Header menu link for other important links
X
In Silico and in Vitro Physicochemical Screening of Rigidoporus sp. Crude Laccase-assisted Decolorization of Synthetic Dyes—Approaches for a Cost-effective Enzyme-based Remediation Methodology
, Chinnathambi V, Arumugam P,
Published in Springer Science and Business Media LLC
2013
PMID: 23292904
Volume: 169
   
Issue: 3
Pages: 911 - 922
Abstract
The objective of this paper is to compare in silico data with wet lab physicochemical properties of crude laccase enzyme isolated from Rigidoporus sp. using wheat bran as solid substrate support towards dye decolorization. Molecular docking analysis of selected nine textile and non-textile dyes were performed using laccase from Rigidoporus lignosus as reference protein. Enzyme-based remediation methodology using crude enzyme enriched from solid state fermentation was applied to screen the effect of four influencing variables such as pH, temperature, dye concentration, and incubation time toward dye decolorization. The extracellular crude enzyme decolorized 69.8 % Acid Blue 113, 45.07 % Reactive Blue 19, 36.61 % Reactive Orange 122, 30.55 % Acid Red 88, 24.59 % Direct Blue 14, 18.48 % Reactive Black B, 16.49 % Reactive Blue RGB, and 11.66 % Acid Blue 9 at 100 mg/l dye concentration at their optimal pH at room temperature under static and dark conditions after 1 h of incubation without addition of any externally added mediators. Our wet lab studies approach, barring other factors, validate in silico for screening and ranking textile dyes based on their proximity to the T1 site. We are reporting for the first time a combinatorial approach involving in silico methods and wet lab-based crude laccase-mediated dye decolorization without any external mediators. © Springer Science+Business Media New York 2013.
About the journal
JournalData powered by TypesetApplied Biochemistry and Biotechnology
PublisherData powered by TypesetSpringer Science and Business Media LLC
ISSN0273-2289
Open AccessNo