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Abstract: In this article, the study of heat, momentum and
mass (species) transfer in an electro-conductive polymer
on the external surface of a vertical plate. The effects of
Brownian motion and thermophoresis are incorporated in
the model in the presence of both heat and nanoparti-
cle mass transfer convective conditions. The Williamson
viscoelastic model is employed which is representative of
certain industrial polymers. The non-dimensional, trans-
formed boundary layer equations for momentum and en-
ergy are solved with the second order accurate implicit
Keller box finite difference method under appropriate
boundary conditions. The influence of Weissenberg num-
ber, magnetic body force parameter, thermal slip param-
eter, hydrodynamic slip parameter, stream wise variable
and Prandtl number on thermo fluid characteristics are
presented graphically and discussed. A weak elevation in
temperature accompanies increasing Weissenberg num-
ber whereas a significant acceleration in the flow is com-
puted near the plate surface. Rate of heat transfer is re-
duced with increases the Weissenberg number. The study
is relevant to enrobing processes for electric-conductive
nano-materials, of potential use in aerospace, smart coat-
ing transport phenomena and other industries.
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1 Introduction
Magnetohydrodynamic (MHD) boundary layers with heat
and mass transfer over surfaces are found in many en-
gineering and geophysical applications such as geother-
mal reservoirs, thermal insulation, enhanced oil recovery,
packed-bed catalytic reactors, and cooling of nuclear re-
actors. Many chemical engineering processes like metal-
lurgical and polymer extrusion processes involve cooling
of a molten liquid being stretched into a cooling system.
Some polymer liquids like polyethylene oxide and poly-
isobutylene solution in cetane, having better electromag-
netic properties are normally used as cooling liquid as
their flow can be regulated by external magnetic fields to
improve the quality of the final product. As another appli-
cation of the MHD flows in fluids and Nanofluids, we find
the MHD flow in biomagnetic fluids (e.g., human blood),
this topic is useful in different areas of bioengineering and
medical sciences. The blood is a biological fluid, which
has a magnetic behavior, it can be regarded as a suspen-
sion of magnetic particles (i.e., hemoglobin molecules)
in non-Newtonian fluid (i.e., plasma). To view some re-
cent works dealing with the Magnetohydrodynamic flow
of blood, the reader is referred to [1–6] and the references
therein. The properties of nanofluids need a lot of fine
tuning, many seemingly contradicting studies need clar-
ity and validation. Nanofluids have potential applications
in micro-electronics, fuel cells, rocket propulsion, envi-
ronmental de-toxification, spray coating of aircraft wings,
pharmaceutical suspensions, medical sprays etc. These
applications of nanofluids are largely attributable to the
enhanced thermal conductivity and Brownian motion dy-
namics which can be exploited to immense benefit. Nano-
materials work efficiently as new energy materials since
they incorporate suspendedparticleswith size as the same
as or smaller than the size of de Broglie wave [7]. The
use of nanoparticles is now a subject of abundant stud-
ies, and aspects of particular interest are Brownian mo-
tion and thermophoretic transport. Nanofluids constitute
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a new class of heat transfer fluids comprising a conven-
tional base fluid and nano-particles. The nanoparticles
are utilized to enhance the heat transfer performance of
the base fluids [8]. The cooling rate requirements cannot
be obtained by the ordinary heat transfer fluids because
their thermal conductivity is not adequate. Brownian mo-
tion of the nanoparticles enhances the thermal conduc-
tivity of base fluids, although there may be many more
mechanisms at work which exert a contribution. The con-
cept of nanofluids was introduced by Choi [9] wherein he
proposed the suspension of nanoparticles in a base fluid
such as water, oil, and ethylene glycol. Buongiorno [10]
attempted to explain the increase in the thermal conduc-
tivity of such fluids and developed a model that empha-
sized the keymechanisms in laminar flowas being particle
Brownian motion and thermophoresis.

Furthermore the non-Newtonian properties of differ-
ent nanofluid suspensions have also attracted interest
in simulating rheological behavior with different models.
Noghrehabadi et al. [11] investigated the effects of the slip
boundary condition on the heat transfer characteristics for
a stretching sheet subjected to convective heat transfer in
the presence of nanoparticles. They found that the flowve-
locity and the surface shear stress on the stretching sheet
are strongly influenced by the slip parameter with a de-
crease in the momentum boundary layer thickness and
increase in thermal boundary layer thickness. Khan and
Pop [12] studied theproblemof laminar fluidflowwhich re-
sults from a stretching of a flat surface in a nanofluid. They
analyzed the development of the steady boundary layer
flow, heat transfer and nanoparticle volume fraction, ob-
serving that the reduced Nusselt number decreased while
the reduced Sherwood number increased with greater vol-
ume fraction. Uddin et al. [13] analyzed anisotropic slip
effects on nanofluid bioconvection boundary layers from
a translating sheet. Uddin et al. [14] used a linear group
similarity transformationswithMaple software for numer-
ical solutions for mixed convection slip flow from stretch-
ing sheet with nanoparticles. Many such studies have
been communicated and have usually adopted the so-
called “active control” boundary condition, based on the
Kuznetsov-Nield formulation [15] for natural convective
boundary layer flow of a nanofluid over a vertical surface
featuring Brownian motion and thermophoresis. However
Kuznetsov andNield [16] re-visited their originalmodel, re-
fining this formulation with passive control of nanofluid
particle fraction at the boundary rather than active con-
trol to be more physically realistic. This recent boundary
condition provides one of the motivations for the present
research.

The above studies considered the nanofluid to be elec-
trically non-conducting. However new developments in
magnetic nanofluids have emerged in recent years which
require magnetohydrodynamics to simulate the response
of nanofluids to applied magnetic fields. A number of re-
searchers have simulated various types of multi-physical
hydrodynamics problems of magnetic nanofluids in dif-
ferent configurations, using a diverse range of numerical
methods. Both purely fluid flow and heat transfer from a
cylinder to non-Newtonian fluids have been reported in a
number of theoretical investigations. Malik et al. [17] used
the Runge–Kutta Fehlbergmethod to obtain numerical so-
lutions for steady thermal boundary layer flow of a Casson
nanofluid flowing over a vertical radially exponentially-
stretching cylinder. Ali et al. [18] have investigated ana-
lytically the unsteady MHD nanofluid flow over a verti-
cal plate embedded in a porous medium with time depen-
dent velocity, temperature and concentration, in the case
where the presence of a chemical reaction and the effect
of thermal radiation are taking in to account governing
equations. Mixed convective nanofluid in a lid-driven cav-
ity flow solvedwith finite volume technique byMuthtamil-
selvanandDoh [19].MuthtamilselvanandKumar [20] used
the finite volume method to explain the mixed convection
heat transfer in a lid-driven cavity filled with nanofluid for
different aspect ratios. The nanofluid boundary layer flow
over a heated stretching sheet in the presence of unsteady
free stream condition and thermal radiation is analysed by
Das et al. [21]. The stagnation point flow of a nanofluid
over a stretching/shrinking sheet in a porous medium
with thermal radiation is considered by Pal et al. [22]. The
hydromagnetic boundary layer flow of a nanofluid over
a stretching sheet with Newtonian heating and dissipa-
tion effects is investigated by Mahatha et al. [23]. The un-
steady hydromagnetic boundary-layer flow of a nanofluid
over a horizontal stretching sheet in the presence of melt-
ing and heat generation or absorption effect is consid-
ered by Chamkha et al. [24]. The hydromagnetic bound-
ary layer flow of a radiative nanofluid over a stretching
sheet in analysed by Ferdows et al. [25] and concluded
that the stretching parameter enhances the nanofluid tem-
perature. Awad et al. [26] studied the unsteady Oldroyd-B
Nanofluid flowover a stretching sheet. They found that the
lager values of Deborah numbers are indicative that the
Oldroyd-B nanofluid is stretched. The influence of multi-
ple slips and viscous dissipation on boundary layer flow of
a nanofluid over a stretching sheet in the presence of first
order and chemical reaction is investigated by Ahmed [27].
He found that the corresponding slip parameters reduce
the corresponding profiles.
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These studies however did not consider the
Williamson model. This is a shear-thinning non-
Newtonian model which quite accurately simulates poly-
mer viscoelastic flows over a wide spectrum of shear rates.
In Williamson fluids the viscosity is reduced with ris-
ing shear stress rates. This model has found some pop-
ularity in engineering simulations. Prasannakumara et
al. [28] used the Runge-Kutta-Fehlberg shooting algo-
rithm to analyse reactive-radiative flow of Williamson
viscoelastic nanofluid from a stretching sheet in a per-
meable material. Khan and Khan [29] investigated Bla-
sius, Sakiadis, stretching and stagnation point flows of
Williamson fluid using the homotopy analysis method,
over a range of Weissenberg numbers. Bég et al. [30] pre-
sented extensive numerical solutions for hydromagnetic
pumping of a Williamson fluid using a modified differen-
tial transform method, observing that a change in Weis-
senberg number strongly modifies the pressure difference
and axial velocity. Further studies of transport phenom-
ena in Williamson fluids include Rao and Rao [31] and
Dapra and Scarpi [32]. Mabood et al. [33] reported MHD
boundary layer flow and heat transfer of nanofluids over
a heated stretching sheet. Kumar et al. [34] discussed the
MHDWilliamsonnanofluid over an exponential stretching
sheet with the effects of Thermal Radiation, Chemical Re-
action and Porous Medium. Kho et al. [35] by considering
the factor of MHD flow, mass and heat transfer analysis of
Williamson nanofluid past over a stretching sheet.

In recent years with the development of hydropho-
bic surfaces, slip flows have garnered some attention in
nanofluid dynamics. In several circumstances a simple di-
rect linear correlation has been supposed where the pro-
portionality portion is given by slip factor. The magnitude
and direction of slip is a function of the wall shear stress
which is related to the applied stress. Recently Aman-
ulla et al. [36, 37] discussed the slip influence of MHD
Williamson Nano fluid flow for different types of physi-
cal phenomena’s. Uddin et al. [38] described slip effects
on free convective MHD boundary layer flow of nanofluid
over a moving plate. Uddin et al. [39, 40] investigated
the steady magnetohydrodynamic laminar free convec-
tive boundary layer multiple slip flow of a nanofluid from
a stretching/shrinking sheet and vertical plate through
porous medium.

In the present investigation, we consider the mag-
netohydrodynamic convection boundary layer flow of a
Williamson nano polymeric fluid external to a vertical plate
with slip conditions. The present study employs a finite dif-
ference numerical method due to Keller for solving the
two-dimensional steady flow and heat and mass trans-
fer in a Williamson nano polymeric liquid boundary layer

from a plate. Verification of the computations is con-
ducted for the special case of non-magnetic, Newtonian
flow in the absence of Newtonian heatingwith earlier pub-
lished literature. The study finds applications in electro-
conductive thermal polymer processing systems.

2 Magnetohydrodynamic
Viscoelastic Slip Thermofluid
Model

The regime under investigation is illustrated in Fig. 1.
Steady, incompressible hydromagnetic Williamson non-
Newtonian boundary layer flow and heat and mass trans-
fer from a vertical body under radial magnetic field is con-
sidered. For an incompressible Williamson fluid, the con-
tinuity (mass conservation) andmomentum equations are
given as:

divV =0, (1)

ρdVdt =divS +ρb, (2)

where ρ the density of the fluid, V is the velocity vec-
tor, S is the Cauchy stress tensor, b represents the specific
body force vector, and d/dt represents the material time
derivate. The constitutive equations of the Williamson
nanofluid model [33-37] are given as:

S = −pI + τ (3)

τ =
(︂
µ∞ + (µ0 − µ∞)

1 − Γγ̇

)︂
A1, (4)

Here p is the pressure, I is the identity vector, τis the extra
stress tensor, µ0 are the limiting viscosities at zero and at
infinite shear rate, Γ is the time constant (>0), A1 is the first
Rivlin-Erickson tensor and γ̇ is defined as follows:

γ̇ =
√︂

1
2π, (5)

π = trace(A21) (6)

Here we considered the case for which µ∞ = 0 and
thus eq. (4) can be written as:

τ =
(︂

µ0
1 − Γγ̇

)︂
A1, (7)

Or by using binomial expansion we get:

τ = µ0 (1 + Γγ̇)A1. (8)
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Fig. 1:Magnetohydrodynamic non-Newtonian heat transfer from a
vertical plate

The two-dimensional mass, momentum and energy
boundary layer equations governing the flow in an (x,y) co-
ordinate system may be shown to take the form [33–37]:

∂u
∂x + ∂v∂y = 0 (9)

u ∂u∂x + v ∂u∂y =ν ∂
2u
∂y2 +

√
2νΓ ∂u∂y

∂2u
∂y2 + gβ(T − T∞)

+ gβ*(C − C∞) −
σB20
ρ u (10)

u ∂T∂x + v ∂T∂y = α ∂
2T
∂y2 + τ

(︃
DB
∂C
∂y

∂T
∂y + DTT∞

(︂
∂T
∂y

)︂2
)︃

(11)

u ∂C∂x + v ∂C∂y = DB
∂2C
∂y2 + DTT∞

∂2T
∂y2 (12)

The boundary conditions for the considered flow with
velocity and thermal slip are:

At y = 0, u = N0
∂u
∂y , v = 0, T = Tw + K0 ∂T∂y , C = Cw

As y →∞, u → 0, ν → 0, T → T∞, C toC∞ (13)

HereN0 is the velocity slip factor,K0 is the thermal slip
factor and T∞ is the free stream temperature. For N0 = 0 =
K0, one can recover the no-slip case. The stream function
ψ is definedby u = ∂ψ

∂y and v = −
∂ψ
∂x , and therefore, the con-

tinuity equation is automatically satisfied. In order towrite
the governing equations and the boundary conditions in
dimensionless form, the followingnon-dimensional quan-
tities are introduced:

ξ = V0xν (Grx)−1/4, η =
y
x (Grx)

1/4,

ψ = 4 ν(Grx)1/4
(︂
f (ξ , η) + 1

4 ξ
)︂
,

θ(ξ , η) = T − T∞
Tw − T∞

, ϕ(ξ , η) = C − C∞
Cw − C∞

,

We = 4
√
2νΓGrx3/4
x2 , Grx =

gβ (Tw − T∞) x3
4ν2 (14)

The emergingmomentumandheat (energy) conserva-
tion equations in dimensionless from assume the follow-
ing form:

f ′′′ + (3f + ξ )f ′′ − 2f ′
2
+Wef ′′f ′′′ + θ + Nϕ −Mf ′

= ξ
(︂
f ′ ∂f

′

∂ξ − f
′′ ∂f
∂ξ

)︂
(15)

θ′′
Pr + (3f + ξ ) θ

′ +Nbϕ′θ′ +Ntθ′2 = ξ
(︂
f ′ ∂θ∂ξ − θ

′ ∂f
∂ξ

)︂
(16)

ϕ′′

Le + (3f + ξ )ϕ′ + 1
Le
Nb
Nt
θ′′ = ξ

(︂
f ′ ∂ϕ∂ξ − ϕ

′ ∂f
∂ξ

)︂
(17)

The transformed dimensionless boundary conditions
are reduced to:

At η = 0, f = 0, f ′ = Sf f ′′(0), θ = 1 +
STθ′(0), ϕ = 1

As η →∞, f ′ → 0, θ → 0, ϕ → 0 (18)

where Sf = N0Gr1/4/x and ST = K0Gr1/4/x are the
non-dimensional velocity slip and thermal jump param-
eters, respectively, Pr = ν/α is Prandtl number; M =
σB20 x2/νρ Gr1/2, Le = ν/DB is the Lewis number; Nt =
(ρc)pDT (Tw − T∞) /(ρc)f νT∞ is the thermophoresis pa-
rameter; Nb = (ρc)pDB (Cw − C∞) /(ρc)f ν is the Brownian
motion parameter; N = β*(Cw −C∞)/β(Tw −T∞) is the con-
centration to thermal buoyancy ratio parameter. All other
parameters are defined in the nomenclature.

The skin-friction coefficient (plate surface shear
stress) and the local Nusselt number (plate surface heat
transfer rate) can be defined, respectively, using the trans-
formations described above with the following expres-
sions:

1
4Grx

−3/4Cf = f ′′(ξ , 0) +
We
2 (f ′′(ξ , 0))2 (19)

Gr−1/4x Nu = −θ′(ξ , 0) (20)

Gr−1/4x Sh = −ϕ′(ξ , 0) (21)

3 Computational Solution With
Keller Box Implict Method

The transformed, nonlinear, multi-physical boundary
value problem defined by Eqns. (15) - (17) can be solved
via a number of numerical schemes. Here we implement
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a popular, second order accurate implicit finite difference
method originally developed by Keller [41]. Recent stud-
ies featuring this method in the context of magnetohy-
drodynamic and rheological flows include Amanulla et
al. [42, 43] and Hydromagnetic Non-Newtonian Nanofluid
slip boundary layer flows by Subba Rao et al. [44]. In the
Keller box scheme, the multi-degree, multi-order coupled
partial differential equations defined in (14) and (15) are
first reduced to a system of first order equations. These
equations are thendiscretizedwith thefinite difference ap-
proximations with appropriate step lengths in each coor-
dinate direction. Introducing the new variables:

f ′ = u (22)

u′ = v (23)

θ = s (24)

s′ = t (25)

g′ = p (26)

Eqns. (15) - (17) reduce then to the form:

v′+3fv+ ξv+Wevv′−2u2+ s+Ng−Mu = ξ
(︂
u ∂u∂ξ − v

∂f
∂ξ

)︂
(27)

t′
Pr + (3f + ξ ) t + Nbϕ

′t + Nt t2 = ξ
(︂
u ∂s∂ξ − t

∂f
∂ξ

)︂
(28)

p′
Le + (3f + ξ ) p +

1
Le
Nb
Nt
t′ = ξ

(︂
u ∂g∂ξ − p

∂f
∂ξ

)︂
(29)

where primes denote differentiation with respect to η .
In terms of the dependent variables, the boundary

conditions (18) become:

At η = 0 : u = 0, f = 0, s = 1, g = 1
As η →∞ : u → 0, v → 0, s → 0, g → 0

(30)
A two-dimensional computational mesh (grid) is im-

posed on the ξ-η plane as shown in Fig. 2. The stepping
process is defined by:

η0 = 0, η j = η j−1 + hj , j = 1, 2, ..., J, ηJ ≡ η∞
(31)

ξ0 = 0, ξ n = ξ n−1 + kn , n = 1, 2, ..., N . (32)

Fig. 2: Keller Box element and boundary layer mesh

where kn and hj denote the step distances in the ξ and η
directions respectively.

If gnj denotes the value of any variable at
(︀
ηj , ξ n

)︀
, then

the variables and derivatives of Equations (22) – (29) at(︁
ηj−1/2, ξ n−1/2

)︁
are replaced by:

gn−1/2j−1/2 = 1
4

(︁
gnj + gnj−1 + gn−1j + gn−1j−1

)︁
, (33)

(︂
∂g
∂η

)︂n−1/2
j−1/2

= 1
2hj

(︁
gnj − gnj−1 + gn−1j − gn−1j−1

)︁
, (34)

(︂
∂g
∂ξ

)︂n−1/2
j−1/2

= 1
2kn

(︁
gnj − gnj−1 + gn−1j − gn−1j−1

)︁
, (35)

The finite-difference approximation of equations
(22) – (29) for the mid-point

(︀
ηj−1/2, ξ n

)︀
, below:

h−1j
(︀
f nj − f nj−1

)︀
= unj−1/2, (36)

h−1j
(︀
unj − unj−1

)︀
= vnj−1/2, (37)

h−1j
(︀
gnj − gnj−1

)︀
= pnj−1/2, (38)

h−1j
(︀
θnj − θnj−1

)︀
= tnj−1/2, (39)

(︀
vj − vj−1

)︀
+ (3 + α)

hj
4
[︀(︀
fj + fj−1

)︀ (︀
vj + vj−1

)︀]︀
− (2 + α) hj

4
(︀
uj + uj−1

)︀2 + ξ (︀vj + vj−1)︀
+ We2

(︀
vj + vj−1

)︀ (︀
vj − vj−1

)︀
+
hj
2
(︀
(sj + sj−1) + N(gj + gj−1)

)︀
−
Mhj
2
(︀
uj + uj−1

)︀
−
αhj
2 f n−1j−1/2

(︀
vj + vj−1

)︀
+
αhj
2 vn−1j−1/2

(︀
fj + fj−1

)︀
= [R1]n−1j−1/2 (40)

Brought to you by | University of Sussex Library
Authenticated

Download Date | 7/5/18 3:11 PM



6 | N. Nagendra et al., Hydromagnetic Flow of Heat and Mass Transfer in a Nano Williamson Fluid

1
Pr
(︀
tj − tj−1

)︀
+ (3 + α)

hj
4
[︀(︀
fj + fj−1

)︀ (︀
tj + tj−1

)︀]︀
+ ξ
(︀
tj + tj−1

)︀
−
αhj
4
[︀(︀
uj + uj−1

)︀ (︀
sj + sj−1

)︀]︀
+
αhj
2 sn−1j−1/2

(︀
uj + uj−1

)︀
−
αhj
2 un−1j−1/2

(︀
sj + sj−1

)︀
−
αhj
2 f n−1j−1/2

(︀
tj + tj−1

)︀
+
αhj
2 tn−1j−1/2

(︀
fj + fj−1

)︀
= [R2]n−1j−1/2

(41)

1
Le
(︀
pj − pj−1

)︀
+ (3 + α) hj

4
[︀(︀
fj + fj−1

)︀ (︀
pj + pj−1

)︀]︀
+ ξ
(︀
pj + pj−1

)︀
−
αhj
4
[︀(︀
uj + uj−1

)︀ (︀
gj + gj−1

)︀]︀
+
αhj
2 sn−1j−1/2

(︀
uj + uj−1

)︀
+ B
Le
(︀
tj − tj−1

)︀
−
αhj
2 un−1j−1/2

(︀
gj + gj−1

)︀
−
αhj
2 f n−1j−1/2

(︀
pj + pj−1

)︀
+
αhj
2 pn−1j−1/2

(︀
fj + fj−1

)︀
= [R3]n−1j−1/2 (42)

Where the following notation applies:

α = ξ
n−1/2

kn
, B = Nt

Nb (43)

[R1]n−1j−1/2 = −hj
[︂(︂ vj − vj−1

hj

)︂
+ (1 − α)

(︀
fj−1/2vj−1/2

)︀
+Wevj−1v′ j−1/2 + (2 − α)

(︀
uj−1/2

)︀2 −M (︀uj−1/2)︀
+
(︀
3fj−1/2 + ξ − α

)︀ (︀
vj−1/2

)︀
+
(︀
sj−1/2 + Ngj−1/2

)︀]︀
(44)

[R2]n−1j−1/2 = −hj
[︂
1
Pr

(︂ tj − tj−1
hj

)︂
+ α
(︀
uj−1/2sj−1/2

)︀
−Nb

(︀
pj−1/2tj−1/2

)︀
+
(︀
3fj−1/2 + ξ − α

)︀ (︀
tj−1/2

)︀
−Nt

(︀
tj−1/2

)︀2]︁ (45)

[R3]n−1j−1/2 = −hj
[︂
1
Le

(︂pj − pj−1
hj

)︂
+
(︀
3fj−1/2 + ξ − α

)︀ (︀
pj−1/2

)︀
+ BLe

(︂ tj − tj−1
hj

)︂
+ α
(︀
uj−1/2gj−1/2

)︀]︂
(46)

The boundary conditions are

f n0 = un0 = 0, θn0 = 1, unJ = 0, vnJ = 0, θnJ = 0,
φn0 = 1, φnJ = 0 (47)

The emerging non-linear system of algebraic equa-
tions is linearized by means of Newton’s method and then
solved by the block-elimination method. The accuracy of
computations is influenced by the number of mesh points
in both directions. After experimenting with various grid
sizes in the η-direction (radial coordinate) a larger number

ofmesh points are selectedwhereas in the ξ direction (tan-
gential coordinate) significantly less mesh points are uti-
lized. ηmax has been set at 12 and this defines a sufficiently
large value at which the prescribed boundary conditions
are satisfied. ξmax is set at 1.0 for this flowdomain.Mesh in-
dependence is therefore achieved in the present computa-
tions. The computer program of the algorithm is executed
in MATLAB running on a PC.

If we assume f n−1j−1 , un−1j−1 , vn−1j−1 , pn−1j−1 , sn−1j−1 , tn−1j−1 ,to
be known for 0 ≤ j ≤ J, Eqs. (36) – (42) are a sys-
tem of 6J+6 equations for the solution of 5J+5 unknowns
f nj , unj , vnj , pnj , snj , tnj ,, j = 0, 1, 2 . . . J. This non-linear
system of algebraic equations is linearized by means of
Newton’s method which then solved in a very efficient
manner by using the Keller-box method, which has been
used most efficiently by Cebeci and Bradshaw [54], tak-
ing the initial interaction with a given set of converged
solutions at ξ = ξ n. To initiate the process with ξ = 0,
we first prescribe a set of guess profiles for the functions
f , u, v, p, θ and t which are unconditionally convergent.
These profiles are then employed in the Keller-box scheme
with second-order accuracy to compute the correct solu-
tion step by step along the boundary layer. For a given ξ
the iterative procedure is stopped to give the final velocity
and temperature distribution when the difference in com-
puting these functions in the next procedure become less
than 10−5, i.e.,

⃒⃒⃒
δf i
⃒⃒⃒
≤ 10−5, where the superscript i de-

notes the number of iterations. For laminar flows the rate
of convergence of the solutions of the equations (36)- (42)
is quadratic provided the initial estimate to the desired
solution is reasonably close to the final solution. Calcula-
tions are performed with four different ∆η spacings show
that the rate of convergence of the solutions is quadratic
in all cases for these initial profiles with typical iterations.
The fact that Newton’s method is used to to linearize the
non-linear algebraic equations and that with proper initial
guess ξn usually obtained from a solution at ξn−1 , the rate
of convergence of the solutions should be quadratic can be
used to test the code for possible programming errors and
to aid in the choice of ∆ξspacings in the downstream di-
rection. To study the effect of ∆ξspacing on the rate of con-
vergence of solutions, calculations were performed in the
range 0 ≤ ξ ≤ 0.4with uniform ∆ξ spacings corresponding
to 0.08, 0.04, 0.02 and 0.01. Except for the results obtained
with ∆ξ = 0.08, the rate of convergence of the solutions
was essentially quadratic at each ξ station. In most lami-
nar boundary layer flows, a step size of ∆y = 0.02 to 0.04
is sufficient to provide accurate and comparable results. In
fact in the present problem, we can even go up to ∆y = 0.1
and still get accurate and comparable results. This particu-

Brought to you by | University of Sussex Library
Authenticated

Download Date | 7/5/18 3:11 PM



N. Nagendra et al., Hydromagnetic Flow of Heat and Mass Transfer in a Nano Williamson Fluid | 7

lar value of has also been used successfully byMerkin [45].
A uniform grid across the boundary is quite satisfactory
for most laminar flow calculations, especially in laminar
boundary layer. However, the Keller-boxmethod is unique
in which various spacing in both η and directions can be
used (Aldoss et al., [46]).

4 Validation of Keller Box Solutions
The present Keller box solutions have been validated
for the special case of non-magnetic (M=0) Newtonian
flow (We =0) in the absence of thermal and partial slip
(Sf=ST=0). It is also the following reduced form:

f ′′′ + � ′′ − 2f ′2 + θ + Nϕ = ξ
(︂
f ′ ∂f

′

∂ξ − f
′′ ∂f
∂ξ

)︂
(48)

At η = 0; f = 0; f ′ = 0, θ = 1, ϕ = 1
At η →∞ : f / → 0; θ → 0; ϕ → 0
The energy equation (16) is identical to that consid-

ered in Chamkha and Aly [49], Bejan [47] and Kuznetsov
and Nield [48]. The comparison of solutions is docu-
mented in Table 1. Excellent correlation is achieved and
confidence in the present solutions is therefore justifiably
high.

5 Results and Discussion
Extensive computations have been conducted using the
Keller box code to study the influence of the key thermo-
physical parameters on velocity, temperature, skin friction
and Nusselt number. These are visualized in Figs. 3a-c to
Figs. 12a-c.

Figs 3a-c illustrate the influence of Weissenberg num-
ber (We) on velocity, temperature and concentration pro-
files. We arises only in the momentum Eqn. (15) in the
mixed derivativeWef ′′f ′′′.Weissenberg number (We)mea-
sures the relative effects of viscosity to elasticity. Weis-
senberg number of zero corresponds to a purely Newto-
nian fluid, and infinite Weissenberg number corresponds
to a purely elastic solid. Intermediate values correlate
quite well with actual polymeric viscoelastic properties.
With increasing We, there is a general decrease through
the boundary layer in velocity magnitudes. The boundary
layer flow is therefore decelerated as viscous effects are de-
pleted since resistance to the flow is reduced.

The momentum boundary layer is therefore depleted
with greater Weissenberg number. We note that in Fig. 3a
the magnetic body force parameter, M, is set at unity

(a)

(b)

(c)

Fig. 3: (a) Effect of We on velocity profile; (b) Effect of We on temper-
ature profile; (c) Effect of We on concentration profiles.
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Table 1: Comparison of the Nusselt number for various values of Pr with Le=10, N=Nb=Nt=10−5, Sf=0, ST=0 andM=0

Pr Bejan[47] Kuznetsov and
Nield [48]

Chamkha and
Aly [49]

Present
Work

1 0.401 0.401 0.40178 0.40181
10 0.465 0.463 0.4658 0.4656
100 0.490 0.481 0.49063 0.49066
1000 0.499 0.484 0.49739 0.49742

Table 2: Values of skin friction (Cf ), Nusselt number (Nu) and Sherwood number (Sh) for different Sf , ST and ξ

Sf ST ξ = 1.0 ξ = 2.0 ξ = 3.0
Cf Nu Sh Cf Nu Sh Cf Nu Sh

0.0

1.0

0.6492 0.4174 0.1928 0.7343 0.4289 0.1920 0.7965 0.4404 0.1880
0.5 0.5847 0.4306 0.1926 0.6453 0.4423 0.1917 0.6822 0.4511 0.1873
1.0 0.5196 0.4438 0.1920 0.5570 0.4556 0.1915 0.5713 0.4676 0.1836
1.5 0.4535 0.4569 0.1917 0.4673 0.4738 0.1873 0.4623 0.4830 0.1808
2.0 0.3863 0.4701 0.1913 0.3769 0.4869 0.1869 0.3503 0.5028 0.1715

0.5

0.0 0.6566 0.5079 0.1664 0.7198 0.5566 0.1379 0.7689 0.5507 0.1481
1.0 0.5847 0.4306 0.1926 0.6453 0.4423 0.1917 0.6822 0.4511 0.1873
2.0 0.5114 0.3527 0.2173 0.5657 0.3632 0.2186 0.5978 0.3722 0.2140
3.0 0.4355 0.2784 0.2376 0.4829 0.2894 0.2388 0.5099 0.2986 0.2328
4.0 0.3547 0.2158 0.2459 0.3961 0.2174 0.2549 0.4180 0.2229 0.2527

Table 3: Values of skin friction (Cf ), Nusselt number (Nu) and Sherwood number (Sh) for different Nb, Nt, M andWe

Nb Nt M We = 0.0 We = 1.0
Cf Nu Sh Cf Nu Sh Cf Nu Sh

0.5

0.4

1.0

0.5761 0.4164 0.2443 0.5899 0.4241 0.2468 0.6922 0.4550 0.2472
0.8 0.5760 0.4167 0.3221 0.5889 0.4207 0.3227 0.6833 0.4442 0.3317
1.2 0.5758 0.4167 0.3552 0.5876 0.4178 0.3642 0.6738 0.4187 0.3814
1.6 0.5756 0.4157 0.3767 0.5863 0.4151 0.3845 0.6625 0.4135 0.4011
2.0 0.5751 0.4145 0.3891 0.5852 0.4132 0.3962 0.6531 0.4106 0.4118

0.4

0.5 0.5860 0.4170 0.1267 0.5903 0.4260 0.1324 0.6923 0.4624 0.1869
0.8 0.5862 0.4182 -0.0710 0.5906 0.4279 -0.0604 0.6926 0.4856 -0.0086
1.2 0.5863 0.4221 -0.3370 0.5909 0.4328 -0.3278 0.6929 0.5197 -0.3093
1.6 0.5865 0.4238 -0.6221 0.5911 0.4410 -0.6161 0.6928 0.5579 -0.6055
2.0 0.5867 0.4246 -0.9439 0.5914 0.4535 -0.9372 0.6925 0.6010 -0.0907

0.0 0.7662 0.4908 0.2874 0.7436 0.4819 0.2825 0.7515 0.4751 0.2831
1.0 0.5961 0.4364 0.2443 0.5899 0.4241 0.2468 0.6922 0.4550 0.2472
2.0 0.4843 0.4181 0.1999 0.5016 0.3892 0.2193 0.6661 0.4324 0.2318
3.0 0.4093 0.3514 0.1936 0.4458 0.3607 0.1999 0.6319 0.4318 0.2173

implying that the Lorentzian magnetic drag and viscous
hydrodynamic force are of the same magnitude. Fig. 3b
shows that a consistent elevation is computed in tempera-
ture of the viscoelastic fluid with greater values of Weis-
senberg number, We. The deceleration in the flow aids
in momentum development which also assists in thermal
diffusion, leading to heating of the boundary layer. Ther-
mal boundary layer thickness is therefore reducedwith in-
creasing We values i.e. decreasing viscosity and increas-
ing elastic effects. Effectively therefore Newtonian fluids
(We = 0) achieve lower velocities and temperatures than
Williamson fluids. An increase in Weissenberg parame-

ter however increases nano-particle concentration magni-
tudes throughout the boundary layer, although the reduc-
tion is relatively weak. Thermal and nanoparticle concen-
tration boundary layer thickness are both suppressedwith
greater viscoelasticity of the nanofluid.

Figs. 4a-c present the evolution in velocity, tempera-
ture and concentration functions with a variation in mag-
netic body force parameter (M). The radial magnetic field
generates a transverse retarding body force. This decel-
erates the boundary layer flow and velocities are there-
fore reduced as observed in Fig. 4a. Themomentum devel-
opment in the viscoelastic coating can therefore be con-
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(a)

(b)

(c)

Fig. 4: (a) Effect of M on velocity profile; (b) Effect of M on tempera-
ture profile; (c) Effect of M on concentration profiles.

(a)

(b)

(c)

Fig. 5: (a) Effect of N on velocity profile; (b) Effect of N on tempera-
ture profile; (c) Effect of N on concentration profiles.
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(a)

(b)

(c)

Fig. 6: (a) Effect of Sf on velocity profile; (b) Effect of Sf on tempera-
ture profile; (c) Effect of Sf on concentration profiles.

(a)

(b)

(c)

Fig. 7: (a) Effect of ST on velocity profile; (b) Effect of ST on tempera-
ture profile; (c) Effect of ST on concentration profiles.
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(a)

(b)

(c)

Fig. 8: (a) Effect of Pr on velocity profile; (b) Effect of Pr on tempera-
ture profile; (c) Effect of Pr on concentration profiles.

(a)

(b)

(c)

Fig. 9: (a) Effect of Le on velocity profile; (b) Effect of Le on tempera-
ture profile; (c) Effect of Le on concentration profiles.
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(a)

(b)

(c)

Fig. 10: (a) Effect of Nb on velocity profile; (b) Effect of Nb on temper-
ature profile; (c) Effect of Nb on concentration profiles.

(a)

(b)

(c)

Fig. 11: (a) Effect of Nt on velocity profile; (b) Effect of Nt on tempera-
ture profile; (c) Effect of Nt on concentration profiles.
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(a)

(b)

(c)

Fig. 12: (a) Effect of ξ on velocity profile; (b) Effect of ξ on tempera-
ture profile; (c) Effect of ξ on concentration profiles.

trolled using a radial magnetic field. The effect is promi-
nent throughout the boundary layer from the plate surface
to the free stream. Momentum (hydrodynamic) boundary
layer thickness is therefore increased with greater mag-
netic field. Fig. 4b and 4c shows that both temperatures
and nano-particle concentrations are strongly enhanced
with greater magnetic parameter. The excess work ex-
pended in dragging the polymer against the action of
the magnetic field is dissipated as thermal energy (heat).
This energizes the boundary layer and increases thermal
boundary layer thickness. Again the influence of magnetic
field is sustained throughout the entire boundary layer
domain. This energizes the boundary layer since the ki-
netic energy is dissipated as thermal energy, and this fur-
ther serves to agitate improved species diffusion. As a re-
sult both thermal and nano-particle (species) concentra-
tion boundary layer thicknesses are increased. These re-
sults concur with other investigations of magnetic non-
Newtonian heat transfer including Kasim et al. [50] and
Megahed [51].

Figs. 5a-c exhibit the profiles for velocity, temperature
and concentration, respectively with increasing buoyancy
ratio parameter, N. In general, increases in the value of N
have the prevalent to cause more induced flow along the
plate surface. This behaviour in the flow velocity increases
in the fluid temperature and volume fraction species as
well as slight decreased in the thermal and species bound-
ary layers thickness as N increases.

Figs. 6a-b illustrate the impact of the momentum (hy-
drodynamic) slip parameter (Sf ) on the velocity, tempera-
ture and nano-particle concentration distributions. Near
the plate surface there is a distinct elevation in velocity
with greater momentum slip effect. Sf features in the ve-
locity wall boundary condition in Eqn. (18) i.e. f /(0) = Sf
f //(0). With increasing values of Sf the polymer slips i.e.
shears more easily against the plate surface. This boosts
momentum in the boundary layer and accelerates the flow
(Fig. 6a). However, with progressive penetration into the
boundary layer, this effect is reversed (as expected) and
theflow is deceleratedwith greatermomentumslip further
from the plate surface. The velocity slip effect is strongest
at the plate surface (η = 0). A similar observation has
been made by Yarin and Graham [52] and also by Jamil
and Khan [53]. The momentum slip effect is prominent
and substantially modifies the velocity growth structure.
Temperature is conversely reduced consistently through-
out the boundary layer with greater momentum slip. The
viscoelastic polymer is therefore cooled with wall momen-
tum slip and this reduces thermal boundary layer thick-
ness. The implication is therefore that with an absence of
velocity slip in mathematical models, temperature is over-
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predicted (the maximum value corresponds to Sf = 0). It
is also apparent from Fig. 6c that nanoparticle concen-
tration is enhanced with greater Velocity slip effect. Mo-
mentum boundary layer thickness is therefore reduced
whereas thermal and species boundary layer thickness are
enlarged. It is therefore important in more realistic simu-
lations of nanofluid enrobing flows and polymer coating
dynamics to incorporate wall slip effects.

Figs. 7a-c present the response in velocity, temper-
ature and nano-particle concentration distributions to a
modification in the thermal jump (slip) parameter (ST). A
marked depletion in velocity (Fig. 7a) accompanies an in-
crease in thermal slip effect and this trend is sustained
throughout the boundary layer. The thermal slip parame-
ter indirectly influences the momentum field via coupling
to the energy equation (thermal slip is only simulated in
the wall thermal boundary condition in Eqn. 18). With
greater thermal slip, there is also a very profound deple-
tion in temperature at the plate surface and in close prox-
imity to it (Fig. 7b). However, this effect weakens consid-
erably with further distance from the plate surface and
is effectively eliminated before reaching the free stream.
Temperature profiles decay from a maximum at the plate
surface to the free stream. It is also apparent from Fig. 7c
that nanoparticle concentration is reduced with greater
thermal slip effect. All profiles converge at a large value
of transverse coordinate, again showing that a sufficiently
large infinity boundary condition has been utilized in the
numerical computations. Again the absence of thermal
slip achieves higher temperatures indicating that without
this modification in the thermal boundary condition at
the wall (plate surface) the temperature is over-predicted,
which can be critical to heat treatment of polymeric coat-
ings [54]. Evidently the non-trivial responses computed in
Figs. 7a-c further emphasize the need to incorporate ther-
mal slip effects in realistic nanofluid enrobing flows.

Figs. 8a-c depict the evolution in velocity, temperature
and nanoparticle concentration characteristicswith trans-
verse coordinate i.e. normal to the plate surface for vari-
ous Prandtl numbers, Pr. Relatively high values of Pr are
considered since these physically correspond to industrial
polymers [53]. Prandtl number embodies the ratio of mo-
mentum diffusivity to thermal diffusivity in the boundary
layer regime. It also represents the ratio of the product of
specific heat capacity and dynamic viscosity, to the fluid
thermal conductivity. For polymers momentum diffusion
rate greatly exceeds thermal diffusion rate. The low val-
ues of thermal conductivity in most polymers also result
in a high Prandtl number. With increasing Pr from 1 to 5
there is evidently a substantial deceleration in boundary
layer flow i.e. a thickening in the momentum boundary

layer (Fig. 4a). The effect is most prominent close to the
plate surface. Also Fig. 4b shows that with greater Prandtl
number the temperature values are strongly decreased
throughout the boundary layer transverse to the plate sur-
face. Thermal boundary layer thickness is therefore signif-
icantly reduced. Inspection of Fig. 4c reveals that increas-
ing Prandtl number strongly elevates the nano-particle
concentration magnitudes. In fact a concentration over-
shoot is induced near the plate surface. Therefore while
thermal transport is reduced with greater Prandtl number,
species diffusion is encouraged and nano-particle concen-
tration boundary layer thickness grows. The asymptoti-
cally smoothprofiles in the free stream (high η values) con-
firm that an adequately large infinity boundary condition
has been imposed in the Keller box numerical code.

Figs. 9a-c illustrate the evolution of velocity, tempera-
ture and concentration functions with a variation in the
Lewis number, is depicted. Lewis number is the ratio of
thermal diffusivity to mass (nano-particle) species diffu-
sivity. Le = 1 which physically implies that thermal diffu-
sivity of the nanofluid and species diffusivity of the nano-
particles are the same and both boundary layer thick-
nesses are equivalent. For Le < 1, mass diffusivity exceeds
thermal diffusivity and vice versa for Le > 1. Both cases are
examined in Figs. 9a-9c. In Fig. 9a, a consistently weak
decrease in velocity accompanies an increase in Lewis
number. Momentum boundary layer thickness is therefore
increased with greater Lewis number. This is sustained
throughout the boundary layer. Fig. 9b shows that increas-
ing Lewis number also depresses the temperature magni-
tudes and therefore reduces thermal boundary layer thick-
ness. Therefore judicious selection of nano-particles dur-
ing doping of polymers has a pronounced influence on ve-
locity (momentum) and thermal characteristics in enrob-
ing flow, since mass diffusivity is dependent on the nature
of nano-particle species in the base fluid. Fig 9c demon-
strates that a more dramatic depression in nano-particle
concentration results from an increase in Lewis number
over the same range as Figs. 9a,b. The concentration pro-
file evolves from approximately linear decay to strongly
parabolic decay with increment in Lewis number.

Figs. 10a-c depict the response in velocity, tem-
perature and concentration functions to a variation in
the Brownian motion parameter (Nb). Increasing Brown-
ian motion parameter physically correlates with smaller
nanoparticle diameters. Smaller values of Nb correspond-
ing to larger nanoparticles, and imply that surface area
is reduced which in turn decreases thermal conduction
heat transfer to the plate surface. This coupled with en-
hanced macro-convection within the nanofluid energizes
the boundary layer and accelerates the flow as observed

Brought to you by | University of Sussex Library
Authenticated

Download Date | 7/5/18 3:11 PM



N. Nagendra et al., Hydromagnetic Flow of Heat and Mass Transfer in a Nano Williamson Fluid | 15

in Fig. 10a. Similarly the energization of the boundary
layer elevates thermal energy which increases tempera-
ture in the viscoelastic nanofluid. Fig. 10c however indi-
cates that the contrary response is computed in the nano-
particle concentrationfield.WithgreaterBrownianmotion
number species diffusion is suppressed. Effectively there-
fore momentum and nanoparticle concentration bound-
ary layer thickness is decreased whereas thermal bound-
ary layer thickness is increased with higher Brownian mo-
tion parameter values.

Figs. 11a-c illustrates the effect of the thermophore-
sis parameter (Nt) on the velocity, temperature and con-
centration distributions, respectively. Thermophoretic mi-
gration of nano-particles results in exacerbated transfer
of heat from the nanofluid regime to the plate surface.
This de-energizes the boundary layer and inhibits simul-
taneously the diffusion ofmomentum,manifesting in a re-
duction in velocity i.e. retardation in the boundary layer
flow and increasing momentum (hydrodynamic) bound-
ary layer thickness, as computed in Fig. 11a. Temperature
is similarly decreasedwith greater thermophoresis param-
eter (Fig. 11b). Conversely there is a substantial enhance-
ment in nano-particle concentration (and species bound-
ary layer thickness) with greater Nt values. Similar obser-
vations have been made by Kuznetsov and Nield [16] and
Ferdows et al. [25] for respectively, both non-conducting
Newtonian and electrically-conducting Newtonian flows.

Figs. 12a-c present the distributions for velocity, tem-
perature and concentration fields with stream wise coor-
dinate ξ , for the viscoelastic nanofluid flow. Increasing ξ
values correspond to progression around the periphery of
the vertical plate, from the leading edge (ξ = 0). As ξ in-
creases, there is a weak deceleration in the flow (Fig. 12a),
which is strongest nearer the plate surface anddecayswith
distance into the free stream. Conversely there is aweak el-
evation in temperatures (Fig. 12b) and nano-particle con-
centration magnitudes (Fig. 12c) with increasing stream
wise coordinate.

Table 2 illustrate the skin friction, Nusselt number
andSherwoodnumberdistributionswith various values of
momentumslip parameter (Sf ) and thermal slip effect (ST).
Amarkeddepreciation in skin friction andSherwoodnum-
ber is observed with greater momentum slip. Conversely
a strong elevation in Nusselt number is generated with
greatermomentumslip effect. Themomentumslip effect is
consistent for all values of stream wise parameter (ξ ). The
influence of momentum (hydrodynamic) slip is non-trivial
and demonstrates that a sizeable modification in surface
thermo-fluid characteristics is induced with slip and in-
deed that the methodology employed to simulate it quite
realistically simulates real macroscopic effects of certain

molecular phenomena at polymer/solid interfaces. Both
skin friction and Nusselt number are strongly reduced and
Sherwood number is enhanced with an increase thermal
slip (ST). The boundary layer is therefore decelerated and
heated with stronger thermal slip. With thermal slip ab-
sent therefore the skin friction is maximized at the plate
surface. The inclusion of thermal slip, which is encoun-
tered in various slippy polymer flows, is therefore impor-
tant in more physically realistic simulations.

Tables 3 presents the influence of magnetic parameter
(M), Brownian motion parameter (Nb) and thermophore-
sis parameter (Nt), on skin friction, Nusselt number and
Sherwood number, along with a variation in the Weis-
senberg number (We). A significant depletion is caused
in skin friction with greater magnetic field, which corre-
sponds to a retardation of the boundary layer flow. The
maximum skin friction therefore is achieved only in the
absence of a radial magnetic field i.e. M = 0. For M < 1,
the magnetic body force is exceeded by the viscous hydro-
dynamic force in the regime. For M > 1 the contrary is the
case. The reduction in Nusselt number with greaterM val-
ues implies that the transfer of heat from the boundary
layer to the wall (plate surface) is reduced. This physically
indicates therefore that greater heat is conveyed away from
the plate surface to the fluid which explains the higher
temperatures associated with strong magnetic field in the
earlier computations. Magnetic field is therefore a potent
mechanism for controlling thermal and velocity character-
istics in electrically-conducting polymer dynamics. With
increasing Brownian motion parameter Nb, the skin fric-
tion is generally decreased, whereas heat transfer rate is
decreased.Mass transfer rate is however increasedwith in-
creasing Brownian motion parameter Nb. With increasing
thermophoretic parameter Nt, the skin friction is slightly
increased, whereas heat transfer rate is increased Mass
transfer rate is however decreased with increasing ther-
mophoretic parameter Nt. Increasing Weissenberg num-
ber (We) enhances skin friction, heat transfer rate (Nusselt
number) and mass transfer rate (Sherwood number) and
furthermore provide benchmarks against which other re-
searchers may validate extensions of the present model.

6 Conclusions
A theoretical study has been conducted to simulate the
viscoelastic nanofluid boundary layer flow in enrobing
processes from a vertical plate with Partial slip effect us-
ing the Buonjiornio formulation. The transformed mo-
mentum, heat and species boundary layer equations have
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been solved computationally with Keller’s finite difference
method. The present study has shown that:
(i) Increasing Weissenberg number accelerates the near-
wall flow and also increases temperatures (i.e. reduces
Nusselt number).
(ii) Increasing Prandtl number retards the flow and also
decreases temperatures and nano-particle concentration
values.
(iii) Increasing stream wise coordinate decelerates the
flowwhereas it enhances temperatures and species (nano-
particle) concentrations.
(iv) Increasing velocity slip strongly enhances velocities
and reduces temperatures and nano-particle concentra-
tions.
(v) Increasing thermal slip strongly reduces velocities,
temperatures and nano-particle concentrations.
(vi) Increasing Brownian motion accelerates the flow and
enhances temperatures whereas it reduces nanoparticle
concentration boundary layer thickness.
(vii) Increasing thermophoretic parameter increasing mo-
mentum (hydrodynamic) boundary layer thickness and
nanoparticle boundary layer thickness whereas it reduces
thermal boundary layer thickness.
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Nomenclature

B0 constant magnetic field (Tesla)
cp specific heat at constant pressure (J/kg K)
C dimensional concentration
Cf skin friction coefficient
DB Brownian diffusion coefficient (m2/s)
DT thermophoretic diffusion coefficient (m2/s)
f non-dimensional stream function
Gr Grashof number
G acceleration due to gravity(m/s−2)
Le Lewis number
M magnetic field parameter
Nb Brownian motion parameter
Nt thermophoresis parameter
Nu local Nusselt number
Pr Prandtl number
Sf non-dimensional velocity slip parameter
ST thermal slip (jump) parameter

T temperature (K)
u, v non-dimensional velocity components along the x- and
y- directions, respectively (m/s)
We Weissenberg (viscoelasticity) number
x stream wise coordinate (m)
y transverse coordinate (m)

Greek symbols

α thermal diffusivity (m2/s)
β coefficient of thermal expansion (oC−1)
η dimensionless transverse coordinate
ν kinematic viscosity (m2/s)
θ non-dimensional temperature
ρ density of nanofluids (Kg m−3)
σ electrical conductivity of nanofluid
ξ dimensionless steam wise coordinate
ψ dimensionless stream function
Γ time-dependent material constant

Subscripts

w conditions on the wall
∞ free stream conditions
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