Header menu link for other important links
Image pre-processing of icing transmission line based on fuzzy clustering
Published in Inderscience Publishers
Volume: 17
Issue: 4
Pages: 483 - 496
This paper considers an improvisation in software fault prediction research area using supervised classification algorithms and it mainly focuses to increase the performance of fault prediction. In this paper, we propose a hybrid prediction model using Naïve Bayes and k-nearest neighbour classification algorithm with vote ensemble method; in short it called as hNK. The goal of this model is to predict the best classification algorithm for software fault prediction based on the metrics and attributes of datasets. In the work, we have applied training sets and testing sets in hNK model with ensemble vote and we proposed the model to identify a suitable classification algorithm for fault prediction based on the accuracy and precision. We have achieved better results using hNK model for classifying supervised algorithms with different dataset. Copyright © 2018 Inderscience Enterprises Ltd.
About the journal
JournalInternational Journal of Intelligent Systems Technologies and Applications
PublisherInderscience Publishers
Open AccessNo