Header menu link for other important links
X
Impact of single nucleotide polymorphisms in HBB gene causing haemoglobinopathies: in silico analysis
Published in Elsevier BV
2009
PMID: 19429541
Volume: 25
   
Issue: 4
Pages: 214 - 219
Abstract
Single nucleotide polymorphisms (SNPs) are being intensively studied to understand the biological basis of complex traits and diseases. Deleterious mutations of the human beta-globin gene (HBB) are responsible for beta-thalassaemia and other haemoglobinopathies, which are the most common genetic diseases of blood. Single amino acid substitutions in the globin chain are the commonest forms of haemoglobinopathy. Although many haemoglobinopathies present similar structural abnormal points, their functions sometimes are different. Here, using computational methods, we analysed the genetic variations that can alter the expression and function of the HBB gene. We applied an evolutionary perspective to screen the SNPs using a sequence homology-based SIFT tool, which suggested that 210 (90%) non-synonymous (ns)SNPs were found to be deleterious. The structure-based approach PolyPhen server suggested that 134 (57%) nsSNPS may disrupt protein function and structure. The PupaSuite tool predicted the phenotypic effect of SNPs on the structure and function of the affected protein. Structure analysis was carried out with the major mutation that occurred in the native protein coded by the HBB gene in HbC, HbD, HbE and HbS. The amino acid residues in the native and mutant modelled protein were further analysed for solvent accessibility, and secondary structure to check the stability of the proteins. The functional analysis presented here may be a good model for further research.
About the journal
JournalData powered by TypesetNew Biotechnology
PublisherData powered by TypesetElsevier BV
ISSN1871-6784
Open Access0