Header menu link for other important links
X
Impact of NBTI induced variations on delay locked loop multi-phase clock generator
Sriram S.R,
Published in Elsevier BV
2016
Volume: 60
   
Pages: 33 - 40
Abstract
Negative bias temperature instability (NBTI) is a serious reliability concern for both analog and digital CMOS VLSI circuits. The shift in threshold voltage and reduction in drain current due to NBTI in p-channel MOSFETs are time, bias and temperature dependent. The degradation of the PMOS at any critical nodes in the circuit leads to the failure of the circuit immediately or in few months/year. The Delay-Locked-Loop (DLL) which is used as multi-phase clock generator for microprocessors, frequency synthesizers, time-to-digital converter (TDC) etc. reduces the phase error between output and reference clock until it is locked. The delay variations due to process, voltage and temperature fluctuations are governed by its feedback system. At start-up, the phase shift of the output clock should lie between 0.5 and 1.5 times the time period of the reference clock to achieve regular locking. The deviations from the above criteria due to NBTI degradation directly affect the control system and lead to erroneous locking. The NBTI-induced time-dependent variation in PMOS of the delay stage in voltage-controlled delay line (VCDL) of DLL affects the delay in each stage of VCDL and propagates as phase error to the output clock. This paper analyzes the impact of NBTI-induced time-dependent variations in Delay-Locked-Loop (DLL) based clock generators for the first time. The DLL is designed with 180 nm technologies with working frequency range from 75 MHz to 220 MHz. The time dependent variations in VCDL, the most sensitive blocks of DLL, are analyzed. It is observed that these time-dependent variations increase the phase error and the working of DLL is severely affected at the rearmost end of frequency range. The output clock gets deviated and observed to be locked late after π/2 or π radians from the nominal lock. It is essential to prevent DLL locking to an incorrect delay or false lock and to bring the output clock back to the correct position. An adaptive body bias circuit is proposed in this paper to reduce the impact of NBTI degradation and thereby to prevent erroneous locking in DLL. © 2016 Elsevier Ltd. All rights reserved.
About the journal
JournalData powered by TypesetMicroelectronics Reliability
PublisherData powered by TypesetElsevier BV
ISSN0026-2714
Open AccessNo