
Improving the Classification of
Alzheimer’s Disease Using Hybrid
Gene Selection Pipeline and Deep
Learning
Nivedhitha Mahendran 1, P. M. Durai Raj Vincent 1*, Kathiravan Srinivasan 2 and

Chuan-Yu Chang 3*

1School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India, 2School of Computer Science

and Engineering, Vellore Institute of Technology, Vellore, India, 3Department of Computer Science and Information Engineering,

National Yunlin University of Science and Technology, Yunlin, Taiwan

Alzheimer’s is a progressive, irreversible, neurodegenerative brain disease. Even with

prominent symptoms, it takes years to notice, decode, and reveal Alzheimer’s. However,

advancements in technologies, such as imaging techniques, help in early diagnosis. Still,

sometimes the results are inaccurate, which delays the treatment. Thus, the research in

recent times focused on identifying the molecular biomarkers that differentiate the

genotype and phenotype characteristics. However, the gene expression dataset’s

generated features are huge, 1,000 or even more than 10,000. To overcome such a

curse of dimensionality, feature selection techniques are introduced. We designed a gene

selection pipeline combining a filter, wrapper, and unsupervised method to select the

relevant genes. We combined the minimum Redundancy and maximum Relevance

(mRmR), Wrapper-based Particle Swarm Optimization (WPSO), and Auto encoder to

select the relevant features. We used the GSE5281 Alzheimer’s dataset from the Gene

Expression Omnibus We implemented an Improved Deep Belief Network (IDBN) with

simple stopping criteria after choosing the relevant genes. We used a Bayesian

Optimization technique to tune the hyperparameters in the Improved Deep Belief

Network. The tabulated results show that the proposed pipeline shows promising results.
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INTRODUCTION

Dementia is a broad term for a group of disorders with abnormal changes in the brain. The common
forms of dementia interrupt the communication between the brain cells (Salat et al., 2001). When the
communication between the cells is disrupted, the cognitive abilities, such as memory loss, feelings,
thinking, and problem solving, behavior, and language proficiency of the individual will also be
disrupted (Jo et al., 2019). Some of the common types of dementia are Parkinson’s disease, Lewy body
dementia, Alzheimer’s disease (AD), Down’s syndrome, vascular dementia, dementia caused by
alcohol, and HIV. Among these, 60–70% is accounted for by AD (Lawrence and Sahakian, 1995).
Recently, there are increasing researches in the field of gerontology, a study of the physical aspects of
aging. One such neurological disorder that appears in the elderly is the AD. Our work in this paper
focuses on AD. AD is known to humankind for more than 100 years, yet the molecular mechanism
and pathogenesis is far from fully understood (Reitz et al., 2011).
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As commonly said, AD is a progressive, neurodegenerative
brain disease, which is irreversible. The term progressive
concerning AD means it gets worse over time because of
irreversible degeneration of neurons (neurodegenerative)
(Nussbaum and Ellis, 2003). In other words, the pathological
change of AD is a slowly accumulating process. AD affects the
hippocampus and cortex regions of the brain primarily. The
primary reason for developing AD symptoms is more than the
required accumulation of proteins around the brain cells (Wenk,
2003). The high levels of proteins make the communication
between brain cells tedious. The actual reason for the onset of
AD is still uncertain. Yet, few hypotheses were framed over the
years, such as the accumulation of Tau and amyloid proteins,
cholinergic, and genetics (Citron, 2010). Even with dominant
symptoms, the dysfunctions of AD take years to be noticed,
decoded, and revealed.

The early diagnosis starts with recognizing the mild cognitive
impairment (MCI), which has a high possibility of causing AD
(Liu et al., 2014). The onset of AD is commonly found around
65 years; however, early onset at a younger age is rare. Even after
thorough research, the cause and progression seem to be
uncertain (Huber et al., 2018). The proper diagnosis can be
made only after the autopsy, yet, with advanced technologies
in clinical screening, such as cerebrospinal fluid analysis, imaging
techniques have led to early AD diagnosis. These methods
provide inaccurate results, which delays the treatment at times
(Wang and Liu, 2019). The limitations in clinical screening have
led to the molecular data-based analysis. Identifying molecular
biomarkers offers promising results, as it establishes accurate
relationships between the phenotype and genotype symptoms.
The accurate and early diagnosis of ADwill help patients have the
awareness and indulge in preventive measures, for instance,
medications and changes in their lifestyle.

Although the molecular biomarkers offer better results than
the clinical screening, the environmental and genetic factors
should be taken into account. There are more than 1,000 even
10,000 features generated through transcripts, genes, proteins,
and their interaction with each other (Moradifard et al., 2018). It
is a considerable challenge to find the AD causing biomarkers
from such Big data. Thus, machine learning and Artificial
intelligence-based methods are focused on these days to meet
the challenges. There is another issue with the molecular
biomarkers; more than the volume, the dimensionality of the
dataset increases faster (Tanveer et al., 2020). Molecular data,
such as gene expression, are ultra-high dimensional datasets. The
dimensionality is achieving higher levels of thousands and
hundreds of thousands.

Meanwhile, the sample size did not witness the same amount
of growth. Such a situation is commonly known as the High
Dimensionality Low Sample Size (HDLSS) problem or “curse of
dimensionality”. The machine learning techniques widely used
are not suited for such cursed dimensional data (Lee and Lee,
2020). The inconsistent ratio between the number of features and
the number of samples will lead to overfitting, incompatible
algorithm, and extended computational time.

To solve the curse of dimensionality problem, feature selection
is proposed as a solution. In this study, we develop a gene

selection pipeline combining filter, wrapper, and unsupervised
method to select the relevant features in causing AD. Later, the
selected genes are passed through the Improved Deep Belief
Network (IDBN), which is implemented to classify the AD
and non-AD individuals. The selection of relevant features will
make the classification of AD and non-AD individuals accurate
and easy.

BACKGROUND AND MOTIVATION

Alzheimer’s Disease and Machine Learning
Algorithms
The most widely used technique in diagnosing AD is the clinical
screening methods, such as brain imaging. At times, the clinical
screening methods provide inaccurate results due to technical
errors, which eventually delays the treatment. Hence, the research
is gradually moving towards molecular data, for instance,
microarray data. In the process of finding out differentially
expressed genes, thousands of genes are captured and
monitored to evaluate the effects of a disease or a treatment
(Fung and Stoeckel, 2007). For detecting the expression of
hundreds and thousands of genes simultaneously, microarray
technology is used widely. In microarray, thousands of genes or
DNA sequences are printed in already defined positions. The
DNA microarray datasets have vast volumes of genes captured,
which might not be relevant to the undertaken domain
(treatment/disease) (Huang et al., 2018).

Considering the huge volume of features involved, machine
learning-based methods help greatly in classifying AD patients
from healthy individuals. Machine learning is a continuously
growing area of research, advantageous in many domains, mainly
in healthcare. Machine learning algorithms are trained on a set of
data, learn from the data, find out the patterns, and predict the
future possibilities without much human intervention (Orimaye
et al., 2017). It is a part of Artificial Intelligence, assists in data
analysis, and automates model building. There are three
categories of machine learning algorithm based on the dataset
used (Hutter et al., 2019): supervised learning, when the data are
structured and attributes are labeled; unsupervised learning,
when the data are unstructured and the attributes are
unlabeled; and semi-supervised/semi-unsupervised learning,
when the data are a combination of supervised and
unsupervised categories. Although machine learning
algorithms offer great assistance in finding patterns and
classification, it is not suitable when the ratio of sample to
feature is largely different. In that case, machine learning
algorithms will have an overfitting problem.

Related Works
Artificial Intelligent models have been widely deployed in
genetics research (Mahendran et al., 2020). Deep learning
approaches remove certain data pre-processing, which is
usually deployed in machine learning (Srinivasan et al., 2017;
Agarwal et al., 2018; Chakriswaran et al., 2019; Khan et al., 2021a;
Khan et al., 2021b; Khan et al., 2021c) (Sanchez-Riera et al., 2018;
Srinivasan et al., 2020; Afza et al., 2021; Ashwini et al., 2021;
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Attique Khan et al., 2021; Khan et al., 2021d; Mamdiwar et al.,
2021; Srinivasan et al., 2021). AD is a neurological disorder
identified through brain imaging, and there are many works
focused on classifying AD through brain images with the help of
machine learning or deep learning techniques. For instance,
Convolutional Neural Network (CNN) and LeNet architecture
is applied on the MRI data to classify AD (Sarraf and Tofighi,
2016a). There are many such works focused on classifying AD
through the brain images (Sarraf and Tofighi, 2016b; Farooq
et al., 2017; Ji et al., 2019; Ramzan et al., 2020; Tufail et al., 2020),
though the imaging data provide inaccurate results at times.
Thus, the focus recently is shifted to the molecular dataset
such as the Gene Expression and DNA Methylation data,
though the problem with such data is the dimensionality.
There is a huge number of features, yet very small sample size.

Therefore, the research is focused more on the gene selection
techniques to select the relevant features in classifying the AD.
For instance, Park et al. (Park et al., 2020) implemented machine
learning-based gene selection and a deep learning classifier
combining the gene expression and DNA Methylation
datasets. Also, the gene pair interaction-based research is done
to identify the biomarkers accurately to classify the AD (Chen
et al., 2019). Furthermore, there are approaches implemented to
detect the possible progression of a dementia to AD with the help
of machine learning techniques (Martínez-Ballesteros et al., 2017;
Miao et al., 2017). Also, the artificial intelligence approaches are
adopted in precision medicine to validate the drugs for AD.

Feature Selection
There are four mainly used feature selection techniques, Filter,
Wrapper, Hybrid, and Ensemble (Bashir et al., 2019). Filter-based
techniques are independent of the classifier model and
computationally efficient at times (Acharya et al., 2019). The
search for relevant features is isolated completely from the
classifier model. The features with the lowest relevance score
are eliminated. The filter methods are further classified into
univariate and multivariate filters, where univariate treats and
evaluates the features individually and multivariate evaluates the
feature dependencies. The wrapper methods are implemented as
a part of the classification model (Zhou et al., 2018). The feature
subsets selected are validated through training and testing
datasets. The features with maximum evaluation score are
selected for the final classification. The wrapper method’s
major drawbacks are as follows: it demands high
computational time, it is classifier dependent, and overfitting
(Mirzaei et al., 2018).

The ensemble methods simultaneously build different feature
subsets and combine the results using standard aggregate
methods, such as majority voting, sum rule, mean rule, and
weighted voting (Pes, 2019). The exponential growth of
technologies across all the domains created a data explosion,
which is continuously spreading at an unprecedented speed. The
previously mentioned feature selection methods are not suitably
designed for a dataset with HDLSS problem and unstable and not
robust with changing inputs. Thus, ensemble methods are
designed aiming to bring more robustness and stability to the
model (Neumann et al., 2017). The main goal of the ensemble

model is to attain a better trade-off between stability and
predictive performance. The ensemble methods are generally
grouped under homogeneous and heterogeneous methods. The
homogeneous algorithms use selection algorithm with the
varying dataset, for instance, boosting or bagging. The
homogeneous ensembles handle the stability issues better. The
heterogeneous ensembles implement different selection
algorithms with the same dataset. In both cases, the output
will be combined to a single feature set, which probably
provides an optimal solution (Pes, 2019). Apart from
homogeneous and heterogeneous methods, there is another
group called the hybrid, which uses different selection
algorithms with other datasets.

Though these three feature selection methods are needed,
there are various reasons that make them unreliable, unstable,
and sometimes ignore the algorithms’ stability. However, there is
a fourth method that is focused on much these days, the hybrid
method. To solve the issues with respect to filter and wrapper
methods, a hybridmethod is introduced. It combines two or more
feature selection techniques and produces a new method with
added benefits. In most cases, wrapper and filter methods are
made hybrid by combining their advantages (Hoque et al., 2018;
Kollias et al., 2018; Thavavel and Karthiyayini, 2018). This study
implemented a feature selection pipeline for selecting relevant
genes from the rawAlzheimer’s gene expression dataset. The filter
method is simple and ignores the feature dependencies most of
the time and also occasionally includes the redundant features.
Wrapper methods are at high risk of overfitting and are stuck in
the local optima. It is also computationally intensive. Ensemble
methods are better than filter and wrapper; however, on the
dataset with the High Dimensional and Low Sample Size
(HDLSS) issue, it does not perform well. Thus, we desired to
implement a feature selection method catering to the HDLSS
issue. Hybrid methods are flexible and robust upon high-
dimensional data. Also, they offer higher performance and
better computational complexity than the filter and wrapper
methods. The pipeline consists of a filter method, wrapper
method, and unsupervised gene selection method.

DATASET AND RESOURCES

For a better treatment of AD, the gene expressions are captured
preferentially during normal neurological aging (Lima et al., 2016;
Carpenter and Huang, 2018). The data captured during the
course of AD will improve the understanding of the
underlying pathogenesis of AD. This practice will help in the
early diagnosis and treatment of AD. The dataset (GSE5281)
(Liang et al., 2007) used in this study is from one of the widely
accessed data repository, Gene Expression Omnibus (GEO). The
dataset consists of information about AD and normal aged brain
with 161 samples and 54,675 features (gene expression). The gene
expressions are captured from six brain regions of Homo sapiens
using the LCM cells on the Affymetrix U133 plus 2.0 array with
approximately 55,000 transcripts. Among the 161 records, 74
controls and 87 are affected. We have used RStudio for
implementing the mentioned approaches in this study. To
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analyze the gene expression dataset, R has many beneficial
packages such as the Bio-conductor.

METHODOLOGY

We implemented a gene selection pipeline by combining a filter
(mRmR), wrapper (Wrapper-based PSO), and unsupervised
method (Autoencoder). The mRmR eliminates the genes with
maximum redundancy (high correlation among themselves) and
the selected genes are inputted to the Wrapper-based PSO, which
has k-means as the wrapper method and selects the relevant genes.
The selected genes are passed through an autoencoder for further
compression. The compressed genes are used for classifying the
AD and non-AD individuals using the IDBN. The process flow of
the proposed framework is shown in Figure 1.

Minimum Redundancy and Maximum
Relevance (mRmR)
mRmR is the most widely used practical statistical approach for
feature selection. It was proposed by Peng et al. (Ding and Peng,
2005) initially for classifying patterns. The mRmRmethod strives
to choose the feature subset that is highly relevant to the outcome
(target class) and minimally redundant. In simple terms, the
features are highly similar to the outcome class (relevance) and
dissimilar among themselves (redundancy). The feature selection
process in mRmR is carried out by adding the features with the
highest feature importance to the feature list at each step (El
Akadi et al., 2011; Billah and Waheed, 2020).

The aim of mRmR in gene selection is to select a gene subset,
Gs, with {Xm} features that are highly correlated with the target
class T (output class). The mRmR involves three steps, finding the

relevance, finding the redundancy, and combining the two to get
the mRmR feature set.

Step 1. Maximum Relevance
The maximum relevance is calculated using the mean of

Mutual Information of all the features in Xm with target class
T. The Mutual Information between R and S random variables
can be calculated by

MI(R, S) � ∑
r∈ΩR

∑
s∈ΩS

p(r, s)log
p(r, s)

p(r)p(s)
(1)

Where.
R—response variable.
S—number of features.
ΩR and ΩS—sample spaces with respect to R and S,
p (r, s)—joint probability density, and
p ()—marginal density function.
The maximum relevance is given by

Relevance(Gs) �
1

|Gs|
∑

Xm∈Gs

MI(T,Xm) (2)

Where MI(T, Xm)—Mutual Information of feature Xm with
class T.

Step 2. Minimum Redundancy
The minimum redundancy is calculated with the formula

Redundancy(Gs) �
1

|Gs|
2 ∑

Xi ,Xj∈Gs

MI(Xi, Xj) (3)

Step 3. Combining the above two constraints

FIGURE 1 | Process flow diagram—proposed system.
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The maximum relevance and minimum redundancy are
combined to form the mRmR using the formula

max α[Relevance(Gs),Redundancy(Gs)] (4)

Where α � (Relevance (Gs) − Redundancy (Gs))

Particle Swarm Optimization (PSO)
PSO is a stochastic, metaheuristic algorithm inspired by the birds’
swarming behavior. From the birds’ flocking behavior, it is
understood that each individual is affected by the leader or the
global optima and the personal performance or the local optima

(Deepthi and Thampi, 2015). The PSO is an optimization
technique based on population proposed by Eberhart and
Kennedy (Kennedy and Eberhart, 1995), successfully applied
in many global search problems. It is considered in many
feature selection problems as it is easy to implement, and has
reasonable computational time, global search, and fewer
parameters.

In PSO, the population is initialized with particles, each having
its own position and velocity. The quality of the particles is
estimated at each iteration with the help of a fitness function.
Every particle in the search space will carry the present position

FIGURE 2 | Boxplot of gene expression data before transformation.

FIGURE 3 | Boxplot of gene expression data after transformation.
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FIGURE 4 | Heat map of differentially expressed genes.

FIGURE 5 | p-value and fold change plot.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7848146

Mahendran et al. Improving the Classification of Alzheimer’s Disease



(xppos), present velocity (vpvel), and personal best (ypbest). After
every iteration, the velocity can be updated by

vpvel(new) � iwvpvel(old) + ac1r1(ypbest − xppos(old))

+ ac2r2(ŷgbest − xppos(old)) (5)

Where.
iw—inertia weight,
ac1 and ac2—acceleration constants,
r1 and r2—random numbers (range [0, 1]),
vpvel (old)—present best solution of the particle,
ypbest—personal best solution of the particle, and
ŷgbest—global best solution.
The new position of the particle can be determined by

xppos(new) � xppos + vpvel(new) (6)

The positions and the velocity of the particle are updated at
every iteration using the formulas given. The process is stopped
when certain minimized fitness function criteria are achieved or a
particular predefined iteration is reached. For position and
velocity updates, the particles use the knowledge of their own
and that of other neighboring particles. The final output
represents the optimal feature set. We implemented a
wrapper-based PSO with the k-means algorithm as the
wrapper method. This wrapper method will aid in overcoming
the problem of reaching local optima.

The fitness function for each subset is calculated using the
below equation,

Sum of Squared Error � ∑
k

x�1

∑
i∈Cx

d2(cx, i) (7)

Where.
k—number of clusters,
i—object in the cluster,
cx—cluster centroid, and
d—Euclidean distance.

Autoencoders
Autoencoder is an artificial neural network with feed-forward
processing. The autoencoder consists of input and output with
one ormore hidden layers, where the number of neurons (features)
in the input and output layer is the same (Chicco et al., 2014). The
autoencoder’s main aim is to reconstruct the inputs such that the
difference between the input and the output is minimized. The
learning in autoencoder is compressed and distributed (encoding)
(Ferri et al., 2021). The training of autoencoder involves three steps:

1. If “x” is the input and “x̂" is the output, the feed-forward
pass is done to estimate the values of all the nodes in the hidden
layers after applying the activation function. For an
autoencoder with a single hidden layer, the hidden unit
vector hu is given by

hu � afunc(We.x + biase) (8)

Where.
hu—hidden unit,
afunc—activation function.
We—parameter matrix (encoding),
x—input, and
biase—bias parameter vector (encoding).
2. Map the hidden representation into the space “x” with the

help of the decoding function. The decoding function is given by

x̂ � afunc(Wd.hu, +biasd) (9)

Where.
Wd—parameter matrix (decoding) and
biasd—bias parameter vector (decoding).
3. Calculate back propagation error using the formula

MSE(x, x̂) � ‖x − x̂‖22 � ‖x − (Wd.hu + biasd)‖
2
2 (10)

Deep Belief Network
In Deep Belief Network (DBN), the Restricted BoltzmannMachines
are stacked together to form a network (An et al., 2020). RBMs are

TABLE 1 | Results analysis.

Feature selection

technique

Evaluation metrics SVM LDA NB MLP IDBN

PCA Sensitivity 86.61 81.28 83.50 89.35 94.68

Specificity 82.57 83.07 88.96 87.48 92.38

Accuracy 87.62 85.94 83.08 91.87 94.96

FMeasure 88.42 83.26 88.78 90.05 91.20

CBFS Sensitivity 78.65 76.27 75.58 80.26 85.46

Specificity 77.57 78.31 76.27 79.56 83.87

Accuracy 79.04 77.65 76.89 82.07 85.96

FMeasure 76.32 76.07 75.63 80.10 82.08

mRmR Sensitivity 83.61 82.51 80.51 85.40 89.36

Specificity 83.45 80.87 81.02 85.07 87.12

Accuracy 85.21 84.78 83.45 87.80 91.58

FMeasure 84.93 81.02 81.07 86.18 90.55

mRmR-WPSO-AE Sensitivity 92.43 88.71 85.64 91.51 94.54

Specificity 91.07 89.36 86.97 92.87 96.17

Accuracy 92.91 89.74 88.75 94.56 96.78

FMeasure 90.64 87.98 85.50 92.06 95.09
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energy-based generative models with two layers, visible and hidden.
Both the layers have nodes connected to each other (Mahendran
et al., 2020; Sureshkumar et al., 2020). The major components in
RBMs are bias, weight, and activation function (Le Roux and Bengio,
2008; Sekaran and Sudha, 2020). The output is produced after
processing with the activation function. We implemented an
IDBN with stopping criteria. We chose the hyperparameters
using the Bayesian Optimization technique. The Bayesian
approach for tuning the hyperparameter keeps past records
and verifies the probability to select the next set of parameters.
It takes informative decisions in choosing the parameters. The
final values for the hyperparameters in IDBN are as follows:
learning rate � 0.01, hidden layers � 9, number of nodes per
layer � 342, and dropout rate � 0.85. We used the Rectified

Linear Unit (RLu) as the activation function. To avoid the
overfitting problem, we introduced a stopping criteria strategy.
After every 40 epochs, the test accuracy of the last 10 epochs
will be compared and checked for convergence, and the
training accuracy will also be checked. If both the
conditions are satisfied, the learning is ended.

Evaluation Metrics
For evaluating the results of the proposed model, we have used
the standard evaluation metrics such as Accuracy, Sensitivity,
Specificity, and FMeasure.

• Accuracy: It is a simple ratio between the correctly classified
as AD and non-AD to the total number of samples.

FIGURE 6 | Performance analysis—PCA.

FIGURE 7 | Performance analysis—CBFS.
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• Sensitivity: It is a measure to identify correctly those
with AD.

• Specificity: It is a measure to identify correctly those
without AD.

• FMeasure: It is the weighted average of recall and precision
(the percentage of samples that are classified as AD positive
and are actually positive).

Pseudocode

mRmR—WPSO—AE
mRmR.
Input: Candidates (set of initial genes).

Step 1: for genes gi in candidates do.
Step 2: relevance � calculate the relevance score using Eq. 2;
Step 3: redundancy � 0;
Step 4: for genes gj in candidates do.
Step 5: redundancy � calculate the redundancy score

using Eq. 3;
Step 6: end for.
Step 7: mrmr_values [gi] � Eq. 4;
Step 8: end for.
Step 9: selected_genes � take (number_of_genes_required);
WPSO.
Step 10: Initialize x random gene subsets from the

selected_genes with y number of genes in each subset.

FIGURE 8 | Performance analysis—mRmR.

FIGURE 9 | Performance analysis—mRmR-WPSO-AE.
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Step 11: For every random subset x, initialize position and
velocity vectors.

Step 12: Cluster initial subset with K � k using k-means
clustering.

Step 13: Evaluate the fitness_value using Eq. 7

Step 14: Based on the fitness function, update the subset’s pbest
and pbestloc.

Step 15: repeat.
Step 16: if (fitness_value < pbest) then.
Step 17: update pbest and pbestloc;
Step 18: end if.
Step 19: Initialize gbest and gbestloc after finding the minimum

fitness_value in all the subsets.
Step 20: for j � 0 to swarm_size-1 do.
Step 21: Estimate velocity using Eq. 5;
Step 22: Update subset location using Eq. 6;
Step 23: end for.
Step 24: Set the fitness_value by computing the squared error

using the present location of the gene subset.
Step 25: until predefined number of iterations reached;
Output: Best subset of genes (gbestloc).
Autoencoder.
Input: gbestloc_matrix (GM) ∈ {0, 1}m×n, where m and n are

genes and features.
Step 26: Initialize hidden units (hu), where hu <m, and hidden

layers (d).
Step 27: Training:
Step 28: for each GMi (gene profile) of GM, where i ∈ [1, m].
Step 29: for each hidden layer d.
Step 30: compute hidden activation function using Eq. 8

Step 31: reconstruct the output using Eq. 9

Step 32: evaluate the error using Eq. 10

Step 33: update the weight by back propagating the error.
Step 34: Testing:
Step 35: for each GMi (gene profile) of GM, where i ∈ [1, m].
Step 36: autoencode GMi and produce. ĜMi

Step 37: set ĜMi as ith row of the output matrix. G̃M

RESULTS AND DISCUSSION

This study’s primary aim is to improve the classification accuracy
of the model in classifying Alzheimer patients by selecting the
most relevant feature subset. The dataset used in this study has
161 samples and 54,675 features. The raw gene expression level
data are highly skewed, as can be seen in the box plot shown in
Figure 2. Thus, we applied log2 transformation to make it
symmetrical. The results after applying the log2
transformation can be seen in the box plot shown in Figure 3.
We applied Z-score normalization on the transformed data to
make it comparable across all the platforms. Once the data are
normalized, the differentially expressed genes are identified with
fold change and p-value. The threshold used for fold change and
p-value is |FC| > 2 and p-value > 0.01. The heat map from
Figure 4 shows the levels of differentially expressed genes. The
plot from Figure 5 shows the p-value and fold change levels of the
differentially expressed genes. False represents the expression
levels that are below the threshold, and true represents the
expression levels that are above the threshold. The respective
genes are selected and carried forward for the next stage, which is
feature selection.

We designed a feature selection pipeline with mRmR, PSO,
and autoencoder. The mRmR selects the gene with maximum
relevance and minimum redundancy. Then, we applied a
wrapper-based PSO technique with k-means clustering as the
wrapper to further select the candidate genes. The candidate
genes selected are passed through an autoencoder to form the
latent representation of the provided input, compress the data
without much information loss, and then rebuild as output with
as low error as possible. The primary goal of passing the genes
through autoencoder is to make the data less sensitive to
variations in training. After selecting the relevant features

FIGURE 10 | Accuracy comparison of the implemented models.
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(CTD-3092A11.2, CHGB, JPX, MAFF, AC004951.6, APLNR,
MT1M, SST, PCYOX1L, PRO 1804, and SLC39A12), we
implemented an IDBN.

We used the leave-one-out cross-validation method to
evaluate the proposed model (Srinivasan et al., 2019). Leave-
one-out validation is used because the sample size is less than
the feature size. The metrics we used to evaluate the model are
Sensitivity, Specificity, Accuracy, and FMeasure. We compared
the results of the proposed feature selection pipeline with widely
used Principal Component Analysis (PCA), Correlation-based
Feature Selection (CBFS), and minimum Redundancy and
maximum Relevance (mRmR). We also implemented two
linear and two non-linear classifiers Support Vector Machine
(SVM), Linear Discriminant Analysis (LDA), Naïve Bayes (NB),
and Multi-Layer Perceptron (MLP), to compare the results with
the IDBN.

The results are tabulated in Table 1. The tabulated results
show that the proposed feature selection algorithm pipeline
(mRmR-WPSO-AE), along with IDBN, classifies Alzheimer’s
slightly better than the other implemented models. The linear
models SVM and LDA produce an accuracy of 92.91 and 89.74%
with the proposed gene selection pipeline, which is better than the
PCA’s 87.62% (SVM), 85.94% (LDA), CBFS’s 79.04% (SVM),
77.65% (LDA), andmRmR’s 85.21% (SVM), 84.78% (LDA). Also,
with the non-linear models, NB and MLP produce an accuracy of
88.75 and 94.56%, which is again better than the PCA’s 83.08%
(NB), 91.87% (MLP), CBFS’s 76.89% (NB), 82.07% (MLP), and
mRmR’s 83.45% (NB), 87.80% (MLP). SVM performs better
among the linear models than LDA along all the implemented
gene selection methods, and MLP performs better than NB in the
non-linear category. The combination of the proposed gene
selection pipeline (mRmR-WPSO-AE) and IDBN shows the
promising result with 96.78% accuracy in classifying
Alzheimer’s patients. From the plots shown in Figures 6–9, it
is clear that IDBN shows slightly better results than the other
implemented classification models. The plot from Figure 10

shows the Accuracy comparison of the implemented models.
The plot shows that the IDBN and mRmR-WPSO-AE have better
accuracy than the other models.

CONCLUSION AND FUTURE WORK

Alzheimer’s is a progressive degenerative brain disease in the
elderly. It is difficult to diagnose even with dominant symptoms.
The proper diagnoses are made only during an autopsy after the
death of the individual. Recent advances have made it easy to be
detected early, using clinical screening with technologies such as
brain imaging. Although brain imaging proves effective in most

cases, in some cases, the results are inaccurate. The inaccuracies
in the results make it difficult for early diagnoses and appropriate
treatment for the individual. Thus, the research now shifts to
molecular biomarker identification, which helps to differentiate
clearly between genotype and phenotype characteristics.

The molecular data-based research proves to be effective. Still,
it generates huge volumes of data consisting of transcripts,
transcriptomes, etc. It creates a “curse of dimensionality”
problem. Thus, machine learning-based feature selection
techniques are implemented to select only the relevant genes
affecting the target class (outcome). We implemented one such
gene selection method for choosing the relevant genes. We
designed a hybrid gene selection pipeline by combining
mRmR, WPSO, and AE. We compared the results with other
commonly used feature selection techniques, such as PCA, CBFS,
andmRmR.We compared the results by implementing two linear
(SVM and LDA) and two non-linear (NB and MLP) machine
learning classification algorithms. We also implemented the
IDBN with simple criteria to avoid overfitting. The results
show that the proposed pipeline and the IDBN perform
slightly better than the linear and non-linear models
implemented in this study. In the future, we would implement
the proposed pipeline on SNP and DNA Methylation dataset to
evaluate the model’s generalization.
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