PAPER • OPEN ACCESS

i-v-f β-Ideals of β-Algebras

To cite this article: P Hemavathi et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 263042111

View the article online for updates and enhancements.

Related content

Distances between interval-valued intuitionistic fuzzy sets
J H Park, K M Lim, J S Park et al.
Hesitant intuitionistic fuzzy soft sets Admi Nazra, Syafruddin, Riri Lestari et al.

- Interval valued fuzzy sets k-nearest neighbors classifier for finger vein
recognition
Nordiana Mukahar and Bakhtiar Affendi Rosdi

i-v-f $\boldsymbol{\beta}$-Ideals of $\boldsymbol{\beta}$-Algebras

P Hemavathi ${ }^{\mathbf{1}}$, \mathbf{P} Muralikrishna ${ }^{2}$ and $\mathrm{K} \mathrm{Palanivel}^{3}$
${ }^{1}$ Department of Mathematics, SVCET, Thirupachur-631203, India
${ }^{2} \mathrm{PG}$ and Research Department of Mathematics, Muthurangam Government Arts College,Vellore-632002 India
${ }^{3}$ Department of Mathematics, School of Advanced Sciences, VIT University, Vellore632014, India
E-mail: drkpalanivel@gmail.com

Abstract

The notions of the interval valued fuzzy set were first introduced by Zadeh as a generalization of fuzzy sets. Using interval valued fuzzy set, various algebraic structures and related topics were discussed. This paper deals the notion of Interval valued Fuzzy β-ideal of a β-algebra and some related results.

1. Introduction

In 1965 Zadah [15, 16] introduced a notion of fuzzy sets. In [11] Neggers et.al introduced a new class of algebra namely $\boldsymbol{\beta}$-algebra. Jun et.al [13] also dealt some related topics on $\boldsymbol{\beta}$-Subalgebra. In 2013 Ansari et.al $[1,2]$ introduced fuzzy $\boldsymbol{\beta}$-Subalgebras of $\boldsymbol{\beta}$-algebras and also they initiated fuzzy $\boldsymbol{\beta}$-ideals of $\boldsymbol{\beta}$-algebras. In [3] Biswas described Interval valued fuzzy subgroups (ie. i-v fuzzy subgroups) and examined some properties. Moreover the authors of $[12,14]$ applied the notion of i-v fuzzy set in BCI and BCK-algebras.

In $[4,10]$, the methods and models of interval valued games and Linear programming technique for determining interval-valued restraint matrix games have been discussed. There was an enormous contribution for the fuzzy graph by the authors in $[5,6,7,8]$ and which is enforced in the field of graph theory.

Recently interval valued fuzzy $\boldsymbol{\beta}$-Subalgebra of a $\boldsymbol{\beta}$-algebra introduced in [9]. With all these ideas in this paper the conception of interval valued fuzzy $\boldsymbol{\beta}$-ideals of $\boldsymbol{\beta}$-algebra to be introduced and deal some related results

2. Preliminaries

In this part, some primary definitions and outcomes are related which is essential, in the sequel.
Definition: 2.1[11]
A β-algebra is a non-empty set X with a constant 0 and dual operations + and - satisfying the subsequent axioms:
(i) $x-0=x$
(ii) $(0-x)+x=0$
(iii) $(x-y)-z=x-(z+y) \quad \forall x, y, z \in X$

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042111 doi:10.1088/1757-899X/263/4/042111

Example: 2.2

Let $X=\{0,1,2,3\}$ be a set with constant 0 and dual operations + and - are defined on X by the following cayley's table

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

-	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

Therefore, $(X,+,-, 0)$ is a β-algebra.

Definition: 2.3

A non empty subset A of a β-algebra $(X,+,-, 0)$ is said to be a β-subalgebra of X, if
(i) $x+y \in A$
(ii) $x-y \in A \quad \forall x, y \in A$

Example: 2.4

In the above illustration, the subset $A=\{0,2\}$ is a β-sub algebra of X.

Definition: 2.5

A non empty subset I of a β-algebra $(X,+,-, 0)$ is said to be a β-ideals of X, if
(i) $0 \in I$
(ii) $x+y \in I \quad \forall x, y \in I$
(iii)if $x-y \& y \in I$ implies $x \in I \quad \forall x, y \in X$

Example: 2.6
Consider the β-algebra X in example 2.2. Then the subset $I_{1}=\{0,1\}$ is a β-ideals of X. But $I_{2}=$ $\{0,1,3\}$ is not a β-ideal of X, (since $\left.1+3=2 \notin I_{2}\right)$

Definition: 2.7

$\operatorname{Let}(X,+,-, 0)$ and $(Y,+,-, 0)$ be two β-algebras. A mapping $f: X \rightarrow Y$ is called a
β-homomorphism if $\forall x, y \in X$
(i) $f(x+y)=f(x)+f(y)$
(ii) $f(x+y)=f(x)+f(y)$

Definition: 2.8 [12]

An interval valued fuzzy set (briefly i-v fuzzy set) A represented on X is known as
$A=\left\{\left(x,\left[\sigma_{A}^{L}(x), \sigma_{A}^{U}(x)\right]\right)\right\} \quad \forall x \in X$ (briefly expressed as $A=\left[\sigma_{A}^{L}, \sigma_{A}^{U}\right]$), where σ_{A}^{L} and σ_{A}^{U} are two fuzzy sets in X such that $\sigma_{A}^{L}(x) \leq \sigma_{A}^{U}(x) \quad \forall x \in X$.
Let $\bar{\sigma}_{A}(x)=\left[\sigma_{A}^{L}(x), \sigma_{A}^{U}(x)\right] \quad \forall x \in X \quad$ and let $D[0,1]$ denotes the relations of all closed sub intervals of $[0,1]$. If $\sigma_{A}^{L}(x)=\sigma_{A}^{U}(x)=c$, say, where $0 \leq c \leq 1$, then we have $\bar{\sigma}_{A}(x)=[c, c]$ which we also guess, for the sake of accessibility, to belong to $D[0,1]$.
Thus $\bar{\sigma}_{A}(x) \in D[0,1] \quad \forall x \in X$, and hence the i-v fuzzy set A is given by $A=\left\{\left(x, \bar{\sigma}_{A}(x)\right)\right\} \forall x \in X$, where $\bar{\sigma}_{A}: X \rightarrow D[0,1]$.
Now let us illustrate what is identified as refined minimum (briefly rmin) of two elements in $D[0,1]$. We also characterized the symbols " \geq ", " $\leq "$ and $"="$ in case of two elements in $D[0,1]$.
Suppose two elements
$D_{1}=\left[a_{1}, b_{1}\right]$ and $D_{2}=\left[a_{2}, b_{2}\right] \in D[0,1]$.

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042111 doi:10.1088/1757-899X/263/4/042111

Therefore, we have

$$
r \min \left(D_{1}, D_{2}\right)=\left[\min \left\{a_{1}, a_{2}\right\}, \min \left\{b_{1}, b_{2}\right\}\right] ;
$$

$D_{1} \geq D_{2}$ if and only if $a_{1} \geq a_{2}, b_{1} \geq b_{2}$;
likewise, we may have $D_{1} \leq D_{2}$ and $D_{1}=D_{2}$.

Definition: 2.9

Let $\bar{\sigma}$ be an i-v fuzzy set of $X . \bar{\sigma}$ is assumed to have the r-supremum property if for any subset A of X, there exist a $a_{0} \in A$ such that $\bar{\sigma}\left(a_{0}\right)=\operatorname{rsup}_{a \in A} \bar{\sigma}(a)$

Definition: 2.10 [9]

$\operatorname{Let}(X,+,-, 0)$ be a β-algebra. Then the interval valued fuzzy subset $A=\left\{\left\langle x, \bar{\sigma}_{A}(x)\right\rangle: x \in X\right\}$ is known as an interval valued fuzzy (i-v fuzzy) β-subalgebra of X if
(i) $\bar{\sigma}_{A}(x+y) \geq \operatorname{rmin}\left\{\bar{\sigma}_{A}(x), \bar{\sigma}_{A}(y)\right\}$
(ii) $\bar{\sigma}_{A}(x-y) \geq \operatorname{rmin}\left\{\bar{\sigma}_{A}(x), \bar{\sigma}_{A}(y)\right\} \quad \forall x, y \in X$

3. i-v-f $\boldsymbol{\beta}$-Ideals of $\boldsymbol{\beta}$-algebra

This segment introduces the notion of interval valued fuzzy(i-v-f) $\boldsymbol{\beta}$-ideals of $\boldsymbol{\beta}$-algebras and deals various simple results.

Definition: 3.1[2]
Let σ be a fuzzy set in a β-algebra of X. Then σ is said to be a fuzzy β-ideal of X, if $\forall x, y \in X$
(i) $\sigma(0) \geq \sigma(x)$
(ii) $\sigma(x+y) \geq \min \{\sigma(x), \sigma(y)\}$
(iii) $\sigma(x) \geq \min \{\sigma(x-y), \sigma(y)\}$

Definition: 3.2

Let $A=\left\{\left\langle x, \bar{\sigma}_{A}(x)\right\rangle: x \in X\right\}$ be an interval valued fuzzy set in a β-algebra X. Then A is known as an interval valued fuzzy(i-v-f) β-ideal of X, if $\forall x, y \in X$
(i) $\bar{\sigma}_{A}(0) \geq \bar{\sigma}_{A}(x)$
(ii) $\bar{\sigma}_{A}(x+y) \geq \operatorname{rmin}\left\{\bar{\sigma}_{A}(x), \bar{\sigma}_{A}(y)\right\}$
(iii) $\bar{\sigma}_{A}(x) \geq \operatorname{rmin}\left\{\bar{\sigma}_{A}(x-y), \bar{\sigma}_{A}(y)\right\}$

Example: 3.3

The i-v fuzzy set defined in the β-algebra X in the example 2.2 as,
$\bar{\sigma}_{A}: X \rightarrow D[0,1]$ such that $\bar{\sigma}_{A}(x)=\left\{\begin{array}{ll}{[0.3,0.7]} & x=0 \\ {[0.1,0.5]} & x=1,3 \\ {[0.2,0.6]} & x=2\end{array}\right.$ is a i-v fuzzy β-ideal of X.

Proposition: 3.4

The intersection of any two $\mathrm{i}-\mathrm{v}$ fuzzy β-ideals of a β-algebra is also an i-v fuzzy β-ideal.

Proof:

Let $\bar{\sigma}_{1}$ and $\bar{\sigma}_{2}$ be two i-v fuzzy β-ideals of a β-algebra X.Now
(i) $\left(\bar{\sigma}_{1} \cap \bar{\sigma}_{2}\right)(0) \geq \operatorname{rmin}\left\{\bar{\sigma}_{1}(0), \bar{\sigma}_{2}(0)\right\}$

$$
\begin{aligned}
& =\operatorname{rmin}\left\{\bar{\sigma}_{1}(x), \bar{\sigma}_{2}(x)\right\} \\
& =\left(\bar{\sigma}_{1} \cap \bar{\sigma}_{2}\right)(x)
\end{aligned}
$$

$$
\begin{aligned}
(i i)\left(\bar{\sigma}_{1}\right. & \left.\cap \bar{\sigma}_{2}\right)(x+y) \geq \operatorname{rmin}\left\{\bar{\sigma}_{1}(x+y), \bar{\sigma}_{2}(x+y)\right\} \\
& =\operatorname{rmin}\left\{\operatorname{rmin}\left\{\bar{\sigma}_{1}(x), \bar{\sigma}_{1}(y)\right\}, \operatorname{rmin}\left\{\bar{\sigma}_{2}(x), \bar{\sigma}_{2}(y)\right\}\right\} \\
& =\operatorname{rmin}\left\{\operatorname{rmin}\left\{\bar{\sigma}_{1}(x), \bar{\sigma}_{2}(x)\right\}, \operatorname{rmin}\left\{\bar{\sigma}_{1}(y), \bar{\sigma}_{2}(y)\right\}\right\} \\
& =\operatorname{rmin}\left\{\left(\bar{\sigma}_{1} \cap \bar{\sigma}_{2}\right)(x),\left(\bar{\sigma}_{1} \cap \bar{\sigma}_{2}\right)(y)\right\}
\end{aligned}
$$

$$
\begin{aligned}
(i i i)\left(\bar{\sigma}_{1} \cap \bar{\sigma}_{2}\right)(x) & \geq r \min \left\{\bar{\sigma}_{1}(x), \bar{\sigma}_{2}(x)\right\} \\
& =\operatorname{rmin}\left\{r \min \left\{\bar{\sigma}_{1}(x-y), \bar{\sigma}_{1}(y)\right\}, \operatorname{rmin}\left\{\bar{\sigma}_{2}(x-y), \bar{\sigma}_{2}(y)\right\}\right\} \\
& =\operatorname{rmin}\left\{r \operatorname{rmin}\left\{\bar{\sigma}_{1}(x-y), \bar{\sigma}_{2}(x-y)\right\}, r \operatorname{rin}\left\{\bar{\sigma}_{1}(y), \bar{\sigma}_{2}(y)\right\}\right\} \\
& =\operatorname{rmin}\left\{\left(\bar{\sigma}_{1} \cap \bar{\sigma}_{2}\right)(x-y),\left(\bar{\sigma}_{1} \cap \bar{\sigma}_{2}\right)(y)\right\}
\end{aligned}
$$

Hence $\left(\bar{\sigma}_{1} \cap \bar{\sigma}_{2}\right)$ is a i-v fuzzy β-ideal of X.
The exceeding theorem can be generalized as

Proposition: 3.5

The intersection of any set of i-v fuzzy β-ideals of a β-algebra is also a i-v fuzzy β-ideal.

Proposition: 3.6

Let $A=\left\{\left\langle x, \bar{\sigma}_{A}(x)\right\rangle: x \in X\right\}$ be an i-v fuzzy β-ideal of a β-algebra X. If $x \leq y$ then $\bar{\sigma}_{A}(x) \geq \bar{\sigma}_{A}(y)$.

Proof:

For any $x, y \in X, x \leq y \Rightarrow x-y=0$

$$
\begin{aligned}
\Rightarrow \bar{\sigma}_{A}(x) & \geq r \operatorname{rmin}\left\{\bar{\sigma}_{A}(x-y), \bar{\sigma}_{A}(y)\right\} \\
& =r \min \left\{\bar{\sigma}_{A}(0), \bar{\sigma}_{A}(y)\right\} \\
& =\bar{\sigma}_{A}(y)
\end{aligned}
$$

Proposition: 3.7

Let $A=\left\{\left\langle x, \bar{\sigma}_{A}(x)\right\rangle: x \in X\right\}$ be an i-v fuzzy β-ideal of a β-algebra X. Whenever $x \leq z+y$ then $\bar{\sigma}_{A}(x) \geq \operatorname{rmin}\left\{\bar{\sigma}_{A}(z), \bar{\sigma}_{A}(y)\right\}$

Proof:

For $x, y, z \in X$

$$
\begin{aligned}
\bar{\sigma}_{A}(x) & \geq \operatorname{rmin}\left\{\bar{\sigma}_{A}(x-y), \bar{\sigma}_{A}(y)\right\} \\
& =\operatorname{rmin}\left\{r \min \left\{\bar{\sigma}_{A}((x-y)-z), \bar{\sigma}_{A}(z)\right\}, \bar{\sigma}_{A}(y)\right\} \\
& =\operatorname{rmin}\left\{\operatorname{rmin}\left\{\bar{\sigma}_{A}\left(x-(z+y), \bar{\sigma}_{A}(z)\right\}, \bar{\sigma}_{A}(y)\right\}\right. \\
& =\operatorname{rmin}\left\{r \min \left\{\bar{\sigma}_{A}(0), \bar{\sigma}_{A}(z)\right\}, \bar{\sigma}_{A}(y)\right\} \\
& =\operatorname{rmin}\left\{\bar{\sigma}_{A}(z), \bar{\sigma}_{A}(y)\right\}
\end{aligned}
$$

Proposition: 3.8

An i-v fuzzy set $A=\left[\sigma_{A}^{L}, \sigma_{A}^{U}\right]$ in X is an i-v fuzzy β-ideal of X if and only if σ_{A}^{L} and σ_{A}^{U} are fuzzy β ideals of X.

Proof:

Suppose that σ_{A}^{L} as well as σ_{A}^{U} are fuzzy β-ideal of X.

$$
\begin{aligned}
& \therefore \sigma_{A}^{L}(0) \geq \sigma_{A}^{L}(x) \text { and } \sigma_{A}^{U}(0) \geq \sigma_{A}^{U}(x) \\
& \Rightarrow \quad \bar{\sigma}_{A}(0) \geq \bar{\sigma}_{A}(x)
\end{aligned}
$$

```
Let }x,y,z\inX\mathrm{ . Then
```

$\bar{\sigma}_{A}(x+y)=\left[\sigma_{A}^{L}(x+y), \sigma_{A}^{U}(x+y)\right]$

$$
\begin{aligned}
& \geq\left[\min \left\{\sigma_{A}^{L}(x), \sigma_{A}^{L}(y)\right\}, \min \left\{\sigma_{A}^{U}(x), \sigma_{A}^{U}(y)\right\}\right] \\
& =\operatorname{rmin}\left\{\left[\sigma_{A}^{L}(x), \sigma_{A}^{L}(y)\right],\left[\sigma_{A}^{U}(x), \sigma_{A}^{U}(y)\right]\right\} \\
& =\operatorname{rmin}\left\{\bar{\sigma}_{A}(x), \bar{\sigma}_{A}(y)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\bar{\sigma}_{A}(x) & =\left[\sigma_{A}^{L}(x), \sigma_{A}^{U}(x)\right] \\
& \geq\left[\min \left\{\sigma_{A}^{L}(x-y), \sigma_{A}^{L}(y)\right\}, \min \left\{\mu_{A}^{U}(x-y), \mu_{A}^{U}(y)\right\}\right] \\
& =\operatorname{rmin}\left\{\left[\sigma_{A}^{L}(x-y), \sigma_{A}^{U}(x-y)\right],\left[\sigma_{A}^{L}(y), \sigma_{A}^{U}(y)\right]\right\} \\
& =\operatorname{rmin}\left\{\bar{\sigma}_{A}(x-y), \bar{\sigma}_{A}(y)\right\}
\end{aligned}
$$

Thus A is an i -v fuzzy β-ideal of X.

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042111 doi:10.1088/1757-899X/263/4/042111

Conversely,

Let A be an i-v fuzzy β-ideal of X
Then for each $x, y \in X$, we have

$$
\begin{aligned}
{\left[\sigma_{A}^{L}(x+y), \sigma_{A}^{U}(x+y)\right] } & =\bar{\sigma}_{A}(x+y) \\
& \geq \operatorname{rmin}\left\{\bar{\sigma}_{A}(x), \bar{\sigma}_{A}(y)\right\} \\
& =\operatorname{rmin}\left\{\left[\sigma_{A}^{L}(x), \sigma_{A}^{U}(x)\right],\left[\sigma_{A}^{L}(y), \sigma_{A}^{U}(y)\right]\right\} \\
& =\left[\min \left\{\sigma_{A}^{L}(x), \sigma_{A}^{L}(y)\right\}, \min \left\{\sigma_{A}^{U}(x), \sigma_{A}^{U}(y)\right\}\right]
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \sigma_{A}^{L}(x+y) \geq \min \left\{\sigma_{A}^{L}(x), \sigma_{A}^{L}(y)\right\} \quad \text { and } \quad \sigma_{A}^{U}(x+y) \geq \min \left\{\sigma_{A}^{U}(x), \sigma_{A}^{U}(y)\right\} \\
& {\left[\sigma_{A}^{L}(x), \sigma_{A}^{U}(x)\right]=\bar{\sigma}_{A}(x)} \\
& \geq r \min \left\{\bar{\sigma}_{A}(x-y), \bar{\sigma}_{A}(y)\right\} \\
& =\operatorname{rmin}\left\{\left[\sigma_{A}^{L}(x-y), \sigma_{A}^{U}(x-y)\right],\left[\sigma_{A}^{L}(y), \sigma_{A}^{U}(y)\right]\right\} \\
& =\left[\min \left\{\mu_{A}^{L}(x-y), \mu_{A}^{L}(y)\right\}, \min \left\{\mu_{A}^{U}(x-y), \mu_{A}^{U}(y)\right\}\right] \\
& \therefore \quad \sigma_{A}^{L}(x) \geq \min \left\{\sigma_{A}^{L}(x-y), \sigma_{A}^{L}(y)\right\} \quad \text { and } \quad \sigma_{A}^{U}(x) \geq \min \left\{\sigma_{A}^{U}(x-y), \sigma_{A}^{U}(y)\right\}
\end{aligned}
$$

Therefore σ_{A}^{L} and σ_{A}^{U} are fuzzy β-ideals of X.

Proposition: 3.9

Suppose A is subset of X. Describe an i-v fuzzy set $\quad \bar{\sigma}_{A}: X \rightarrow D[0,1]$ such that

$$
\bar{\sigma}_{A}(x)=\left\{\begin{array}{l}
{\left[t_{0}, t_{1}\right] \text { if } x \in A} \\
{\left[s_{0}, s_{1}\right] \text { if } x \notin A}
\end{array} \text { where }\left[t_{0}, t_{1}\right] \text { and }\left[s_{0}, s_{1}\right] \in D[0,1] \text { with }\left[t_{0}, t_{1}\right] \geq\left[s_{0}, s_{1}\right] .\right.
$$

Then $\bar{\sigma}$ is an i-v fuzzy β-ideal of X, iff A is β-ideal of X.

Proof:

Consider $\bar{\sigma}_{A}$ is an i-v fuzzy β-ideal of X.
(i) We have $\bar{\sigma}_{A}(0) \geq \bar{\sigma}(x) \forall x \in X \Rightarrow \bar{\sigma}_{A}(0)=\left[t_{0}, t_{1}\right] \Rightarrow 0 \in A$
(ii) For any $x, y \in A \Rightarrow \bar{\sigma}_{A}(x)=\left[t_{0}, t_{1}\right]=\bar{\sigma}_{A}(y)$.

Then $\bar{\sigma}_{A}(x+y) \geq \operatorname{rmin}\left\{\bar{\sigma}_{A}(x), \bar{\sigma}_{A}(y)\right\}=\operatorname{rmin}\left\{\left[t_{0}, t_{1}\right],\left[t_{0}, t_{1}\right]\right\}=\left[t_{0}, t_{1}\right]$

$$
\therefore \quad \bar{\sigma}_{A}(x+y)=\left[t_{0}, t_{1}\right] \Rightarrow x+y \in A
$$

(iii) For any $x, y \in X$, if $x-y$ and $y \in A \Rightarrow \bar{\sigma}_{A}(x+y)=\left[t_{0}, t_{1}\right]=\bar{\sigma}_{A}(y)$

$$
\begin{aligned}
& \text { Now } \bar{\sigma}_{A}(x) \geq \operatorname{rmin}\left\{\bar{\sigma}_{A}(x-y), \bar{\sigma}_{A}(y)\right\}=\operatorname{rmin}\left\{\left[t_{0}, t_{1}\right],\left[t_{0}, t_{1}\right]\right\}=\left[t_{0}, t_{1}\right] \\
& \quad \Rightarrow \bar{\sigma}_{A}(x)=\left[t_{0}, t_{1}\right] \Rightarrow x \in A
\end{aligned}
$$

Therefore A is a β-ideal of X.
Conversely, if A is a β-ideal of X.
(i) If $0 \in A \Rightarrow \bar{\sigma}_{A}(0)=\left[t_{0}, t_{1}\right]$.

As well as $\forall x \in X, \operatorname{Im}(\bar{\sigma})=\left[\left[t_{0}, t_{1}\right],\left[s_{0}, s_{1}\right]\right]$ and $\left[t_{0}, t_{1}\right]>\left[s_{0}, s_{1}\right]$
$\Rightarrow \overline{\bar{\sigma}}_{A}(0) \geq \bar{\sigma}_{A}(x) \forall x \in X$
(ii) For $x, y \in A \Rightarrow$ if $x+y \in A \Rightarrow \bar{\sigma}_{A}(x)=\bar{\sigma}_{A}(y)=\bar{\sigma}_{A}(x+y)=\left[t_{0}, t_{1}\right]=\operatorname{rmin}\left\{\bar{\sigma}_{A}(x), \bar{\sigma}_{A}(y)\right\}$

Hence $\bar{\sigma}_{A}(x+y) \geq \operatorname{rmin}\left\{\bar{\sigma}_{A}(x), \bar{\sigma}_{A}(y)\right\}$
(iii) For $x, y \in A$ if $x-y \in A$ and $y \in A \Rightarrow x \in A$
$\Rightarrow \bar{\sigma}_{A}(x)=\left[t_{0}, t_{1}\right]=\operatorname{rmin}\left\{\left[t_{0}, t_{1}\right],\left[t_{0}, t_{1}\right]\right\}=\operatorname{rmin}\left\{\bar{\sigma}_{A}(x-y), \bar{\sigma}_{A}(y)\right\}$
$\therefore \quad \bar{\sigma}_{A}$ is an i-v fuzzy β-ideal of X.

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042111 doi:10.1088/1757-899X/263/4/042111

Corollary: $\mathbf{3 . 1 0}$

Let $A=\left\{\left\langle x, \bar{\sigma}_{A}(x)\right\rangle: x \in X\right\}$ be an i-v fuzzy β-ideal of X, then the set $X_{\bar{\sigma}_{A}}=\left\{x \in X: \bar{\sigma}_{A}(x)=\bar{\sigma}_{A}(0)\right\}$ is a β-ideal of X.

Proof:

Since $\bar{\sigma}_{A}(x)=\bar{\sigma}_{A}(0) \Rightarrow 0 \in X_{\bar{\sigma}_{A}}$
If $x-y, y \in X_{\bar{\sigma}_{A}} \Rightarrow \bar{\sigma}_{A}(x-y)=\bar{\sigma}_{A}(0)$,

$$
\bar{\sigma}_{A}(y)=\bar{\sigma}_{A}(0)
$$

And so,

$$
\begin{aligned}
& \bar{\sigma}_{A}(x) \geq r \operatorname{rmin}\left\{\bar{\sigma}_{A}(x-y), \bar{\sigma}_{A}(y)\right\} \\
&=r \min \left\{\bar{\sigma}_{A}(0), \bar{\sigma}_{A}(0)\right\} \\
&=\bar{\sigma}_{A}(0) \\
& \bar{\sigma}_{A}(x) \geq \bar{\sigma}_{A}(0) . \\
& \text { But } \bar{\sigma}_{A}(x) \leq \bar{\sigma}_{A}(0) \Rightarrow \bar{\sigma}_{A}(x)=\bar{\sigma}_{A}(0) \Rightarrow x \in X_{\bar{\sigma}_{A}} \\
& \text { i.e } \quad x-y, y \in X_{\bar{\sigma}_{A}} \Rightarrow x \in X_{\bar{\sigma}_{A}} \\
& \therefore \quad X_{\bar{\sigma}_{A}} \text { is an } \beta \text {-ideal of } X .
\end{aligned}
$$

Proposition: $\mathbf{3 . 1 1}$

Let $f: X \rightarrow Y$ be an onto homomorphism of β-algebras. Suppose A is an i-v fuzzy β-ideal of Y, then the preimage of $f^{-1}(A)$ is an i-v fuzzy β-ideal of X.

Proof:

Suppose A be an i-v fuzzy β-ideal of Y.
For any $x \in X$,

$$
f^{-1}\left(\bar{\sigma}_{A}(0)\right)=\bar{\sigma}_{A}(f(0))=\bar{\sigma}_{A}(0) \geq \bar{\sigma}_{A}(x)
$$

For some $x, y \in X$,

$$
\begin{aligned}
f^{-1}\left(\bar{\sigma}_{A}\right)(x+y) & =\bar{\sigma}_{A}(f(x+y)) \\
& =\bar{\sigma}_{A}(f(x)+f(y)) \\
& \geq \operatorname{rmin}\left\{\bar{\sigma}_{A}(f(x)), \bar{\sigma}_{A}(f(y))\right\} \\
& =\operatorname{rmin}\left\{f^{-1}\left(\bar{\sigma}_{A}(x)\right), f^{-1}\left(\bar{\sigma}_{A}(y)\right)\right\} . \\
f^{-1}\left(\bar{\sigma}_{A}\right)(x)= & \bar{\sigma}_{A}(f(x)) \\
& \geq \operatorname{rmin}\left\{\bar{\sigma}_{A}(f(x)-f(y)), \bar{\sigma}_{A}(f(y))\right\} \\
& =\operatorname{rmin}\left\{\bar{\sigma}_{A}(f(x-y)), \bar{\sigma}_{A}(f(y))\right\} \\
& =\operatorname{rmin}\left\{f^{-1}\left(\bar{\sigma}_{A}(x-y)\right), f^{-1}\left(\bar{\sigma}_{A}(y)\right)\right\}
\end{aligned}
$$

$\therefore \quad f^{-1}\left(\bar{\sigma}_{A}\right)$ is an i-v fuzzy β-ideal of X.
Hence $f^{-1}(A)$ is an i-v fuzzy β-ideal of X.

Proposition: $\mathbf{3 . 1 2}$

Let $f: X \rightarrow Y$ be an onto homomorphism of β-algebras. If $\bar{\sigma}_{A}$ is an i-v fuzzy β-ideal of X, with supremum property and $\operatorname{ker}(f) \subseteq X_{\bar{\sigma}_{A}}$ then by the image of $\bar{\sigma}_{A}, \mathrm{f}\left(\bar{\sigma}_{A}\right)$ is an i-v fuzzy β-ideal of Y.

Proof:

Now,
$f\left(\bar{\sigma}_{A}\right)(0)=r \operatorname{rsup}_{x \in f^{-1}(0)}\left\{\bar{\sigma}_{A}(x)\right\}=\bar{\sigma}_{A}(0) \geq \bar{\sigma}_{A}(x), \forall x \in X$
Hence,

$$
f\left(\bar{\sigma}_{A}\right)(0)=\operatorname{rsup}_{x \in f^{-1}(0)}\left\{\bar{\sigma}_{A}(x)\right\}=f\left(\bar{\sigma}_{A}\right)(y), \forall y \in Y
$$

Let $y_{1}, y_{2} \in Y$. Then there exist $x_{1}, x_{2} \in X$ such that

```
    \(f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}\)
\(f\left(\bar{\sigma}_{A}\right)\left(y_{1}+y_{2}\right)=\operatorname{rsup}\left\{\bar{\sigma}_{A}(x): x \in f^{-1}\left(y_{1}+y_{2}\right)\right\}\)
    \(\geq \operatorname{rsup}\left\{\bar{\sigma}_{A}\left(x_{1}+x_{2}\right): x_{1} \in f^{-1}\left(y_{1}\right) \& x_{2} \in f^{-1}\left(y_{2}\right)\right\}\)
    \(=\operatorname{rsup}\left\{r \min \left\{\bar{\sigma}_{A}\left(x_{1}\right), \bar{\sigma}_{A}\left(x_{2}\right)\right\}, x_{1} \in f^{-1}\left(y_{1}\right) \& x_{2} \in f^{-1}\left(y_{2}\right)\right\}\)
    \(=\operatorname{rmin}\left\{\operatorname{rsup}\left\{\bar{\sigma}_{A}\left(x_{1}\right): x_{1} \in f^{-1}\left(y_{1}\right)\right\}, \quad \operatorname{rsup}\left\{\bar{\sigma}_{A}\left(x_{2}\right): x_{2} \in f^{-1}\left(y_{2}\right)\right\}\right\}\)
    \(=\operatorname{rmin}\left\{\operatorname{rsup}_{x_{1} \in f^{-1}\left(y_{1}\right)}\left\{\bar{\sigma}_{A}\left(x_{1}\right)\right\}, \operatorname{rsup}_{x_{2} \in f^{-1}\left(y_{2}\right)}\left\{\bar{\sigma}_{A}\left(x_{2}\right)\right\}\right.\)
    \(=\operatorname{rmin}\left\{f\left(\bar{\sigma}_{A}\right)\left(y_{1}\right), f\left(\bar{\mu}_{A}\right)\left(y_{2}\right)\right\}\)
```

Suppose that for some $y_{1}, y_{2} \in Y$.
Then $f\left(\bar{\sigma}_{A}\right)\left(y_{1}\right) \leq \operatorname{rmin}\left\{f\left(\bar{\sigma}_{A}\right)\left(y_{1}-y_{2}\right), f\left(\bar{\sigma}_{A}\right)\left(y_{2}\right)\right\}$
Since f is onto there exist $x_{1}, x_{2} \in X$ such that
$f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$
$f\left(\bar{\sigma}_{A}\right)\left(f\left(x_{1}\right)\right)<\operatorname{rmin}\left\{f\left(\bar{\sigma}_{A}\right)\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right), f\left(\bar{\sigma}_{A}\right) f\left(x_{2}\right)\right\}$ $=\operatorname{rmin}\left\{f\left(\bar{\sigma}_{A}\right) f\left(x_{1}-x_{2}\right), f\left(\bar{\sigma}_{A}\right) f\left(x_{2}\right)\right\}$
$\Rightarrow f\left(\bar{\sigma}_{A}\right)\left(f\left(x_{1}\right)\right)<r \min \left\{f^{-1}\left(f\left(\bar{\sigma}_{A}\right)\right)\left(x_{1}-x_{2}\right), f^{-1}\left(f\left(\bar{\sigma}_{A}\right)\right)\left(x_{2}\right)\right\}$
$\Rightarrow \bar{\sigma}_{A}\left(x_{1}\right)<\operatorname{rmin}\left\{\bar{\sigma}_{A}\left(x_{1}-x_{2}\right), \bar{\sigma}_{A}\left(x_{2}\right)\right\}$
Hence $f\left(\bar{\sigma}_{A}\right)$ is an i-v fuzzy β-ideal of Y.

Proposition: $\mathbf{3 . 1 3}$

Let $f: X \rightarrow Y$ be an on homomorphism of β-algebras. If $\bar{\sigma}_{A}$ is an i-v fuzzy β-ideal of X, with $\operatorname{ker}(f) \subseteq X_{\bar{\sigma}_{A}}$ then the pre image of $f^{-1}\left(f\left(\bar{\sigma}_{A}\right)\right)=\bar{\sigma}_{A}$.

Proof:

Let $x \in X$ and $f(x)=y$
Hence

$$
\begin{aligned}
f^{-1} f\left(\bar{\sigma}_{A}\right)(x) & =f\left(\bar{\sigma}_{A}\right)(f(x)) \\
& =f\left(\bar{\sigma}_{A}\right) \\
& \left.=\operatorname{rsup}_{x \in f^{-1}(y)\{ } \bar{\sigma}_{A}(x)\right\}
\end{aligned}
$$

For any $x^{\prime} \in X, x^{\prime} \in f^{-1}(y) \Rightarrow f\left(x^{\prime}\right)=y$
$\Rightarrow f\left(x^{\prime}\right)=f(x) \Rightarrow f\left(x^{\prime}\right)-f(x)=0$
$f\left(x^{\prime}-x\right)=0 \Rightarrow x^{\prime}-x \in \operatorname{ker}(f)$
$x^{\prime}-x \in X_{\bar{\mu}_{A}}$
$\Rightarrow \bar{\sigma}_{A}\left(x^{\prime}-x\right)=\bar{\sigma}_{A}(0)$
$\therefore \quad \bar{\sigma}_{A}\left(x^{\prime}\right) \geq r \min \left\{\bar{\sigma}_{A}\left(x^{\prime}-x\right), \bar{\sigma}_{A}(x)\right\}$

$$
=\operatorname{rmin}\left\{\bar{\sigma}_{A}(0), \bar{\sigma}_{A}(x)\right\}
$$

$$
=\bar{\sigma}_{A}(\underline{x})
$$

We can also prove $\bar{\mu}_{A}(x) \geq \bar{\sigma}_{A}\left(x^{\prime}\right)$
Hence $\bar{\sigma}_{A}\left(x^{\prime}\right)=\bar{\sigma}_{A}(x)$
$\therefore f^{-1}\left(f\left(\bar{\sigma}_{A}\right)\right)(x)=\operatorname{rsup}_{x \in \in f^{-1}(y)}\left\{\bar{\sigma}_{A}\left(x^{\prime}\right)\right\}=\bar{\sigma}_{A}(x)$
$\Rightarrow f^{-1}\left(f\left(\bar{\sigma}_{A}\right)\right)(x)=\bar{\sigma}_{A}(x)$

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042111 doi:10.1088/1757-899X/263/4/042111

Proposition: 3.14

Let $f: X \rightarrow X$ be an endomorphism on X. Let $\bar{\sigma}$ be an i-v fuzzy β-ideal of X. Then $\bar{\sigma}_{f}: X \rightarrow D[0,1]$ defined by $\bar{\sigma}_{f}(x)=\bar{\sigma}(f(x), \forall x \in X$, is an i-v fuzzy β-ideal of X.

Proof:

Suppose $\bar{\sigma}$ be an i-v fuzzy β-ideal of X
For some $x \in X$,

$$
\begin{aligned}
& \bar{\sigma}_{f}(0)=\bar{\sigma}(f(0)=\bar{\sigma}(0) \geq \bar{\sigma}(x), \forall x, y \in X \\
& \bar{\sigma}_{f}(x+y)= \bar{\sigma}(f(x+y)) \\
&=\bar{\sigma}(f(x)+f(y)) \\
& \geq r \operatorname{rmin}\{\bar{\sigma}(f(x)), \bar{\sigma}(f(y))\} \\
&=\operatorname{rmin}\left\{\bar{\sigma}_{f}(x), \bar{\sigma}_{f}(y)\right\}
\end{aligned}
$$

Also, $\bar{\sigma}_{f}(x)=\bar{\sigma}(f(x))$

$$
\begin{aligned}
& \geq \operatorname{rmin}\{\bar{\sigma}(f(x)-f(y)), \bar{\sigma}(f(y))\} \\
& =\operatorname{rmin}\{\bar{\sigma}(f(x-y)), \bar{\sigma}(f(y))\} \\
& =\operatorname{rmin}\left\{\bar{\sigma}_{f}(x-y), \bar{\sigma}_{f}(y)\right\}
\end{aligned}
$$

Thus, $\bar{\sigma}_{f}$ is an i -v fuzzy β-ideal of X.

4. Product on i-v fuzzy $\boldsymbol{\beta}$-ideal of $\boldsymbol{\beta}$-algebra

In this segment, we talk about the product on interval valued fuzzy $\boldsymbol{\beta}$-ideals of $\boldsymbol{\beta}$-algebras and various related results.

Definition:4.1

Let ($X,+,-, 0$) and $(Y,+,-, 0)$ be two β-algebras.
Let $A=\left\{\left\langle x, \bar{\sigma}_{A}(x)\right\rangle: x \in X\right\}$ and $B=\left\{\left\langle y, \bar{\sigma}_{B}(y)\right\rangle: y \in Y\right\}$ be i-v fuzzy subsets in X and Y respectively. If $A \times B$ is the Cartesian product of A and B which is defined to be the set
$A \times B=\left\{\left\langle(x, y), \bar{\sigma}_{A \times B}(x, y)\right\rangle:(x, y) \in X \times Y\right\}$.

Proposition: 4.2

Let A and B be two i-v fuzzy β-ideals of X and Y correspondingly. Then $A \times B$ is also an i-v fuzzy β ideal of $X \times Y$.

Proof:

Let $A=\left\{\left\langle x, \bar{\sigma}_{A}(x)\right\rangle: x \in X\right\}$ and $B=\left\{\left\langle y, \bar{\sigma}_{B}(y)\right\rangle: y \in Y\right\}$ be i-v fuzzy β-ideal in X and Y.
Take $(x, y) \in X \times Y$

$$
\begin{aligned}
\bar{\sigma}_{A \times B}(0,0) \geq & r \min \left\{\bar{\sigma}_{A \times B}(0), \bar{\sigma}_{A \times B}(0)\right\} \\
& =r \min \left\{\bar{\sigma}_{A \times B}(x), \bar{\sigma}_{A \times B}(y)\right\} \\
& =\bar{\sigma}_{A \times B}(x, y)
\end{aligned}
$$

Take $(a, b) \in X \times Y$, where $a=\left(x_{1}, y_{1}\right)$ and $b=\left(x_{2}, y_{2}\right)$.
Clearly, $\bar{\sigma}_{A \times B}(a+b) \geq \operatorname{rmin}\left\{\bar{\sigma}_{A \times B}(a), \bar{\sigma}_{A \times B}(b)\right\}$
and

$$
\begin{aligned}
\bar{\sigma}_{A \times B}(a) & =\bar{\sigma}_{A \times B}\left(x_{1}, y_{1}\right) \\
& =\operatorname{rmin}\left\{\bar{\sigma}_{A \times B}\left(x_{1}\right), \bar{\sigma}_{A \times B}\left(y_{1}\right)\right\} \\
& \geq \operatorname{rmin}\left\{r \min \left\{\bar{\sigma}_{A}\left(x_{1}-x_{2}\right), \bar{\sigma}_{A}\left(x_{2}\right)\right\}, \operatorname{rmin}\left\{\bar{\sigma}_{B}\left(y_{1}-y_{2}\right), \bar{\sigma}_{B}\left(y_{2}\right)\right\}\right\} \\
& =\operatorname{rmin}\left\{r \min \left\{\bar{\sigma}_{A}\left(x_{1}-x_{2}\right), \bar{\sigma}_{B}\left(y_{1}-y_{2}\right)\right\}, \operatorname{rmin}\left\{\bar{\sigma}_{A}\left(x_{2}\right), \bar{\sigma}_{B}\left(y_{2}\right)\right\}\right\} \\
& =\operatorname{rmin}\left\{\bar{\sigma}_{A \times B}\left(\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right), \bar{\sigma}_{A \times B}\left(x_{2}, y_{2}\right)\right\}, \\
& =\operatorname{rmin}\left\{\bar{\sigma}_{A \times B}(a-b), \bar{\sigma}_{A \times B}(b)\right\}
\end{aligned}
$$

Hence $A \times B$ is also an i-v fuzzy β-ideal of $X \times Y$.

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042111 doi:10.1088/1757-899X/263/4/042111

Lemma:4.3

Let A and B be two i-v fuzzy subsets of X and Y. If $A \times B$ is an i-v-fuzzy β-ideal of $X \times Y$ in that case $\bar{\sigma}_{A}(0) \geq \bar{\sigma}_{B}(y)$ and $\bar{\sigma}_{B}(0) \geq \bar{\sigma}_{A}(x)$

Proof:

Let A and B be two i-v fuzzy subsets of X and Y
Assume $\bar{\sigma}_{B}(y) \geq \bar{\sigma}_{A}(0)$ and $\bar{\mu}_{A}(x) \geq \bar{\mu}_{B}(0)$ for any
$x \in X, y \in Y$. Then

$$
\begin{aligned}
\bar{\sigma}_{A \times B}(x, y) \geq & r \min \left\{\bar{\sigma}_{A}(x), \bar{\sigma}_{B}(y)\right\} \\
& =\operatorname{rmin}\left\{\bar{\sigma}_{B}(0), \bar{\sigma}_{A}(0)\right\} \\
& =\bar{\sigma}_{A \times B}(0,0)
\end{aligned}
$$

which shows a contradiction. Hence the given result is proved.

Proposition: 4.4

Let A and B be two i-v fuzzy subsets of X and Y such that $A \times B$ is an i-v fuzzy β-ideals of $X \times Y$. Then either A is an i-v fuzzy β-ideal of X or B is an i-v fuzzy β-ideal of Y.

Proof:

From lemma 4.3, if we take $\bar{\sigma}_{A}(0) \geq \bar{\sigma}_{B}(y)$ then
$\bar{\mu}_{A \times B}(0, y)=\operatorname{rmin}\left\{\bar{\sigma}_{A}(0), \bar{\sigma}_{B}(y)\right\}$
Since $A \times B$ is an i-v fuzzy β-ideals of $X \times Y$,
$\bar{\sigma}_{A \times B}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \geq \operatorname{rmin}\left\{\bar{\sigma}_{A \times B}\left(\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right), \bar{\sigma}_{A \times B}\left(x_{2}, y_{2}\right)\right\}$
and since
$\bar{\sigma}_{A \times B}\left(\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right) \geq \operatorname{rmin}\left\{\bar{\sigma}_{A \times B}\left(x_{1}, y_{1}\right), \bar{\sigma}_{A \times B}\left(x_{2}, y_{2}\right)\right\}$
We have $\bar{\mu}_{A \times B}\left(x_{1}, y_{1}\right) \geq \operatorname{rmin}\left\{\bar{\sigma}_{A \times B}\left(\left(x_{1}-x_{2}\right),\left(y_{1}-y_{2}\right)\right), \bar{\sigma}_{A \times B}\left(x_{2}, y_{2}\right)\right\}$
$\bar{\sigma}_{A \times B}\left(\left(x_{1}-x_{2}\right),\left(y_{1}-y_{2}\right)\right) \geq \operatorname{rmin}\left\{\bar{\sigma}_{A \times B}\left(x_{1}, y_{1}\right), \bar{\sigma}_{A \times B}\left(x_{2}, y_{2}\right)\right\}$
Putting $x_{1}=x_{2}=0$ in (2) we get
$\bar{\sigma}_{A \times B}\left(0, y_{1}\right) \geq \operatorname{rmin}\left\{\bar{\sigma}_{A \times B}\left(0,\left(y_{1}-y_{2}\right)\right), \bar{\sigma}_{A \times B}\left(0, y_{2}\right)\right\}$ and
$\bar{\sigma}_{A \times B}\left(0,\left(y_{1}-y_{2}\right)\right) \geq \operatorname{rmin}\left\{\bar{\sigma}_{A \times B}\left(0, y_{1}\right), \bar{\sigma}_{A \times B}\left(0, y_{2}\right)\right\}$
Using equations (1) in (3) we have
$\bar{\sigma}_{B}\left(y_{1}\right) \geq \operatorname{rmin}\left\{\bar{\sigma}_{B}\left(y_{1}-y_{2}\right), \bar{\sigma}_{B}\left(y_{2}\right)\right\}$ and $\bar{\sigma}_{B}\left(y_{1}-y_{2}\right) \geq \operatorname{rmin}\left\{\bar{\sigma}_{B}\left(y_{1}\right), \bar{\sigma}_{B}\left(y_{2}\right)\right\}$
Hence B is an i-v fuzzy β-ideal of Y.

Conclusion

This paper presents interval valued fuzzy $\boldsymbol{\beta}$-ideals of $\boldsymbol{\beta}$-algebras. In the future work, it is planned to extend the above ideas into the concept of intuitionistic interval valued fuzzy $\boldsymbol{\beta}$-ideals of $\boldsymbol{\beta}$-algebras and other substructures of $\boldsymbol{\beta}$-algebras.

References

[1] Aub Ayub Ansari M and Chandramouleeswaran M 2013 Int. J. Math. Sci. Eng. App. 5(7) 23949
[2] Aub Ayub Ansari M and Chandramouleeswaran M 2014 Int. J. Math. Sci. Eng. App. 8(1) 1-10
[3] Biswas R and Rosenfeld's 1994 fuzzy Sets and systems 63(1) 87-90
[4] Deng-Feng Li. 2014 Springer, Cham, Switzerland
[5] Dey A and Pal A 2013 Annals of Pure and Applied Mathematics 3(2) 169-78
[6] Dey A, Pradhan R, Pal A, and Pal A Springer 805-13
[7] Dey A and Pal A 2012 Int. J. Management, IT and Engineering, 2(8) 340-52
[8] Dey A and Pal A 12(3) 419-30
[9] Hemavathi P, Muralikrishna P and Palanivel K 2015 Global J. Pure and Applied Mathematics 11(4) 2553-60

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042111 doi:10.1088/1757-899X/263/4/042111
[10] Jiang-Xia Nan and Deng-Feng Li. 2014 J. Industrial and Management Optimization 10 (4) 1059-70
[11] Neggers and Kim H.S 2002 Math.Slovaca 52(5) 517-30
[12] Sung Min Houng, Young Bae Jun, SeonJeong Kim, and Gwangll Kim Math Japonica 40(2) 199-202
[13] Young Bae, Jun and Kim 2012 Commun.Korean.Math.Soc 27(2) 243-55
[14] Young Bae, Jun 2000 Soc. Math. 3 435-44
[15] Zadeh L.A 1965 Inform.Control 8(3) 338-53
[16] Zadeh L.A 1975 Information Sci. 8 199-249

