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Abstract The explosive global spreading of multidrug

resistant Mycobacterium tuberculosis (Mtb) has provoked

an urgent need to discover novel anti-TB agents. Enoyl-

acyl carrier protein reductase from Mtb is a well-known

and thoroughly studied target for anti-tuberculosis therapy.

In the present analysis, virtual screening techniques per-

formed from Drug bank database by utilizing INH-NAD

adduct as query for the discovery of potent anti-TB agents.

About 100 molecules sharing similar scaffold with INH-

NAD adduct were analyzed for their binding effectiveness.

The initial screening based on number of rotatable bonds

gave 42 hit molecules. Subsequently, physiochemical

properties such as toxicity, solubility, drug-likeness and

drug score were analyzed for the filtered set of compounds.

Final data reduction was performed by means of molecular

docking and normal mode docking analysis. The result

indicates that DB04362, adenosine diphosphate 5-(beta-

ethyl)-4-methyl-thiazole-2-carboxylic acid could be a

promising lead compound and be effective in treating

sensitive as well as drug-resistant strains of Mtb. We

believe that this novel scaffolds might be the good starting

point for lead compounds and certainly aid the experi-

mental designing of anti-tuberculosis drug in a short time.

Keywords INH-NAD adduct � Virtual screening �
Molecular docking � Bioavailability � Normal mode

analysis

Introduction

Tuberculosis (TB) is a chronic infectious disease caused by

mycobacteria such as Mycobacterium bovis, Mycobacte-

rium africanum and mainly Mycobacterium tuberculosis

(Aziz et al. 2006). One-third of the world’s population is

infected with Mycobacterium tuberculosis, the etiological

agent of TB, resulting in 9.2 million new cases and 1.7

million deaths in 2006 (Floyd and Pantoja 2008). Globally

in 2007, there were a predictable 13.7 million chronic

active cases. In 2010, there were 8.8 million new cases and

1.5 million associated deaths occurred in developing

countries. Active TB is usually treated with isoniazid

(INH) in association with one or more other anti-TB drugs

but multidrug-resistant TB (MDR-TB) and very recently

extensively drug-resistant TB (XDR-TB) have become a

serious and unsolved public health problem (Aziz et al.

2006; Pasqualoto et al. 2004; Wei et al. 2003; Morlock

et al. 2003; Ormerod 2005). INH is a prodrug and must be

activated by the catalase–peroxidase KatG (Zhang et al.

1992; Johnsson and Schultz 1994; Marcinkeviciene et al.

1995; Johnsson et al. 1997; Wang et al. 1998) and the

isoniazid-activated intermediate forms an isonicotinoyl-

NAD adduct (INH-NAD), through addition of either an

isonicotinic acyl anion to NAD? or an isonicotinic acyl

radical to an NAD� radical (Rozwarski et al. 1998). After

activation, it inhibits enoyl-acyl carrier protein reductase

(InhA). Inhibition of this activity by INH blocks the bio-

synthesis of mycolic acids, which are major lipids of the

mycobacterial envelope (Quemard et al. 1996; Marrakchi
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et al. 2000). INH-NAD adduct is a slow tight binding

competitive inhibitor of InhA that binds with an overall

dissociation constant of 0.75 nM (Rawat et al. 2003).

Missense mutations in the inhA structural gene have been

identified in clinical isolates of Mycobacterium tuberculo-

sis resistant to INH. More studies have also demonstrated

that the mutations within katG in Mtb are common in INH-

resistant strains (Heym et al. 1995). The mutations within

inhA have been reported up to 32 % in INH resistant

strains (Telenti et al. 1997; Morris et al. 1995; Lee et al.

1999; Kiepiela et al. 2000). Mutations in katG and inhA

account for up to 80 % of INH-resistant strains (Morris

et al. 1995; Musser et al. 1996), whereas the mutations in

katG alone account for the majority of INH resistant strains

(Cynamon et al. 1999; Torres et al. 2000). This indicates

that high prevalence of resistance to INH was observed,

mainly due to emerging KatG mutants that do not activate

or poorly activate INH. Therefore, it has been suggested

that compounds that inhibit the ultimate target of INH but

do not require activation by KatG have tremendous

promise as novel drugs for combating MDR-TB and XDR-

TB (Rawat et al. 2003; Basso et al. 1998). Keeping in view,

the importance of enoyl-acyl carrier protein reductase

(InhA), an enzyme involved in the biosynthesis of mycolic

acids and low outcome of inhibitors using experimental

procedures, we have made an attempt to screen inhibitors

of InhA by virtual screening procedures.

Virtual screening (VS) is a widely used method that has

been shown to be successful in a variety of studies,

although it also has many shortcomings (Oprea and Matter

2004; Chen 2008). In the past few years, many reports

indicated that virtual screening techniques proved to be

effective in making qualitative predictions that discrimi-

nated active from inactive compounds (Kitchen et al.

2004). The use of experimentally derived protein structures

and a hybrid computational method that combines the

advantages of docking algorithms with dynamic structural

information provided by normal mode analysis certainly

provide improved library enrichments virtual screening

process. Furthermore, this is the first report of virtual

screening for InhA inhibitors and the results could aid

experimental studies and the rational development of novel

drugs against Mtb.

Materials and methods

Data set preparation

The native and mutant (I21V) type’s coordinates of INH-

NAD adduct complexed to InhA were taken from the

Brookhaven Protein Data Bank (PDB) (Berman et al.

2000). The corresponding PDB codes were 2IDZ and 2IE0,

respectively. The adduct was extracted from the PubChem,

a database maintained in NCBI (Wishart et al. 2008;

Feldman et al. 2006) and SMILES strings was collected

and submitted to CORINA for constructing the 3D struc-

ture of the INH-NAD adduct (Gasteiger et al. 1990). All

the water molecules and the hetero atoms were removed.

Energy minimization for native and mutant proteins was

carried out using GROMACS package 4.5.3 (Hess et al.

2008; Spoel et al. 2005) adopting the GROMOS43a1 force

field parameters before performing molecular docking

experiment. The screening performed with the aid of

PubChem and Drug bank database.

Virtual screening

VS (Shoichet 2004) is the computational analogue of bio-

logical screening. The approach has become increasingly

popular in the pharmaceutical research for lead identifica-

tion. The basic goal of the VS is the reduction of the

massive virtual chemical space of small organic molecules,

to screen against a specific target protein, to a manageable

number of the compounds that inhibit a highest chance to

lead to a drug candidate. Two different databases such as

PubChem and Drug bank were used for searching new lead

compounds by employing the INH-NAD adduct as query

(Bolton et al. 2011; Wishart et al. 2008). The numbers of

molecules in each of the database are 85 million and

140,000, respectively. Screening was carried out by

restricting the number of rotatable bonds to a maximum of

12 (Muegge 2003; Oprea 2000). Several hits were obtained

from each of the databases, which were further screened

using molecular docking studies. The SMILES strings were

used for constructing three-dimensional structures of lead

compounds.

Identification of binding site residues for enoyl-acyl

carrier protein reductase

It was a challenging task to extrapolate a mechanism of

action from the view of 3D structures. Detailed biochem-

ical information about the enzyme can be used to design

substrate or transition state analogues, which can then be

bound into the enzyme for structure determination. These

can reveal binding site locations and identify residues,

which are likely to take part in the receptor–ligand inter-

action. From this, a catalytic mechanism can be proposed.

In order to identify the binding residues in the structure of

enoyl-acyl carrier protein reductase, we submitted the

native and mutant complex structure (PDB ID: 2IDZ and

2IE0) into the ligand contact tool (LCT) program (Lopez

et al. 2007). This program calculates contacts between the

binding residues of enoyl-acyl carrier protein reductase

receptor with INHNAD using default parameters.
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Molecular docking

Docking was performed with the help of the PatchDock

(Duhovny et al. 2005). It is a geometry-based molecular

docking algorithm. The PatchDock algorithm divides the

Connolly dot surface representation (Connolly 1983a, b) of

the molecules into concave, convex and flat patches. Then,

complementary patches are matched in order to generate

candidate transformations. Each candidate transformation

is further evaluated by a scoring function that considers

both geometric fit and atomic desolvation energy (Zhang

et al. 1997). Finally, root mean square deviation (RMSD)

clustering is applied to the candidate solutions to discard

redundant solutions. The input parameters for the docking

are the PDB coordinate file of the protein and ligand

molecule. This algorithm has three major stages: (1)

molecular shape representation, (2) surface patch match-

ing, and (3) filtering and scoring. Furthermore, the steric

clashes, introduced by PatchDock, algorithm are removed

with the aid of FireDock algorithm (Andrusier et al. 2007;

Mashiach et al. 2008). FireDock refines side chain posi-

tions and relative protein orientations. After steric clashes

are removed, an energy-like function is used to rank the

docking models. This interface energy score is a weighted

combination of softened van der Waals, desolvation, elec-

trostatics, hydrogen bonding, disulfide bonding, p-stacking,

aliphatic interactions, and rotamer preferences (Andrusier

et al. 2007); docking results were screened by means of

FireDock algorithm.

Prediction of physiochemical properties

Successful drug discovery requires high-quality lead

structures which may need to be more drug-like than

commonly accepted (Proudfoot 2002). The hits were

screened using drug-likeness, drug score and toxicity

characteristics. These physicochemical properties were

therefore calculated for the filtered set of hits using the

program OSIRIS (Sander 2001). The OSIRIS program

calculates the drug-likeness based on a list of about 5,300

distinct sub-structure fragments created by 3,300 traded

drugs as well as 15,000 commercially available chemicals

yielding a complete list of all available fragments with

associated drug-likeness. The drug score combines drug-

likeness, cLogP, logS, molecular weight, and toxicity risks

as a total value which may be used to judge the com-

pound’s overall potential to qualify for a drug.

Normal mode analysis

The exploration of molecular motions of biological mole-

cules and their assemblies by simulation approaches such

as molecular dynamics has provided significant insights

into structure–function relationships in small biological

systems. Normal mode analysis (NMA) provides an alter-

native to molecular dynamics for studying the motions of

macromolecules. The time scale accessible to theoretical

work is extended with normal mode analysis, and this

approach has been proven extremely useful for studying

collective motions of biological systems. (Noguti and

Nishikawa 1983; Levitt et al. 1985) Normal mode analysis

is a powerful tool for predicting the possible movements of

a given macromolecule. It has been shown recently that

half of the known protein movements can be modeled by using

at most two low-frequency normal modes (Tama and Sane-

jouand 2001). Applications of NMA cover wide areas of

structural biology, such as the study of protein conformational

changes upon ligand binding, membrane channel opening and

closure, potential movements of the ribosome, and viral cap-

sid maturation. Another newly emerging field of NMA is

related to protein structure determination by X-ray crystal-

lography, where normal mode perturbed models are used as

templates for diffraction data phasing through molecular

replacement. Elnemo is a web interface to the elastic network

model that provides a fast and simple tool to compute, visu-

alize and analyze low-frequency normal modes of large

macro-molecules and to generate a large number of different

starting models for use in molecular replacement (Suhre and

Sanejouand 2004). Using this interface, each docked complex

was analyzed with default parameters to investigate the active

site residues by normal mode analysis.

Results and discussion

Virtual screening

Virtual screening is the computational analogue of bio-

logical screening. It uses computer-based methods to dis-

cover new ligands on the basis of biological structures.

This technique mainly focuses on comparing molecular

similarity analyses of compounds with known and

unknown moiety. Here, we have performed the virtual

screening analysis by using INH-NAD adduct, an active

intermediate molecule. The result indicates that 332 hits

from PubChem and 100 hits from Drug Bank were iden-

tified similar to the INH-NAD adduct. Successful drug

discovery requires high-quality lead structures which may

need to be more drug-like than is commonly accepted

(Proudfoot 2002). The initial screening was carried out by

restricting the number of rotatable bonds to a maximum of

12, which reduced the number of hits to 42 from drug bank

whereas PubChem database did not show the reasonable hit

compounds. The results are shown in Table 1. Therefore,

the subsequent analysis was carried out with the aid of 42

molecules screened from drug bank database.
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Binding site residues analysis

The binding site residues in the structure of enoyl-acyl

carrier protein reductase were obtained from LCT program

by using the complex structure of enoyl-acyl carrier protein

reductase bound with INH-NAD adduct (PDB ID: 2IE0).

The results indicate for 2IE0 are a total of 10 amino acid

residues, viz, G-14, S-20, V-21, D-64, V-65, I-95, G-96,

K-165, I-194 and T-196. The LIGPLOT (Wallace et al.

1995) tool was used to illustrate the contacts between

mutant protein binding residues and INH-NAD adduct

shown in Fig. 1.

Docking studies of mutant enoyl-acyl carrier protein

reductase with inhibitor

In order to gain insight into possible binding modes of the

inhibitor, INH-NAD adduct, was docked into the ligand-

binding domain of the native and mutant type of InhA

using the program PatchDock. It is well known that the

scores calculated by docking programs do not usually

permit the exact reproduction of the binding mode of

assayed compounds. Hence, we have further screened the

PatchDock results with the aid of FireDock program. This

will be of immense importance in obtaining the binding

affinity of INH-NAD adducts with the target structures.

The binding affinity between INH-NAD adducts and the

target structures determined by fireDock program were

-43.70 and -48.27 kcal/mol for the native and mutant

structures, respectively. This clearly indicates that mutation

at the position I21V in the target structure leads resistance

to drug molecule, isoniazid, but not to the INH-NAD

adduct. Subsequently, all 42 selected hits were docked into

the InhA active site in the same way in order to understand

the binding affinity of the lead compounds against the

native and mutant type proteins. We understand that 9 hits

showed greater binding affinity with the mutant type

(I21V) compared to INH-NAD adduct. The result was

shown in Table 2. In particular, five compounds such as

DB04362, DB03893, DB00157, DB02498 and DB04418

showed greater binding affinity with both native and

mutant type structure. The compound DB04362 showed

greatest binding affinity than other lead compounds con-

sidered in our study. The docked complex structure of

INH-NAD adduct and DB04362 with native and mutant

type structure shown in Figs. 2 and 3.

In silico toxicities, solubility, drug-likeness and drug

score profiles

Many drug candidates fail in the clinical trials, reasons are

unrelated in the potency against the intended drug target.

Table 1 Number of rotatable

bonds obtained from the

Molinspiration program

S. no. Compound ID Number of

rotatable bonds

S. no. Compound ID Number of

rotatable bonds

1 DB00157 11 22 DB01860 8

2 DB01907 11 23 DB03909 8

3 DB03797 11 24 DB02661 6

4 DB02498 11 25 DB04366 6

5 DB01893 9 26 DB04362 10

6 DB04497 11 27 DB02930 8

7 DB02059 9 28 DB03070 11

8 DB01842 8 29 DB01812 6

9 DB04099 11 30 DB03230 7

10 DB03431 6 31 DB02902 8

11 DB02363 8 32 DB02527 1

12 DB03363 11 33 DB03732 11

13 DB03969 11 34 DB00131 4

14 DB03478 11 35 DB04395 8

15 DB03020 11 36 DB02098 6

16 DB00171 8 37 DB02483 9

17 DB03893 11 38 DB03708 6

18 DB01660 8 39 DB04418 9

19 DB04554 6 40 DB03222 8

20 DB01774 9 41 DB02694 9

21 DB04071 11 42 DB07205 8
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Pharmacokinetic and toxicity issues are blamed for more

than half of all failure in the clinical trials. Therefore, it is

essential to evaluates Pharmacokinetic and toxicity of

small molecules. Drug solubility (log S) is an important

factor that affects the movement of a drug from the site of

administration into the blood. It is known that insufficient

solubility of drug can lead to poor absorption (Muegge

2003). Our estimated log S value is a unit stripped loga-

rithm (base 10) of a compound’s solubility measured in

mol/liter. There are more than 80 % of the drugs on the

market that have an (estimated) log S value greater than

-4. Table 3 shows solubility of the seven compounds that

were found in the comparable zone with that of standard

drugs to fulfill the requirements of solubility and could be

considered as a candidate drug for oral absorption.

Fig. 1 INH-NAD adduct bound with enoyl-acyl carrier protein reductase. The figure was rendered using the program LIGPLOT

Table 2 Binding free energy analysis of lead compounds

S. no. Compound Binding free energy

with native

InhA (kcal/mol)

Binding free energy

with mutant

InhA (kcal/mol)

1 INH-NAD -43.70 -48.27

2 DB04362 -55.61 -57.27

3 DB02483 -38.69 -56.31

4 DB03893 -45.89 -54.34

5 DB04497 -24.28 -54.03

6 DB03732 -43.04 -53.45

7 DB03478 -38.92 -53.43

8 DB00157 -56.11 -53.35

9 DB02498 -46.73 -51.31

10 DB04418 -54.80 -50.58
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Drug-likeness

Currently, there are many approaches to assess a compound

drug-likeness based on topological descriptors, fingerprints

of molecular drug-likeness structure keys or other proper-

ties such as C log P and molecular weight. In this work,

Osiris program (Sander 2001) was used for calculating the

fragment-based drug-likeness of the most active com-

pounds and comparing them with INH-NAD adduct. Seven

compounds showed a little improvement of drug-likeness

values than INH-NAD adduct and it is shown in Table 3.

The drug scores of the potent compounds have also been

determined in the present study.

Drug score

We have calculated overall drug score (DS) for the lead

compounds as compared with that of standard drugs INH-

NAD adduct. The drug score combines drug-likeness, mi-

LogP, log S, molecular weight and toxicity risks in one

handy value that may be used to judge the compound’s

overall potential to qualify for a drug. The result is shown

in Table 3. The reported lead compounds showed moderate

to good drug score as compared with standard drug used.

The drug score of the seven compounds showed a good

score which is of significantly higher value than that of the

INH-NAD adduct.

The toxicity risk predictor locates fragments within a

molecule, which indicate a potential toxicity risk. Toxicity

risk alerts are an indication that the drawn structure may be

harmful concerning the risk category specified. Data

evaluated in Table 3 indicate that all the seven lead com-

pounds were supposed to be non-mutagenic, non-irritating

with no tumorigenic effects when run through the muta-

genicity assessment system comparable with standard

drugs used.

Normal mode docking analysis

It has been recently shown that half of the known protein

movements can be modeled by using at most too low-

frequency normal modes for explaining collective large

amplitude motions of proteins in different conformational

states (Delarue and Dumas 2004). These motions typically

Fig. 2 Docked complex of

INH-NAD adduct with native

(a) and mutant (b) type enoyl-

acyl carrier protein reductase

Fig. 3 Docked complex of

DB04362 with native (a) and

mutant (b) type enoyl-acyl

carrier protein reductase
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describe conformational changes which are essential for

the functioning of proteins (Alexandrov et al. 2005).

Hence, the lowest frequency mode (mode 7) (Choudhury

et al. 2010) was used for our docking study. The normal

mode analysis generates 11 possible confirmations between

DQMIN of -100 and DQMAX of 100 with DQSTEP step

size of 20 (Suhre and Sanejouand 2004). It is to be noted

that understanding the binding affinity between the target

and the drug based on relevant normal modes will autho-

rize the strength of docking process (Cavasotto et al. 2005).

Hence, entire trajectory files from the lowest frequency

mode were used as the input for docking analysis. Each

harmonic vibrational mode derived from NMA simulates a

state of the system in which all particles are oscillating

with the same characteristic frequency and, therefore, the

method is often referred to as collective motion analysis.

Unfortunately, the protein structure deposited in the PDB

corresponds to single conformation. Therefore, NMA,

particularly with a simple elastic network model, can be

helpful for simulation of an active site motion. The three-

dimensional structure of INH-NAD adduct was generated

by using the tool CORINA (Gasteiger et al. 1990). The

normal mode-based docking result is shown in Fig. 4. We

observed that free energy of binding for the lead com-

pound, DB04362, was significantly higher than INH-NAD

adduct in all the 11 conformations generated by means of

normal mode analysis. This clearly indicates the effective

binding of DB04362 than INH-NAD adduct with native

and mutant structure of InhA.

Conclusion

Despite the availability of effective treatments, tuberculo-

sis still persists as epidemiological entities that cause

chronic, crippling illness and death on a large scale. The

main reason for this is the emergence of drug-resistant

strains due to poor compliance among the patients to their

lengthy treatment regimens. Therefore, in the present

study, we identified novel drugs that are active against the

drug-resistant as well as non-resistant strains, and can

shorten their treatment durations using virtual screening

Table 3 Physicochemical

Properties of lead compounds
S. no. Compound Toxicity risks Osiris calculations

Mutagenic Tumorigenic Irritant Reproductive

effective

Log S DL DS

1 INH-NAD – – – – -5.75 -16.27 0.17

2 DB04362 – – – – -2.11 -12.8 0.3

3 DB02483 – – – – -3.1 -13.3 0.3

4 DB04497 – – – – -2.43 -15.54 0.28

5 DB03732 – – – – -2.44 -13.48 0.27

6 DB03478 – – – – -3.32 -15.52 0.29

7 DB00157 – – – – -4 -15.43 0.25

8 DB02498 – – – – -3.67 -13.78 0.25

Fig. 4 Comparison of free

energies of binding for the INH-

NAD adduct with native (black)

and mutant (red) structures

using normal mode analysis
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protocols. Initially, virtual compounds were subjected to

molinspiration program and screening was carried out by

restricting the number of rotatable bonds to a maximum of

12. Subsequently the screened molecules were docked at

the active site of Mtb InhA to select inhibitors establishing

favorable interactions. Finally, toxicity and drug-likeness

were evaluated in order to screen the high-quality lead

structure. Several potential drug-like inhibitors have been

screened out showing strong binding affinity to Mtb InhA.

Furthermore, normal mode analysis indicates that the

compound, adenosine diphosphate 5-(beta-ethyl)-4-methyl-

thiazole-2-carboxylic acid (DB04362) displayed strong

binding affinity with both the native and mutant type InhA.

Hence, we believed that DB04362 represents promising

starting point as a lead compound for Mtb. Though

experimental studies are indispensable to mark them as

lead compound for the development of novel drugs against

Mtb, however, screened out inhibitors would undoubtedly

aid the experimental designing of anti-tubercular agents

expeditiously.
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Heym B, Alzari PM, Honoré N, Cole ST (1995) Missense mutations

in the catalase–peroxidase gene, KatG, are associated with

isoniazid resistance in Mycobacterium tuberculosis. Mol Micro-

biol 15:235–245

Johnsson K, Schultz PG (1994) Mechanistic studies of the oxidation

of isoniazid by the catalase peroxidase from Mycobacterium

tuberculosis. J Am Chem Soc 116:7425–7426

Johnsson K, Froland WA, Schultz PG (1997) Over expression, purifi-

cation, and characterization of the catalase–peroxidase KatG form

Mycobacterium tuberculosis. J Biol Chem 272:2834–2840

Kiepiela P, Bishop KS, Smith AN, Roux L, York DF (2000) Genomic

mutations in the KatG, inhA and aphC genes are useful for the

prediction of isoniazid resistance in Mycobacterium tuberculosis

isolates from Kwazulu Natal, south Africa. Tuber Lung Dis

80:47–56

Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and

scoring in virtual screening for drug discovery: methods and

applications. Nat Rev Drug Discov 3:935–949

Lee AS, Lim IH, Tang LL, Telenti A, Wong SY (1999) Contribution

of KasA analysis to detection of isoniazid-resistant Mycobacte-

rium tuberculosis in Singapore. Antimicrob Agents Chemother

43:2087–2089

Levitt M, Sander C, Stern PS (1985) Protein normal-mode dynamics:

trypsin inhibitor crambin, ribonuclease and lysozyme. J Mol Biol

181:423–447

Lopez G, Valencia A, Tress ML (2007) Firestar-prediction of

functionally important residues using structural templates and

alignment reliability. Nucleic Acids Res 35:573–577

Marcinkeviciene JA, Magliozzo RS, Blanchard JS (1995) Purification

and characterization of the Mycobacterium smegmatis catalase–

3 Biotech

123



peroxidase involved in isoniazid activation. J Biol Chem

270:22290–22295

Marrakchi H, Laneelle G, Que0mard A (2000) InhA, a target of the

antituberculous drug isoniazid, is involved in a mycobacterial

fatty acid elongation system FAS-II. Microbiology 146:289–296

Mashiach E, Schneidman-Duhovny D, Andrusier N, Nussinov R,

Wolfson HJ (2008) FireDock: a web server for fast interaction

refinement in molecular docking. Nucleic Acids Res 36:229–232

Morlock GP, Metchock B, Sikes D, Crawford JT, Cooksey RC (2003)

ethA, inhA, and katG loci of ethionamide-resistant clinical

Mycobacterium tuberculosis isolates. Antimicrob Agents Che-

mother 47:3799–3805

Morris S, Bai GH, Suffys P, Portillo-Gomez L, Fairchok M, Rouse D

(1995) Molecular mechanisms of multiple drug resistance in

clinical isolates of Mycobacterium tuberculosis. J Infect Dis

171:954–960

Muegge I (2003) Selection criteria for drug-like compounds. Med Res

Rev 23:302–321

Musser JM, Kapur V, Williams DL, Kreiswirth BN, van Soolingen D,

van Embden JD (1996) Characterization of the catalase–perox-

idase gene (KatG) and inhA locus in isoniazid-resistant and

susceptible strains of Mycobacterium tuberculosis by automated

DNA sequencing: restricted array of mutations associated with

drug resistance. J Infect Dis 173:196–202

Noguti GN, Nishikawa T (1983) Dynamics of a small globular protein

in terms of low-frequency vibrational modes. Proc Natl Acad Sci

USA 80:3696–3700

Oprea TI (2000) Property distribution of drug-related chemical

databases. J Comput Aided Mol Des 14:64–251

Oprea TI, Matter H (2004) Integrating virtual screening in lead

discovery. Curr Opin Chem Biol 8:349–358

Ormerod LP (2005) Multidrug-resistant tuberculosis (MDR-TB):

epidemiology, prevention and treatment. Br Med Bull 14:73–74

Pasqualoto KF, Ferreira EI, Santos-Filho OA (2004) Rational design

of new antituberculosis agents: receptor-independent four-

dimensional quantitation structure–activity relationship analysis

of a set of isoniazid derivatives. J Med Chem 47:3755–3764

Proudfoot JR (2002) Drugs, leads, and drug-likeness: an analysis of

some recently launched drugs. Bioorg Med Chem Lett

12:1647–1650

Quemard A, Dessen A, Sugantino M, Jacobs WR, Sacchettini JC,

Blanchard JS (1996) Binding of catalase–peroxidase-activated

isoniazid to native-type and mutant Mycobacterium tuberculosis

enoyl-ACP reductases. J Am Chem Soc 118:1561–1562

Rawat R, Whitty A, Tonge PJ (2003) The isoniazid-NAD adduct is a

slow, tight-binding inhibitor of InhA, the Mycobacterium

tuberculosis enoyl reductase: adduct affinity and drug resistance.

Proc Natl Acad Sci USA 100:13881–13886

Rozwarski DA, Grant GA, Barton DH, Jacobs WR Jr, Sacchettini JC

(1998) Modification of the NADH of the isoniazid target (InhA)

from Mycobacterium tuberculosis. Science 279:98–102

Sander T (2001) OSIRIS Property Explorer. Actelion Pharmaceuticals

Ltd 81:6–16. http://www.organicchemistry.org/prog/peo/

Shoichet BK (2004) Virtual screening of chemical libraries. Nature

432:862–865

Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ

(2005) GROMACS: fast, flexible, and free. J Comput Chem

26:1701–1718

Suhre K, Sanejouand YH (2004) ElNemo: a normal mode web-server

for protein movement analysis and the generation of templates

for molecular replacement. Nucl Acids Res 32:610–614

Tama F, Sanejouand YH (2001) Conformational change of proteins

arising from normal mode calculations. Protein Eng 14:1–6
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