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Identification and in silico analysis of functional SNPs of the BRCA1 gene
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Abstract

Single-nucleotide polymorphisms (SNPs) play a major role in the understanding of the genetic basis of many complex human diseases. Also, the
genetics of human phenotype variation could be understood by knowing the functions of these SNPs. It is still a major challenge to identify the
functional SNPs in a disease-related gene. In this work, we have analyzed the genetic variation that can alter the expression and the function of the
BRCA1 gene using computational methods. Of the total 477 SNPs, 65 were found to be nonsynonymous (ns) SNPs. Among the 14 SNPs in
the untranslated region, 4 were found in the 5′ and 10 were found in the 3′ untranslated region (UTR). It was found that 16.9% of the nsSNPs
were damaging, by both the SIFTand the PolyPhen servers. The UTRResource tool suggested that 2 of 4 SNPs in the 5′UTR and 3 of 10 SNPs in the
3′ UTR might change the protein expression levels. We identified major mutations from proline to serine at positions 1776 and 1812 of the native
protein of the BRCA1 gene. From a comparison of the stabilizing residues of the native and mutant proteins, we propose that an nsSNP (rs1800751)
could be an important candidate for the breast cancer caused by the BRCA1 gene.
© 2007 Elsevier Inc. All rights reserved.
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Single-nucleotide polymorphisms (SNPs) account for the
more common form of human genetic variation. About
500,000 SNPs fall in the coding regions of the human genome
[1]. Among these, the nonsynonymous SNPs (nsSNPs) cause
changes in the amino acid residues. These are likely to be an
important factor contributing to the functional diversity of the
encoded proteins in the human population [2]. The nsSNPs
affect gene regulation by altering DNA and transcriptional
binding factors [3] and themaintenance of the structural integrity
of cells and tissues [4]. Also, nsSNPs affect the functional roles
of proteins in the signal transduction of visual, hormonal, and
other stimulants [5,6].

Mutations in the cancer susceptibility gene BRCA1 greatly
increase the risk of breast and ovarian cancer [7]. At present most
mutations in the BRCA1 gene have been identified to be point
mutations or small insertions and deletions. An important
database, http://research.nhgri.nih.gov/bic/, gives a world of
information on breast cancer. Although our literature survey
showed that there is a wide choice of literature on the BRCA1
gene related to breast cancer, there have been no computational
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studies undertaken for an in silico investigation of the nsSNP
mutations in BRCA1. We undertook this work mainly to perform
a computational analysis of the nsSNPs in the BRCA1 gene, to
identify the possible mutations and propose a modeled structure
for the mutant protein. We report that the mutation from proline
to serine at the residue position of 1812 in the native protein of
BRCA1 gene could be a candidate of major concern for the
disease of breast cancer caused by the BRCA1 gene.

Results and discussion

SNP dataset from dbSNP

The BRCA1 gene investigated in this work was retrieved
from the dbSNP database [8]. It contained a total of 477 SNPs, of
which 65were nsSNPs and 14were in noncoding regions, which
comprise 4 SNPs in the 5′UTR and 10 SNPs in the 3′UTR. The
rest were in the intron region. We selected nonsynonymous
coding SNPs and 5′ and 3′UTR SNPs for our investigation. The
distribution of nsSNPs in coding regions and SNPs in the UTRs
is shown in Fig. 1. It can be seen from Fig. 1 that 13% of the total
SNPs are nsSNPs, and 0.8 and 2% of the total SNPs are in the 5′
and 3′UTRs. Further it can be seen that the number of nsSNPs in
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Fig. 1. Distribution of nonsynonymous, 5′ UTR, and 3′ UTR SNPs.

Table 2
List of nsSNPs that were predicted to be functionally significant by PolyPhen

SNP ID Nucleotide change Amino acid change PSIC SD

rs1799950 A/G Q315R 1.965
rs1800709 C/T R800W 1.630
rs1800751 C/T P1812S 2.396
rs28897672 G/T C61G 2.700
rs28897673 A/G Y105C 2.025
rs28897681 G/T D654Y 2.003
rs28897682 A/T N769Y 2.074
rs28897683 A/C T785K 1.626
rs28897684 A/G E801G 2.144
rs28897687 G/T N1195K 1.653
rs28897689 A/G R1306G 2.006
rs28897695 G/T F518C 1.766
rs28897696 A/C A564E 1.125
rs4986854 C/T M484T 1.890
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the coding region is much higher compared to the SNPs in the 5′
and 3′ untranslated regions.

Deleterious nsSNP found by the SIFT program

The conservation level of a particular position in a protein
was determined by using a sequence homology-based tool, SIFT
[9]. The protein sequences of 65 nsSNPs were submitted
independently to the SIFT program to check its tolerance index.
The higher the tolerance index, the less functional impact a
particular amino acid substitution is likely to have, and vice
versa. Among the 65 nsSNPs, 28 were found to be deleterious,
having a tolerance index score of ≤0.05. The results are shown
in Table 1.
Table 1
List of nsSNPs that were predicted to have functional significance by SIFT

SNP ID Nucleotide change Amino acid change Tolerance index

rs16941 A/G E1038G 0.03
rs799917 C/T P871L 0.03
rs1799950 A/G Q315R 0.02
rs1799966 A/G S1613G 0.02
rs1799967 G/A M1652I 0.01
rs1800707 G/T K1406N 0.01
rs1800709 C/T R800W 0.00
rs1800726 G/C A1641P 0.02
rs1800744 G/T S1512I 0.01
rs1800751 C/T P1812S 0.00
rs1800757 C/T P1776S 0.00
rs4986847 A/C I925L 0.02
rs7502059 G/A A794V 0.02
rs8176153 G/A G275S 0.03
rs11658785 C/A R256M 0.03
rs12946486 T/G K1338Q 0.01
rs28897672 G/T C61G 0.00
rs28897673 A/G Y105C 0.04
rs28897674 A/C S153R 0.03
rs28897696 A/C A564E 0.01
rs28897698 G/T V1809F 0.00
rs28897699 G/T Q1857H 0.02
rs28897680 A/C Q687P 0.03
rs28897681 G/T D654Y 0.01
rs28897682 A/T N769Y 0.00
rs28897683 A/C T785K 0.00
rs28897684 A/G F801G 0.04
rs28897689 A/G R1306G 0.01
We observed that, of 28 deleterious nsSNPs, 7 showed a
highly deleterious tolerance index score of 0.00, and 7 showed a
tolerance index score of 0.01, followed by 6, 6, and 2 nsSNPs
with a tolerance index of 0.02, 0.03, and 0.04, respectively. Six
nsSNPs showed a nucleotide change of A→ G, 5 nsSNPs A→
C, 1 nsSNPA→ T, 3 nsSNPsG→A, 6 nsSNPs G→ T, 1 nsSNP
G→C, 4 nsSNPs C→ T, 1 nsSNP C→A, and 1 nsSNP T→G.
A → G and G → T nucleotide changes occurred the maximum
number of times and A → T, G → C, C → A, and T → G
nucleotide changes occurred a minimum number of times, as can
be seen from Table 1. The nucleotide change C → T accounted
for the highest number of deleterious nsSNPs, with a SIFT
tolerance index of 0.00. This was closely followed by the
nucleotide change G → T, which showed a tolerance index of
0.01. Also, of the 7 nsSNPs that showed a SIFT tolerance index
of 0.00, 3 of them changed to an aromatic amino acid in the
mutant type from a nonaromatic amino acid in the native protein.

Damaged nsSNP found by the PolyPhen server

The structural levels of alteration were determined by
applying the PolyPhen program [11]. Sixty-five protein
sequences of nsSNPs investigated in this work were submitted
as input to the PolyPhen server and the results are shown in
Table 2. A position-specific independent count (PSIC) score
difference of 1.1 and above is considered to be damaging. It can
be seen that, of 65 nsSNPs, 14 were considered to be damaging.
All 14 nsSNPs exhibited a PSIC score difference in the range
1.125 to 2.396.

Twelve nsSNPs that were observed to be deleterious by the
SIFT program also were damaging according to PolyPhen.
Hence, we could infer that the results obtained on the basis of
sequence details (SIFT) were in good correlation with the results
obtained for structural details (PolyPhen), as can be seen from
Tables 1 and 2. It can be seen from Tables 1 and 2 that 4 nsSNPs
(rs1800751, rs28897672, rs28897682, rs28897684) had a SIFT
tolerance index of 0.00 and PSIC score difference≥2.00. Hence
the mutations occurring with these 4 nsSNPs would be of prime
importance in the identification of breast cancer caused by the
BRCA1 gene, according to SIFT and PolyPhen results.



Table 4
List of SNPs (UTR mRNA) predicted to be functionally significant by UTRscan

SNP ID Nucleotide change UTR position Functional element change

rs11655841 C/G 3′ UTR 15-LOX-DICE → no pattern
rs8176318 G/T 3′ UTR 15-LOX-DICE → no pattern
rs8176317 A/G 3′ UTR 15-LOX-DICE → no pattern
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Functional SNPs in UTR found by the FastSNP server

Table 3 shows the list of SNPs in the 5′ untranslated region
that are predicted to be functionally significant. We used the
server FastSNP [16] for this purpose. According to this server, of
14 UTR SNPs of the BRCA1 gene, 2 in the 5′ UTR, namely
rs11658785 and rs8176153, were predicted to be damaging,
with a risk ranking of 2–3 and 1–3, respectively. The nucleotide
changes were A → C for SNP ID rs11658785 and A → G for
SNP ID rs8176153. However, this server did not predict any
functional significance for the 3′ UTR and hence, we used
another server to check for any functional significance due to the
3′ UTR.

Functional SNPs in UTR found by the UTRscan server

Polymorphisms in the 3′ UTR affect gene expression by
affecting the ribosomal translation of mRNA or by influencing
the RNA half-life [25]. Table 4 shows the list of SNPs in the 3′
untranslated region that are predicted to be of functional
significance. We used the UTRscan server for this purpose
[19].We analyzed the same 14 UTR SNPs in UTRscan that were
analyzed by the FastSNP server. The UTRscan server finds
patterns of regulatory region motifs from the UTR database
and gives information about whether the matched pattern is
damaged. We found that three UTR SNPs, namely, rs11655841,
rs8176318, and rs8176317, were predicted to be damaging by
this server, as can be seen from Table 4.

The 15-lipoxygenase (15-LOX) differentiation control ele-
ment (15-LOX-DICE) controls 15-LOX synthesis, which
catalyzes the degradation of lipids and is an important factor
responsible for the degradation of mitochondria during reticu-
locyte maturation. This 15-LOX-DICE exists in the three
3′ UTR SNPs that were considered to be of functional sig-
nificance and hence can be thought to be damaging to the
BRCA1 gene. We used two different servers to get the functional
SNPs in both 5′ and 3′UTRs. We observed that two SNPs in the
5′ UTR and three SNPs in the 3′ UTR were predicted to be of
functional significance as per the FastSNP andUTRscan servers,
respectively.

Modeling of mutant structure

Mapping the deleterious nsSNPs into protein structure
information was performed through the Single Amino Acid
Polymorphism database (SAAPdb) [21]. The available structure
for the BRCA1 gene has the PDB ID 1jnx.
Table 3
List of SNPs (UTR mRNA) predicted to be functionally significant by FastSNP

SNP ID Nucleotide
change

UTR
position

Level of risk Possible functional
effect

rs11658785 A/C 5′ UTR Low-medium (2–3) Splicing regulation
rs8176153 A/G 5′ UTR Very low-medium

(1–3)
Promoter/regulatory
region
According to this resource, the mutation occurred for 1jnx
mainly at two SNP Ids, namely, rs1800751 and rs1800757. The
mutations were at residue position 1812 (P→ S) and at position
1776 (P → S). The proline-to-serine mutations for 1jnx at
positions 1812 and 1776 were performed by the SWISSPDB
viewer independently to get two modeled structures. Then
energy minimizations were performed by the NOMAD-Ref
server [22] for the native-type protein (PDB 1jnx) and the two
mutant-type proteins 1jnx (P1812S) and 1jnx (P1776S).

It can be seen from Table 5 that total energy for the native-
type structure (PDB 1jnx) and the two mutant-type structures
1jnx (P1812S) and 1jnx (P1776S) was−4521.023,−10975.899,
and −10707.296 Kcal/mol, respectively. Table 5 also shows that
the RMSD values between the native type (1jnx) and the mutant
type 1jnx (P1812S) is 2.99 Å and between the native type 1jnx
and the mutant type 1jnx (P1776) is 2.95 Å. The higher the
RMSD value is, the more the deviation between the two
structures is, which in turn changes their functional activity.
Since the RMSD values are higher for two mutant-type
structures compared to the native-type structure, 1jnx, these
two nsSNPs could be believed to affect the structure of the
proteins. These two nsSNPs were also shown to be deleterious
according to the SIFT program and, one of the nsSNPs, i.e.,
rs1800751, was shown to be damaging according to the Poly-
Phen server.

It can be seen from Table 5 that the both the RMSD value and
the total energy of the mutant 1jnx (P1776S) are slightly lesser
than the RMSD and total energy of mutant 1jnx (P1812S).
Therefore the PolyPhen server, which is based on structural
details, does not predict rs1800757 to be damaging. This
analysis portrays that mutant type P1812 with the SNP ID
rs1800751 would be expected to be more deleterious and
damaging compared to mutant type 1jnx (P1776S) with the SNP
ID rs1800757. The superimposed structures of the native protein
1jnx with the two mutant-type proteins (P1812S and P1776S)
are shown in Figs. 2A and 2B, respectively.

Computing stabilizing residues between native structure
and mutant modeled structures

We used the SRide server [24] to identify the stabilizing
residues of the native-type structure and mutant modeled
structures. The results are shown in Table 6. Nine stabilizing
residues were identified in the native-type 1jnx structure. Seven
stabilizing residues were identified in mutant model 1jnx
(P1812S). Ten stabilizing residues were identified in mutant
model 1jnx (P1776S). Two stabilizing residues, namely Val
(1714) and Glu(1713), were found to be common to both native-
structure 1jnx and mutant model 1jnx (P1812S). The other
stabilizing residues of the native structure were not present in



Table 5
RMSD and total energy of native-structure 1jnx and mutant models

Parameter 1jnx native-type structure 1jnx 1812 mutant (rs1800751)
with 1jnx native-type structure

1jnx 1776 mutant (rs1800757)
with 1jnx native-type structure

RMSD of entire structure 2.99 Å 2.95 Å
Total energy after energy minimization −4521.023 Kcal/mol −10,975.899 Kcal/mol −10,707.296 Kcal/mol
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mutant model 1jnx (P1812S). Four stabilizing residues, namely
Val(1714), Ser(1715), Glu(1735), and Glu(1794), were found to
be common to both native-structure 1jnx and mutant model-
structure 1jnx (P1776S). The remaining stabilizing residues of
the native structure were not seen in mutant model 1jnx
(P1776S). This analysis revealed that a higher number of
stabilizing residues in the mutant-type 1jnx (P1776S) matched
with the native protein structure compared to the mutant-type
Fig. 2. (A) Superimposed structure of native protein 1jnx (red color) with mutant
protein P1812S (green color). (B) Superimposed structure of native protein 1jnx
(red color) with mutant protein P1776S (green color).
1jnx (P1812S). Therefore we predict that the mutation from
proline to serine at residue position 1812 in the native-type
protein will be more deleterious and the mutation in this SNP
could be an important candidate for breast cancer caused by the
BRCA1 gene.

Conclusion

The breast cancer BRCA1 gene was investigated in this work
by evaluating the influence of functional SNPs through
computation methods. Of a total of 477 SNPs in the BRCA1
gene, 65 were found to be nonsynonymous and 4 and 10 SNPs
were found to be in the 5′ and 3′ untranslated regions. Of
65 nsSNPs, 28 were found to be deleterious by SIFT and 14
were damaging as per the PolyPhen server. Twelve nsSNPs
were found to be common in both the SIFT and the PolyPhen
server. Two SNPs in the 5′ UTR and 3 SNPs in the 3′ UTR were
found to be of functional significance. It was found that the
major mutation in the native protein of the BRCA1 gene was
from proline to serine. Of two nsSNPs that had this mutation,
we conclude that rs1800751 with a mutation of proline to serine
at position 1812 in the native protein 1jnx could be the main
target mutation for the breast cancer caused by the BRCA1
gene.

Materials and methods

Datasets

The SNPs and their related protein sequence for the BRCA1 gene were
obtained from the dbSNP [8] (http://www.ncbi.nlm.nih.gov/SNP/) for our
computational analysis.

Analysis of functional consequences of coding nsSNPs by
sequence-homology-based method (SIFT)

We used the program SIFT [9] available at http://blocks.fhcrc.org/sift/SIFT.
html to detect the deleterious coding nonsynonymous SNPs. SIFT is a sequence-
Table 6
Stabilizing residues in native and mutant models of 1jnx

Native-type structure 1jnx Mutant model structure
1jnx (P1812S)

Mutant model structure
1jnx (P1776S)

Met(1689), Val(1713),
Val(1714), Ser(1715),
Glu(1735), Glu(1794),
Val(1833), Trp(1837),
Leu(1854)

Val(1687), Leu(1705),
Val(1714), Glu(1735),
Cys(1787), Val(1792),
Gln(1857

Val(1687), Leu(1705),
Val(1714), Ser(1715),
Glu(1735), Val(1736),
Cys(1787), Glu(1794),
Gln(1811), Gln(1857

Residues shown in boldface are common to both native protein and mutant-type
structures.

http://www.ncbi.nlm.nih.gov/SNP/
http://blocks.fhcrc.org/sift/SIFT.html
http://blocks.fhcrc.org/sift/SIFT.html
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homology-based tool that presumes that important amino acids will be
conserved in the protein family. Hence, changes at well-conserved positions
tend to be predicted as deleterious [9]. We submitted the query in the form of
SNP IDs or as protein sequences. The underlying principle of this program is
that SIFT takes a query sequence and uses multiple alignment information to
predict tolerated and deleterious substitutions for every position of the query
sequence. SIFT is a multistep procedure that, given a protein sequence, (a)
searches for similar sequences, (b) chooses closely related sequences that may
share similar functions, (c) obtains the multiple alignment of the chosen
sequences, and (d) calculates normalized probabilities for all possible
substitutions at each position from the alignment. Substitutions at each
position with normalized probabilities less than a chosen cutoff are predicted
to be deleterious and those greater than or equal to the cutoff are predicted to
be tolerated [10]. The cutoff value in the SIFT program is a tolerance index
of ≥0.05. The higher the tolerance index, the less functional impact a
particular amino acid substitution is likely to have.

Simulation for functional change in coding nsSNPs by
structure-homology-based method (PolyPhen)

Analyzing the damaged coding nonsynonymous SNPs at the structural level
is considered to be very important to understand the functional activity of the
protein of concern.We used the server PolyPhen [11], which is available at http://
coot.embl.de/PolyPhen/, for this purpose. Input options for the PolyPhen server
are protein sequence or SWALL database ID or accession number together with
sequence position with two amino acid variants. We submitted the query in the
form of protein sequence with mutational position and two amino acid variants.
Sequence-based characterization of the substitution site, profile analysis of
homologous sequences, and mapping of substitution site to a known protein
three-dimensional structure are the parameters taken into account by the
PolyPhen server to calculate the score. It calculates PSIC scores for each of the
two variants and then computes the PSIC score difference between them. The
higher the PSIC score difference is, the higher is the functional impact a particular
amino acid substitution is likely to have.

Functional significance of noncoding SNPs in regulatory untranslated
regions

Recent studies show that SNPs have functional effects on protein structure by
a single change in the amino acid [12,13] and on transcriptional regulation
[14,15]. We used the Web server FastSNP [16] available at http://fastsnp.ibms.
sinica.edu.tw for predicting the functional significance of the 5′ and 3′ UTRs of
the BRCA1 gene. The FastSNP server follows the decision tree principle with
external Web service access to TFSearch, which predicts whether a noncoding
SNP alters the transcription factor-binding site of a gene. The score will be given
by this server on the basis of levels of risk with a ranking of 0, 1, 2, 3, 4, or 5. This
signifies the levels of no, very low, low, medium, high, and very high effect,
respectively.

Scanning of UTR SNPs in UTR site

The 5′ and 3′ UTRs are involved in various biological processes such as
posttranscriptional regulatory pathways, stability, and translational efficiency
[17,18].We used the programUTRscan [19] available at http://www.ba.itb.cnr.it/
BIG/UTRScan/, which allows one to search the user-submitted sequences for any
of the patterns collected in the UTR site. UTRsite is a collection of functional
sequence patterns located in 5′ or 3′ UTR sequences. Briefly, two or three
sequences of each UTR SNP that have a different nucleotide at an SNP position
are analyzed by UTRscan, which looks for UTR functional elements by
searching through user-submitted sequence data for the patterns defined in the
UTRsite and UTR databases. If different sequences for each UTR SNP are found
to have different functional patterns, this UTR SNP is predicted to have
functional significance. The Internet resources for UTR analysis are UTRdb and
UTRsite. UTRdb contains experimentally proven biological activity of
functional patterns of UTR sequence from eukaryotic mRNAs [20]. The
UTRsite has the data collected from UTRdb and also is continuously enriched
with new functional patterns.
Modeling nsSNP locations on protein structure and their RMSD
difference

Structure analysis was performed for evaluating the structural stability of
native and mutant protein. We used the Web resource SAAPdb [21] to identify
the protein related to the BRCA1 gene (PDB ID 1jnx). We also confirmed the
mutation positions and the mutation residues from this server. The mutation was
performed by using the SWISSPDB viewer and energy minimization for 3D
structures was performed by the NOMAD-Ref server [22]. This server use
Gromacs as the default force field for energy minimization based on the methods
of steepest descent, conjugate gradient, and L-BFGS [23]. We used the conjugate
gradient method for optimizing the 3D structures. The deviation between the two
structures is evaluated by their RMSD values.

Computation of stabilizing residues

To check the stability of the native and mutant modeled structures, identi-
fication of the stabilizing residues is useful. We used the server SRide [24] for
identifying the stabilizing residues in native protein and mutant models.
Stabilizing residues were computed using parameters such as surrounding
hydrophobicity, long-range order, stabilization center, and conservation score as
described by Magyar et al. [24].
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