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 An appropriate sequence of assembly operations increases the productivity and enhances product 

quality there by decrease the overall cost and manufacturing lead time. Achieving such assembly 

sequence is a complex combinatorial optimization problem with huge search space and multiple 

assembly qualifying criteria. The purpose of the current research work is to develop an intelligent 

strategy to obtain an optimal assembly sequence subjected to the assembly predicates. This paper 

presents a novel hybrid artificial intelligent technique, which executes Artificial Immune System 

(AIS) in combination with the Genetic Algorithm (GA) to find out an optimal feasible assembly 

sequence from the possible assembly sequence. Two immune models are introduced in the 

current research work: (1) Bone marrow model for generating possible assembly sequence and 

reduce the system redundancy and (2) Negative selection model for obtaining feasible assembly 

sequence. Later, these two models are integrated with GA in order to obtain an optimal assembly 

sequence. The proposed AIS-GA algorithm aims at enhancing the performance of AIS by 

incorporating GA as a local search strategy to achieve global optimum solution for assemblies 

with large number of parts. The proposed algorithm is implemented on a mechanical assembly 

composed of eleven parts joined by several connectors. The method is found to be successful in 

achieving global optimum solution with less computational time compared to traditional 

artificial intelligent techniques. 

© 2017 Growing Science Ltd.  All rights reserved
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1. Introduction 

 

Industrial robots are widely used in manufacturing applications for material handling and assembly 

operations. Typical assembly process consumes major stake of overall manufacturing cost, an appropriate 

assembly sequence can reduce the assembly time and effort and thus offers high productivity. Achieving 

an optimal assembly sequence is a major problem faced by the manufacturers as there exists millions of 

possible combinations. Many traditional methods have been proposed by the researchers for optimization 

of assembly sequence with large search space and high computational time (Linn & Liu, 1999). Computer 
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aided design (CAD) integrated knowledge based methods have been implemented to extract the predicate 

criteria such as liaison data (Bahubalendruni & Biswal, 2014a, 2014b; Bahubalendruni & Biswal, 2015a) 

mechanical feasibility (Bahubalendruni et al., 2015b, 2015c), stability (Bahubalendruni & Biswal, 

2015d), and geometrical feasibility (Bahubalendruni et al., 2016 & Bahubalendruni et al., 2016) to solve 

optimum assembly sequence planning.  

 

Knowledge based methods solve Assembly Sequence Planning (ASP) accurately but these methods take 

more computational time due to their huge search space utilization (Dong et al., 2007). To overcome this 

problem researchers implemented several Artificial Intelligent (AI) techniques to achieve optimum 

assembly sequence. In most AI techniques, the input supplied to the process is generated manually which 

is again time consuming and needs accuracy without error. Due to human intervention while supplying 

inputs, these techniques have the drawback of high redundancy and premature convergence during the 

optimization of assembly sequence. To validate the quality of an assembly sequence, it must be tested 

for assembly predicates. Besides liaison and geometrical feasibility predicates, stability and mechanical 

feasibility are two more essential assembly predicates to yield the appropriate results (Zha et al., 1998). 

Limitations of AI based optimal ASP methods in terms of assembly predicate consideration, premature 

convergence and high computational time are listed in Table 1. 

 

Table 1 

Assembly predicate considerations with AI in the cited research literature 
Reference Algorithm Objective function 

(minimization of ) 

Assembly predicate 

criteria 

Premature 

convergence/ 

Local Optima 

Computational 

time 

(Hsu et al., 2011) 

KBM 

Computational time C C NC 

(Kashkoush & 

ElMaraghy, 2015) 
Computational time C C NC 

(Chen & Liu, 2001) 
GA 

Computational time C C NC 

(Chen et al., 2002) Computational time C C NC 

(Sinanoglu & Riza 

Börklü, 2005) 
NN Computational time C C NC 

(Bahubalendruni et al., 

2015) PSO 
Computational time C C NC 

(Wang & Liu, 2010) Computational time C C C 

(Nayak et al., 2015) 
SA 

Computational time C C NC 

(Lee & Gemmill, 2001) Assembly cost C C NC 

(Bahubalendruni et al., 

2016) 
AIS 

Computational time C C NC 

(Biswal et al., 2103) Assembly cost C C NC 

(Chang et al., 2009) Computational time C C C 

(AkpıNar et al., 2013) 
HA 

 

Computational time C C NC 

(Xing & Wang, 2012) Computational time C C C 

(Shan et al., 2009) Computational time C C C 
PSO-Particle Swarm Optimization, NN-Neural Network, SA-Simulating Annealing, KBM-Knowledge Based Method, GA-Genetic Algorithm, HA- Hybrid 

Algorithm. 

Note: C- considered, NC- Not considered. 

 

Even though AI with Computer Aided Design (CAD) integrated algorithms have been developed, but 

these have failed to achieve the global optimum solution for ASP. To solve many of the engineering 

problems, GA and AIS have been implemented successfully. The current research work is focused on 

the hybridization of these algorithms to achieve the global optimization solution of ASP. In this paper, a 

hybrid AIS-GA based algorithm along with CAD integration for extraction of liaison data, stability 

feasibility, mechanical feasibility and geometrical feasibility is explained to obtain an Optimal Feasible 

Assembly Sequence (OFAS) with less computational time. 

2. Assembly Information Extraction  

Generally, performing the required input data for generating the algorithm to optimize the assembly 

manually is a time consuming process. This section details about the methods to extract liaison matrix, 
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interference matrices, stability matrix and mechanical feasibility matrix from CAD environment. 

Computer Aided Three-dimensional Interactive Application Version-5 (CATIA V5R17) is used as CAD 

tool and programming is done in Visual Basic (VB scripting) to extract the outcomes. A transmission 

assembly consists of eleven parts is considered in this investigation is as shown in the Fig.1. The six 

possible directions of part movements during assembly process can be represented as: x+ → 1, x- → 2, 

y+ → 3, y- → 4, z+ → 5 and z- → 6. 

 
Fig. 1. Cut section view of transmission assembly (De Fazio and Whitney, 1987) 

2.1. Liaison Matrix Extraction 

Liaison data gives the information about all possible mating surfaces of an assembly. Two weights 1 &0 

are assigned for mating and not mating parts respectively. Since in the current investigation an eleven-

part assembly structure has been considered, a matrix with 11-by-11 is extracted from the CAD tool: 

CATIA-V5R17. The obtained liaison matrix for the considered eleven-part mechanical assembly 

structure is as follows: 

 1 2 3 4 5 6 7 8 9 10 11 

Liaisoan matrix = 

1 0 0 1 1 0 0 1 0 0 1 1 

2 0 0 1 0 1 0 1 1 1 0 0 

3 1 1 0 1 1 0 0 0 0 0 0 

4 1 0 1 0 0 0 0 0 0 0 0 

5 0 1 1 0 0 1 0 0 0 0 0 

6 0 0 0 0 1 0 0 0 0 0 0 

7 1 1 0 0 0 0 0 1 0 0 0 

8 0 1 0 0 0 0 1 0 1 1 1 

9 0 1 0 0 0 0 0 1 0 0 1 

10 1 0 0 0 0 0 0 1 0 0 0 

11 1 0 0 0 0 0 0 1 1 0 0 

2.2. Interference Matrix Extraction 

The interference matrices give the information about all possible interferences of the components during 

the assembly. Two weights 0 &1 are assigned for the interference and not interference respectively. Part 

movements during the assembly process are of six directions, six interference matrices corresponding to 

each direction will be obtained. Since in the current investigation an eleven-part assembly structure has 

been considered, a matrix with 11-by-11 is extracted from the CAD tool. 

The obtained interference matrices for the considered eleven-part mechanical assembly structure in X+ 

and X- directions are as follows: 
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The obtained interference matrices for the considered eleven-part mechanical assembly structure in Y+ 

and Y- directions are as follows:  

Y- 1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 0 0 1 1 1 1 1 1 

2 1 0 0 0 0 0 1 1 1 1 1 

3 1 1 0 0 0 0 1 1 1 1 1 

4 1 1 1 0 0 0 1 1 1 1 1 

5 1 1 1 1 0 0 1 1 1 1 1 

6 1 1 1 1 1 0 1 1 1 1 1 

7 0 0 0 0 0 0 0 1 1 1 1 

8 0 0 0 0 0 0 0 0 1 1 1 

9 1 0 0 0 0 0 0 0 0 1 1 

10 0 0 0 0 0 1 1 1 1 0 1 

11 0 0 0 0 0 0 0 0 0 0 0 

 

The obtained interference matrices for the considered eleven-part mechanical assembly structure in Z+ 

and Z- directions are as follows:  

 

 

 

 

 

 

 

 

2.3 Stability Matrix Extraction 

Stability matrix gives the information about the stability of the parts during assembly whether the parts 

are incomplete stable, partial stable or complete stable. In this study three weights, 0, 1 & 2 have been 

allotted for incomplete stable, partial stable and complete stable respectively. Since in the current 

X+ 1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 1 0 1 0 0 0 0 0 

2 0 0 0 0 0 1 0 0 0 1 1 

3 0 0 0 0 0 1 1 1 1 1 1 

4 1 0 0 0 0 1 1 1 1 1 1 

5 0 0 0 0 0 1 1 1 1 1 1 

6 1 1 1 1 1 0 1 1 1 1 1 

7 0 0 1 1 1 1 0 0 0 1 1 

8 0 0 1 1 1 1 0 0 0 0 0 

9 0 0 1 1 1 1 0 0 0 0 0 

10 0 1 1 1 1 1 1 0 0 0 1 

11 0 1 1 1 1 1 1 0 0 1 0 

X- 1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 1 0 1 0 0 0 0 0 

2 0 0 0 0 0 1 0 0 0 1 1 

3 0 0 0 0 0 1 1 1 1 1 1 

4 1 0 0 0 0 1 1 1 1 1 1 

5 0 0 0 0 0 1 1 1 1 1 1 

6 1 1 1 1 1 0 1 1 1 1 1 

7 0 0 1 1 1 1 0 0 0 1 1 

8 0 0 1 1 1 1 0 0 0 0 0 

9 0 0 1 1 1 1 0 0 0 0 0 

10 0 1 1 1 1 1 1 0 0 0 1 

11 0 1 1 1 1 1 1 0 0 1 0 

Y+ 1 2 3 4 5 6 7 8 9 10 11

1 0 1 1 1 1 1 0 0 1 0 0 

2 0 0 1 1 1 1 0 0 0 0 0 

3 0 0 0 1 1 1 0 0 0 0 0 

4 0 0 0 0 1 1 0 0 0 0 0 

5 0 0 0 0 0 1 0 0 0 0 0 

6 1 0 0 0 0 0 0 0 0 1 0 

7 1 1 1 1 1 1 0 0 0 1 0 

8 1 1 1 1 1 1 1 0 0 1 0 

9 1 1 1 1 1 1 1 1 0 1 0 

10 1 1 1 1 1 1 1 1 1 0 0 

11 1 1 1 1 1 1 1 1 1 1 0 

Z+ 1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 1 0 1 0 0 0 0 0 

2 0 0 0 0 0 1 0 0 0 1 1 

3 0 0 0 0 0 1 1 1 1 1 1 

4 1 0 0 0 0 1 1 1 1 1 1 

5 0 0 0 0 0 1 1 1 1 1 1 

6 1 1 1 1 1 0 1 1 1 1 1 

7 0 0 1 1 1 1 0 0 0 1 1 

8 0 0 1 1 1 1 0 0 0 0 0 

9 0 0 1 1 1 1 0 0 0 0 0 

10 0 1 1 1 1 1 1 0 0 0 1 

11 0 1 1 1 1 1 1 0 0 1 0 

Z- 1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 1 0 1 0 0 0 0 0 

2 0 0 0 0 0 1 0 0 0 1 1 

3 0 0 0 0 0 1 1 1 1 1 1 

4 1 0 0 0 0 1 1 1 1 1 1 

5 0 0 0 0 0 1 1 1 1 1 1 

6 1 1 1 1 1 0 1 1 1 1 1 

7 0 0 1 1 1 1 0 0 0 1 1 

8 0 0 1 1 1 1 0 0 0 0 0 

9 0 0 1 1 1 1 0 0 0 0 0 

10 0 1 1 1 1 1 1 0 0 0 1 

11 0 1 1 1 1 1 1 0 0 1 0 
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investigation an eleven-part assembly structure has been considered, a matrix with 11-by-11is extracted 

from the CAD tool-CATIA (V5R17). 

Combined stability matrix: 

 1 2 3 4 5 6 7 8 9 10 11

1 0 0 2 2 0 0 1 0 0 1 2 

2 0 0 1 0 2 0 1 1 1 0 0 

3 2 1 0 1 1 0 0 0 0 0 0 

4 2 0 1 0 0 0 0 0 0 0 0 

5 0 2 1 0 0 2 0 0 0 0 0 

6 0 0 0 0 2 0 0 0 0 0 0 

7 1 1 0 0 0 0 0 1 0 0 0 

8 0 1 0 0 0 0 1 0 1 1 1 

9 0 1 0 0 0 0 0 1 0 0 1 

10 1 0 0 0 0 0 0 1 0 0 0 

11 2 0 0 0 0 0 0 1 1 0 0 

 

2.4. Mechanical Feasibility Extraction 

Mechanical feasibility matrix gives the information about, whether two parts can be joined by a physical 

connector in the presence of already existed part without any interference. The order of the matrix is 

represented by n-by-n-by-n. The third dimension represents, whether the part represented in it offers any 

interference to place hard connections between parts represented in first two dimensions. The mechanical 

feasibility matrix for 11-part assembly is shown in the Fig. 2. 

 

Fig. 2. Mechanical feasibility matrix for 11-part assembly 

In the Fig. 2. it is clearly shown that parts (1&3) cannot be joint with a physical connector in the presence 

of part 4. Similarly, parts (1&3) and (1&4) can’t be joint with physical connectors in the presence of part 

5 and also parts (2&5) can’t be joint with physical connector in the presence of part 6.   
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3. Fitness Function Evaluation 

Once an assembly sequence qualifies liaison, stability and geometrical feasibility, the sequence is treated 

to be a valid sequence which will be further sent for fitness value calculation. Therefore a fitness function 

(݉ሻ is to be developed which should satisfy the following three criteria in the assembly tasks. 

i). Assembly operations should associate with less number of end-effectors/tool changes (݊௧௖). An end 

effector is used to hold an object to perform assembly task. Since an assembled product consists of 

various mechanical parts there is a requirement of using several end effectors to hold the specific 

object. It is required to minimize the number of changes of end effector during assembly process 

because changing an end effector requires lot of time. 						⇒ ݉ଵ ൌ ௧௖ݓ ∗ ݊௧௖ (1) 

Where (ݓ௧ሻ is the weighing parameter is corresponds to end-effectors/tool change 

ii). Assembly operations should associate with less number of direction changes (݊ௗ௖).It is prefers to 

perform the assembly operation for all parts in a single direction. Changing the direction frequently 

leads to the time consuming. 							⇒ ݉ଶ ൌ ௗ௖ݓ ∗ ݊ௗ௖ (2) 

Whereሺݓௗ௖ሻis the weighing parameter is corresponds to directional changes 

iii). Assembly operations should associates with less number of part movements (݊௣௠ሻ. During assembly 

operation parts to be aligned in correct position for quicker assembly because parts are hold by the 

gripper, which leads to time and energy consumption. 						⇒ ݉ଷ ൌ ௣௠ݓ ∗ ݊௣௠ (3) 

Whereሺݓ௣௠ሻis the weighing parameter is corresponds to part movements 

By combining the Eq. (1), Eq. (2) and Eq. (3) the final form of the fitness will be as follows 																														݉ ൌ ݉ଵା݉ଶ ൅݉ଷ ݉ ൌ ௧௖ݓ ∗ ݊௧௖ ൅ ௗ௖ݓ ∗ ݊ௗ௖ ൅ ௣௠ݓ ∗ ݊௣௠ (4) 

By observing the equation (4), the fitness value of an optimal assembly sequence must be low. In the 

meanwhile, the assembly sequence should satisfy the basic predicate tests. Therefore, it is required to 

apply an AI based optimization technique in order to minimize the total manufacturing time and cost 

The proposed method is implemented for various combinations of weights aiming minimum gripper 

change, minimum assembly direction and minimum part movements. However, the selection of weights 

is significantly dependent on the industrial engineer’s decision based on the assembly tool facilities and 

time to change grippers. 

4. Artificial Intelligent Techniques in Assembly Sequence 

Several AI techniques are presented to achieve the optimized assembly sequence. But these techniques 

which are using are not sufficient to get the optimum feasible sequence because of huge search time and 

manual data extraction. Instead of manual data extraction, CAD platform has been used here while 

subjected to four basic criteria. This research work has been carried out by combining the AIS-GA 

algorithms with integration of CAD to achieve global optimal solution while reducing the system 

redundancy and computational time. 
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4.4. Artificial Immune System 

The interest in studying the immune system is increasing over the last few years. Computer scientists, 

engineers, mathematicians, philosophers and other researchers are particularly interested in the 

capabilities of this system, whose complexity is comparable to that of the brain (Deepak & Parhi 2016). 

Many properties of the immune system are of great interest for computer scientists and engineers: 

 

 Uniqueness: each individual possesses its own immune system.  

 Recognition of Foreigners: the antigens are recognized and eliminated from body. 

 Anomaly Detection: the immune system can detect and react to pathogens that the body has never 

encountered before. 

 Distributed Detection: the cells are distributed all over the body and are not to subject any centralized 

control. 

 Noise Tolerance: the system is flexible since the recognition of the antigens is not required. 

 Reinforcement Learning and Memory: future responses to the same pathogens are faster and stronger 

since the immune system can “learn” the structures of pathogens. 

Because of its special features, several models have been introduced to solve various engineering 

problems (Deepak & Parhi 2013). The following immune inspired algorithms are used in this 

investigation: 

 

 Bone Marrow Models: For generating possible assembly sequences. 

 Negative Selection Model: To reduce the system redundancy and predicate check. 

 

4.4.1. Bone marrow model for Assembly Sequence Generation 

In this model two gene libraries are considered with five-bit memory in order to generate an antibody 

(assembly sequence). First gene library i.e. library-1 corresponds to the part allocation and second gene 

library i.e. library-2 corresponds to the memory allocation of the part. The population selection is done 

randomly by the AIS algorithm shown in the Fig. 3. Once an allocation is filled in the either of the library, 

that specific part/memory allocation will not be repeated during the current assembly sequence 

generation. For example, if part A is selected from library-1 and memory allocation-1 from library-2, 

then part A will be in allocation-1 and these two allocations will not be repeated. 

 

 
 

Fig. 3. Selection of population using AIS method 

 

In order to avoid the system redundancy / generation of same antibody (assembly sequence) string 

current anti body string is subjected to reinforcement learning.  
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4.4.2. Negative selection algorithm 

The negative selection algorithm is applied for the stored anti body string (assembly sequence) generated 

from the bone marrow model is tested with the predicated criteria. If this criterion is satisfying, then this 

model stores the current assembly sequence as a feasible assembly sequence which shown in the Fig.4. 

Later the stored feasible assembly sequence will be evaluated for its optimal criteria. 

 
 

Fig. 4. Negative selection algorithm 

 

4.5. Genetic Algorithm 

Genetic algorithm is one of the artificial intelligent technique which uses the heretic search to minimize 

the process of natural selection. This is generally used for the search problems to generate the useful 

solution for optimization which is inspired by the inspired by natural evolution techniques, such as 

inheritance, mutation, selection, and crossover. In this algorithm population initialization is from negative 

selection algorithm. For the generated population fitness value is to be calculated as discussed section-3. 

For the evaluated population apply mutation and cross over genetic operators to generate the off-springs 

as shown in the Fig. 5 & 6.  

Mutation: Mutation is swapping of two randomly chosen parts. A typical example is shown in the Fig. 4 

for the mutation where C3 and D4 are chosen randomly in the parent, after swapping it generates the off 

spring.   

 

 

Fig. 5. Mutation for off-spring generation Fig. 6. Cross over for generating off-spring 
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Cross over: Cross over is selecting a common point of two parents so that two new off -springs will be 

generated. A typical example for crossover implementation is shown in Fig. 5, where a common point is 

selected for the parent-1& parent-2. After cross over two off-springs are generated having characteristics 

of both parents. Flow chart for the implementation of GA is explained in detail with the flow chart as 

shown in the Fig. 7. 

 

Fig. 7. Flow chart of GA 

4.6. Hybrid AIS-GA Architecture 

The Hybrid AIS-GA based algorithm for generating the optimal feasible assembly sequence is explained 

in detail with the steps as below: 

Step 1. Generate the population (assembly sequence) using bone marrow model. 

Step 2.  Check the predicate criteria (Liaison data, Stability, Geometric feasibility and Mechanical 

feasibility) for the generated assembly sequence through negative selection model. 

Step 3. Send the feasible assembly sequence to GA model to evaluate its fitness value. 

Step 4. Apply mutation and cross over genetic operators for producing the off-springs (new assembly 

sequences). 

Step 5. Send the generated off-springs to the bone marrow model for its storage. 

Step 6. Continue step 2 to step 5 until it reaches optimal criteria. 

 

 

Fig. 8. Flow chart of the AIS-GA algorithm 
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5. Results & Discussion 

The developed methodology for obtaining an optimum feasible assembly sequence has been 

implemented for a transmission assembly. This product consists of 11 parts (parts labelled with 1 to 11) 

as shown in Fig. 1 and the possible sequences are 11-factorial. Hybrid AIS-GA model which is discussed 

in section 4.3 produces the feasible assembly sequence planning. From the 11! Number of possible 

sequences, AIS-GA produced 1808 feasible sequences as listed in the supplementary material. For these 

feasible sequences optimization criteria to be applied with respect to end effector changes, directional 

changes and part movements. 

The developed algorithm has been implemented to a standard transmission assembly as considered by 

Wang et al. (2005) and Smith (2004). Classical genetic algorithm has been implemented by Smith (2004) 

and ant colony optimization has been implemented by Wang et al. (2005) to produce OFAS while 

considering the directional changes as the objective function. From the past experience, it is found that 

the obtained OFAS is 11-9-8-7-10-1-2-3-4-5-6. However, the past strategies are dealt with only 

considering the directional changes during the assembly process. Whereas in the current research work, 

all criteria such as directional changes, gripper changes and energy of the parts are considered for 

obtaining the optimal feasible assembly sequence.  More over the results are compared with the GA and 

AIS, which take less time for obtaining the optimal feasible assembly sequence as shown in the table 4 

&table 5 respectively. Three weighing parameters corresponding to the end effectors (	ݓ௧௖), directional 

changes (ݓௗ௖) and part movements (ݓ௣௠ሻ are to be decided. In this investigation following two cases 

are considered for investing the weighing parameters 

Case 1: Performing assembly operation by considering equal priority to tool changes, directional changes 

and part movements (i.e.	ݓ௧௖ ൌ ௗ௖ݓ ൌ ௣௠ݓ ൌ 0.33) 

Case 2: Performing assembly operation by considering full priority to end-effectors/tool changes 

(i.e.	ݓ௧௖ ൌ ௗ௖ݓ,1 ൌ ௣௠ݓ,0 ൌ 0) 

According to the nature of the assembly process the weights for each parameter can be decided by the 

user. In this paper, analysis has been performed for the above two cases of industrial settings.  
 

Case 1: Performing assembly operation while considering equal priority to tool changes, directional 

changes and part movements (i.e.	ݓ௧௖ ൌ ௗ௖ݓ ൌ ௣௠ݓ ൌ 0.33) 

Fig. 9. Convergence of fitness over number of iterations Fig. 10. Convergence of fitness over number of iterations 
 

From the Fig. 9, it is noticed that the model is converged at 112th iteration with the fitness value 7.676 

and the optimized assembly sequence is listed in the Table 2. 

Table 2 

Optimal feasible assembly sequence for Case-1 
Iteration number Assembly sequence Assembly direction  Gripper changes Fitness value 

112 1-7-8-10-9-11-2-3-4-5-6 3-3-3-3-3-3-4-4-4-4-4 1-7-8-10-9-11-2-3-4-5-6 7.676 
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Case 2: Performing assembly operation while considering full priority to end-effectors/tool changes 

(i.e.	ݓ௧௖ ൌ ௗ௖ݓ,1 ൌ ௣௠ݓ,0 ൌ 0) 

It is observed from Fig. 10 that the model is converged at 110th iteration having the fitness value ‘0’ and 

the optimized assembly sequence is listed in the table 3. 

Table 3 

Optimal feasible assembly sequences for Case-2 

 

5.4. Comparison Among GA, AIS and AIS-GA 

For the comparison purpose this analysis is focused only on assembly directional changes. Therefore the 

weights of fitness function are	ݓௗ௖ ൌ 1, ௧௖ݓ	 ൌ ௣௠ݓ,0 ൌ 0. Here the analysis is carried out for GA, AIS 

and AIS-GA up to 1000 iterations. The fitness value of ‘1’ achieved by GA, AIS and AIS-GA at 414th, 

479th and 101st iteration respectively. Individual GA and AIS algorithms couldn’t generate the optimal 

sequence with fitness value ‘0’ for 1000 iterations. Whereas, the hybrid AIS-GA model achieved the 

optimal feasible assembly sequence with ‘0’ fitness value at 110th iteration. A detail analysis results are 

illustrated in table 4 and Fig.11. 

Table 4  

Optimum assembly sequences for the assembly directional changes  

Algorithm 
No. of 

iterations 

Time taken to 

generate OFAS 

(Sec) 

Generated OFAS 
Assembly direction of 

OFAS 

No. of 

directional 

changes 

GA 
Up to 500 12.4 10-8-9-11-7-1-2-3-4-5-6 3-3-3-3-4-4-4-4-4-4-4 1 

Up to 1000 18.6 10-8-9-11-7-1-2-3-4-5-6 3-3-3-3-4-4-4-4-4-4-4 1 

AIS 
    Up to 500 13.5 10-8-9-11-7-1-2-3-4-5-6 3-3-3-3-4-4-4-4-4-4-4 1 

Up to 1000 19.5 10-8-9-11-7-1-2-3-4-5-6 3-3-3-3-4-4-4-4-4-4-4 1 

Hybrid 

(AIS-GA) 
Up to 500 8.6 11-9-8-7-10-1-2-3-4-5-6 4-4-4-4-4-4-4-4-4-4-4 0 

Up to 1000 10.6 11-9-8-10-7-1-2-3-4-5-6 4-4-4-4-4-4-4-4-4-4-4 0

 

Fig. 11. A graph for developed AI techniques with 

directional changes with respect to number of iterations 

Fig. 12. A graph for different AI techniques with energy 

and Number of iterations 
 

For the comparison purpose, this analysis is focused only on energy i.e. part movements. Therefore the 

weights of fitness function are	ݓௗ௖ ൌ 0, ௧௖ݓ	 ൌ ௣௠ݓ,0 ൌ 1. Here the analysis is carried out for GA, AIS 

and AIS-GA up to 1000 iterations. The minimum fitness value of ‘12.262’ achieved by GA, AIS and 

AIS-GA at 616th, 658th and 110th iteration respectively. A detailed analysis results are illustrated in table 

5 and Fig. 12. 

Iteration 

number 

Assembly sequence Assembly direction  Gripper changes Fitness value 

110 11-9-8-7-10-1-2-3-4-5-6 4-4-4-4-4-4-4-4-4-4-4 11-9-8-7-10-1-2-3-4-5-6 0 
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Table 5 

Optimum assembly sequences for the energy 

Algorithm 
No. of 

iterations 

Time taken to 

generate 

OFAS (Sec) 

Generated OFAS 
Assembly direction of 

OFAS 

Fitness 

value 

GA 
Up to 500 13.1 10-8-9-7-1-11-2-3-4-5-6 3-3-3-4-4-3-4-4-4-4-4 14.810 

Up to 1000 19.2 10-8-9-11-7-1-2-3-4-5-6 3-3-3-3-4-4-4-4-4-4-4 12.262 

AIS 
Up to 500 14.4 10-8-9-7-11-1-2-3-4-5-6 3-3-3-4-3-4-4-4-4-4-4 12.302 

Up to 1000 20.1 10-8-9-11-7-1-2-3-4-5-6 3-3-3-3-4-4-4-4-4-4-4 12.262 

Hybrid(AIS-

GA) 

Up to 500 8.8 11-9-8-7-10-1-2-3-4-5-6 4-4-4-4-4-4-4-4-4-4-4 12.062 

Up to 1000 11.1 11-9-8-10-7-1-2-3-4-5-6 4-4-4-4-4-4-4-4-4-4-4 12.062 

 

In the current study, two cases:	ݓ௧௖ ൌ ௗ௖ݓ ൌ ௣௠ݓ ൌ ௧௖ݓ	 ;0.33 ൌ ௗ௖ݓ,1 ൌ ௣௠ݓ,0 ൌ 0	are considered 

for understanding purpose. But the selection of these weights depends on the user/industrialist 

requirement. 

6. Conclusion 

Hybrid algorithm with CAD assistance has been introduced in this research work to obtain optimal 

feasible assembly sequence for a given product. In the present investigation, two separate algorithms 

namely GA and AIS are combined to generate OFAS. The developed methodology is found successful 

in succeeding all sets of valid assembly sequences for different configurations of assemblies in less 

computational time. Unlike the traditional optimization algorithms as mentioned in introduction section, 

the hybrid model does not generate redundant assembly sequence and thus saves lots of computational 

time and drives toward global optima. Moreover, the proposed hybrid algorithm has the flexibility for 

user defined weights: selection for gripper changes, directional changes and part movements unlike the 

existed artificial intelligent techniques. As a future work the developed hybrid algorithm can be applied 

effectively for the identification of sub-assembly to make more flexible for parallel assembly systems. 
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