algorithm (GA) and particle swarm optimisation (PSO) optimisation problems and complex real-world problems were solved. There is a need to enhance the performance of optimisation and exploration of the search spaces. In moth-flame optimisation algorithm, the fittest moth-flame combinations with the best positions of the moth-flames after many iterations provided the optimal solutions. There is a concern for local-minima for moth-flame optimisation and the convergence rate is more, so it may skip the global optimal search. The combination of the simulated annealing (SA) and the moth-flame optimisation (MFO) provides a solution to local minima, increases the diversity of the population and increases the exploration, reduces the convergence rate to increase the performance of MFO to reach the global optima and increases the performance of MFO. © 2020 Inderscience Enterprises Ltd.. All rights reserved.
About the journal
JournalInternational Journal of Cloud Computing
PublisherInderscience Enterprises Ltd.