Header menu link for other important links
Improvement of Machinability using Laser-Aided Hybrid Machining for Inconel 718 Alloy
Published in Informa UK Limited
Volume: 31
Issue: 14
Pages: 1825 - 1835
Hybrid machining is an emerging technique for difficult-to-cut materials to overcome the problems associated with conventional machining (CM). Inconel 718, a super alloy of nickel, is a high-temperature alloy commonly used in aircraft and thermal industries and categorized as one among the difficult-to-cut materials. In this study, the influence of cutting conditions of Inconel 718 alloy during laser-assisted hybrid machining (LAHM) is investigated and the results are compared with CM. During LAHM, the process parameters of cutting speed, feed rate, approach angle, and laser power are varied. The present work is carried out in two phases: (i) determination of effective heat-affected depth (HAD) during laser preheating (using central composite design (CCD) in response surface methodology); (ii) optimization of cutting conditions during machining (using Taguchi's method). Compared with CM, the LAHM shows the following reduction benefits: (i) 33% in feed force (Fx), 42% in thrust force (Fy), and 28% in cutting force; (ii) improved surface finish (surface roughness, Ra) of 28%; and (iii) reduction in tool wear by 50%. The chip morphology reveals the decrease in shear angle and increase in chip thickness during LAHM. No change in the hardness value of the machined surface after LAHM indicates the absence of subsurface damage. © 2016, Copyright © Taylor & Francis Group, LLC.
About the journal
JournalMaterials and Manufacturing Processes
PublisherInforma UK Limited
Open AccessNo