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Gaucher’s disease (GD) is an autosomal recessive disorder caused by the deficiency of
glucocerebrosidase, a lysosomal enzyme that catalyses the hydrolysis of the glycolipid
glucocerebroside to ceramide and glucose. Polymorphisms in GBA gene have been
associated with the development of Gaucher disease. We hypothesize that prediction of
SNPs using multiple state of the art software tools will help in increasing the confidence
in identification of SNPs involved in GD. Enzyme replacement therapy is the only option
for GD. Our goal is to use several state of art SNP algorithms to predict/address harmful
SNPs using comparative studies. In this study seven different algorithms (SIFT, MutPred,
nsSNP Analyzer, PANTHER, PMUT, PROVEAN, and SNPs&GO) were used to predict
the harmful polymorphisms. Among the seven programs, SIFT found 47 nsSNPs as
deleterious, MutPred found 46 nsSNPs as harmful. nsSNP Analyzer program found 43
out of 47 nsSNPs are disease causing SNPs whereas PANTHER found 32 out of 47 as
highly deleterious, 22 out of 47 are classified as pathological mutations by PMUT, 44 out
of 47 were predicted to be deleterious by PROVEAN server, all 47 shows the disease
related mutations by SNPs&GO. Twenty two nsSNPs were commonly predicted by all
the seven different algorithms. The common 22 targeted mutations are F251L, C342G,
W312C, P415R, R463C, D127V, A309V, G46E, G202E, P391L, Y363C, Y205C, W378C,
I402T, S366R, F397S, Y418C, P401L, G195E, W184R, R48W, and T43R.
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INTRODUCTION
Gaucher’s disease (GD) is a rare genetic disease in which fatty
substances accumulate in cells and certain organs (James et al.,
2006). It is a common lysosomal storage disorder and results
from an inborn deficiency of the enzyme glucocerebrosidase
(also known as acid β-glucosidase). This enzyme is responsible
for glucocerebroside (glucosylceramide) degradation. The accu-
mulation of undegraded substrate generally happens because of
enzyme deficiency, mainly within cells of the macrophage lineage
or monocyte, and it is responsible for the clinical manifestations
of the disease (Beutler and Grabowski, 2001). This glucosylce-
ramide degrading enzyme is encoded by a gene named GBA,
which is 7.6 kb in length and located in 1q21 locus. Recessive
mutation in GBA gene affects both males and females (Horowitz
et al., 1989; Zimran et al., 1991; Winfield et al., 1997). GBA
protein is 497 amino acids long with the molecular weight of
55.6 KD. GBA enzyme catalyses the breakdown of glucosylce-
ramide, a cell membrane constituent of white blood cells and
red blood cells. The macrophages fail to eliminate the waste
product and results in accumulation of lipids in fibrils and this
turn into Gaucher cells (Aharon et al., 2004). GD can be clas-
sified into three classes namely types 1, 2, and 3. In type 1,
Glycosylceramide accumulate in visceral organs whereas in type
2 and 3, the accumulation is in the central nervous system
(Grabowski, 2008).

The international disease frequency of GD is 200,000 except
for areas of the world with large Ashkenazi Jewish populations
where 60% of the patients are estimated to be homozygous, which
accounts for 75% of disease alleles (Pilar et al., 2012). Almost
300 unique mutations have been reported in the GBA gene, with
distribution that spans the entire gene. These include 203 mis-
sense mutations, 18 nonsense mutations, 36 small insertions or
deletions that lead to frameshift or in-frame alterations, 14 splice
junction mutations and 13 complex alleles carrying two or more
mutations (Hruska et al., 2008). The single nucleotide variations
in the genome that occur at a frequency of more than 1% are
referred as single nucleotide polymorphisms (SNPs) and in the
human genome, SNPs occur in just about every 3000 base pairs
(Cargill et al., 1999).

Nearly 200 mutations in the GBA gene have been described
in patients with GD types 1, 2, and 3 (Jmoudiak and Futerman,
2005). L444P mutation was identified in GBA gene in patients
with GD types 1, 2, and 3. The L444P substitution is one of the
major SNP associated with the GBA gene. D409H, A456P, and
V460V mutations were also identified in patients with GD (Tsuji
et al., 1987; Latham et al., 1990). Previous findings have shown
that, in 60 patients with types 1 and 3, the most common Gaucher
mutations identified were N370S, L444P, and R463C. (Sidransky
et al., 1994). The other mutation E326K had been identified in
patients with all three types of GD, but in each instance it was
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found on the same allele with another GBA mutation. Also, Park
et al. identified the E326K allele in 1.3% of patients with GD and
in 0.9% of controls, indicating that it is a polymorphism (Park
et al., 2002).

The harmful SNPs for the GBA gene have not been pre-
dicted to date in silico. Therefore we designed a strategy for
analyzing the entire GBA coding region. Different algorithms
such as SIFT (Ng and Henikoff, 2001), MutPred (Li et al.,
2009), nsSNP Analyzer (Bao et al., 2005), PANTHER (Mi
et al., 2012), PMUT (Costa et al., 2002), PROVEAN (Choi
et al., 2012), and SNPs&GO (Calabrese et al., 2009) were uti-
lized to predict high-risk nonsynonymous single nucleotide
polymorphisms (nsSNPs) in coding regions that are likely
to have an effect on the function and structure of the
protein.

MATERIALS AND METHODS
DATA SET
SNPs associated with GBA gene were retrieved from the single
nucleotide polymorphism database (dbSNP) (http://www.ncbi.
nlm.nih.gov/snp/), and are commonly referred by their reference
sequence IDs (rsID) (Wheeler et al., 2005).

VALIDATION OF TOLERATED AND DELETERIOUS SNPs
The type of genetic mutation that causes a single amino acid sub-
stitution (AAS) in a protein sequence is called nsSNP. An nsSNP
could potentially influence the function of the protein, subse-
quently altering the phenotype of carrier. This protocol describes
the use of the Sorting Intolerant From Tolerant (SIFT) algorithm
(http://sift.jcvi.org) for predicting whether an AAS affects protein
function. To assess the effect of a substitution, SIFT assumes that
important positions in a protein sequence have been conserved
throughout evolution and therefore at these positions substi-
tutions may affect protein function. Thus, by using sequence
homology, SIFT predicts the effects of all possible substitutions
at each position in the protein sequence. The protocol typically
takes 5–20 min, depending on the input (Kumar et al., 2009).

PREDICTION OF HARMFUL MUTATIONS
MutPred (http://mutdb.org/mutpred) models structural features
and functional sites changes between mutant sequences and wild-
type sequence. These changes are expressed as probabilities of
gain or loss of structure and function. The MutPred output con-
tains a general score (g), i.e., the probability that the AAS is
deleterious/disease-associated and top five property scores (p),
where p is the P-value that certain structural and functional
properties are impacted. Certain combinations of high values of
general scores and low values of property scores are referred to as
hypotheses (Li et al., 2009).

IDENTIFYING DISEASE-ASSOCIATED nsSNPs
nsSNP Analyzer (http://snpanalyzer.uthsc.edu) is a tool to predict
whether a nsSNP has a phenotypic effect (disease-associated vs.
neutral) using a machine learning method called Random Forest,
and extracting structural and evolutionary information from a
query nsSNP (Bao et al., 2005).

PREDICTION OF DELETERIOUS nsSNPs
PANTHER (http://pantherdb.org/tools/csnpScoreForm.jsp) esti-
mates the likelihood of a particular nsSNP to cause a functional
impact on a protein (Thomas et al., 2003). It calculates the sub-
stitution position-specific evolutionary conservation (subPSEC)
score based on the alignment of evolutionarily related proteins.
The subPSEC score is the negative logarithm of the probability
ratio of the wild-type and the mutant amino acids at a particu-
lar position. The subPSEC scores are values from 0 (neutral) to
about −10 (most likely to be deleterious).

PREDICTION OF PATHOLOGICAL MUTATIONS ON PROTEINS
PMUT (http://mmb2.pcb.ub.es:8080/PMut) uses a robust
methodology to predict disease-associated mutations. PMUT
method is based on the use of neural networks (NNs) trained
with a large database of neutral mutations (NEMUs) and patho-
logical mutations of mutational hot spots, which are obtained by
alanine scanning, massive mutation, and genetically accessible
mutations. The final output is displayed as a pathogenicity index
ranging from 0 to 1 (indexes > 0.5 single pathological mutations)
and a confidence index ranging from 0 (low) to 9 (high) (Costa
et al., 2005).

PREDICTING THE FUNCTIONAL EFFECT OF AMINO ACID
SUBSTITUTIONS
PROVEAN (Protein Variation Effect Analyzer) (http://provean.

jcvi.org) is a sequence based predictor that estimates the effect of
protein sequence variation on protein function (Choi et al., 2012).
It is based on a clustering method where BLAST hits with more
than 75% global sequence identity are clustered together and top
30 such clusters from a supporting sequence are averaged within
and across clusters to generate the final PROVEAN score. A pro-
tein variant is predicted to be “deleterious” if the final score is
below a certain threshold (default is −2.5), and is predicted to be
“neutral” if the score is above the threshold.

PREDICTION OF DISEASE RELATED MUTATIONS
The SNPs&GO algorithms (http://snps-and-go.biocomp.unibo.

it/snps-and-go/) predict the impact of protein variations using
functional information encoded by Gene Ontology (GO) terms
of the three main roots: Molecular function, Biological process,
and Cellular component (Calabrese et al., 2009). SNPs&GO is
a support vector machine (SVM) based web server to predict
disease related mutations from the protein sequence, scoring
with accuracy of 82% and Matthews correlation coefficient equal
to 0.63. SNPs&GO collects, in a unique framework, informa-
tion derived from protein sequence, protein sequence profile and
protein functions.

RESULTS
nsSNPs FOUND BY SIFT PROGRAM
Protein sequence with mutational position and amino acid
residue variants associated with 97 missense nsSNPs were sub-
mitted as input to the SIFT server, and the results are shown in
Table 1. The lower the tolerance index, the higher the functional
impact a particular amino acid residue substitution is likely to
have and vice versa. Among the 97 nsSNPs analyzed, 47 nsSNPs
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Table 1 | Tolerated and deleterious nsSNPs using SIFT.

S. No rsID Alleles Position AA change Prediction Score

1 rs121908314 L/V 371 Leu/Val Damaging 0.04

2 rs121908313 F/L 251 Phe/Leu Damaging 0.01

3 rs121908312 K/N 79 Lys/Asn Tolerated 0.52

4 rs121908311 G/S 377 Gly/Ser Damaging 0.02

5 rs121908310 V/F 398 Val/Phe Damaging 0.01

6 rs121908308 R/G 353 Arg/Gly Tolerated 0.38

7 rs121908307 S/T 364 Ser/Thr Tolerated 0.12

8 rs121908306 C/G 342 Cys/Gly Damaging 0.01

9 rs121908305 G/R 325 Gly/Arg Tolerated 0.44

10 rs121908304 W/C 312 Trp/Cys Damaging 0.00

11 rs121908303 F/V 216 Phe/Val Damaging 0.00

12 rs121908302 V/L 15 Val/Leu Tolerated 0.07

13 rs121908301 G/S 478 Gly/Ser Tolerated 0.17

14 rs121908300 Y/H 212 Tyr/His Damaging 0.03

15 rs121908299 P/S 122 Pro/Ser Tolerated 0.37

16 rs121908298 P/L 289 Pro/Leu Tolerated 0.48

17 rs121908297 K/Q 157 Lys/Gln Tolerated 0.06

18 rs121908295 P/R 415 Pro/Arg Damaging 0.00

19 rs80356773 R/H 496 Arg/His Tolerated 0.19

20 rs80356772 R/H 463 Arg/His Tolerated 0.06

21 rs80356771 R/C 463 Arg/Cys Damaging 0.02

22 rs80356769 V/L 394 Val/Leu Damaging 0.03

23 rs80356765 A/T 338 Ala/Thr Tolerated 0.39

24 rs80356763 R/L 131 Arg/Leu Tolerated 0.24

25 rs80205046 P/L 182 Pro/Leu Damaging 0.00

26 rs80116658 G/D 265 Gly/Asp Damaging 0.00

27 rs80020805 M/I 416 Met/Ile Tolerated 0.42

28 rs79945741 F/L 213 Phe/Leu Tolerated 0.18

29 rs79796061 D/V 127 Asp/Val Damaging 0.00

30 rs79696831 R/H 285 Arg/His Damaging 0.00

31 rs79653797 R/Q 120 Arg/Gln Damaging 0.00

32 rs79637617 P/L 122 Pro/Leu Damaging 0.02

33 rs79215220 P/R 266 Pro/Arg Damaging 0.00

34 rs79185870 F/L 417 Phe/Leu Damaging 0.01

35 rs78973108 R/Q 257 Arg/Gln Tolerated 0.05

36 rs78911246 G/V 189 Gly/Val Damaging 0.02

37 rs78802049 D/E 409 Asp/Glu Tolerated 0.32

38 rs78769774 R/Q 48 Arg/Gln Tolerated 0.06

39 rs78715199 D/E 380 Asp/Glu Damaging 0.00

40 rs78396650 A/V 309 Ala/Val Damaging 0.00

41 rs78198234 H/R 311 His/Arg Damaging 0.00

42 rs78188205 A/D 318 Ala/Asp Tolerated 0.63

43 rs77959976 M/I 123 Met/Ile Tolerated 1.00

44 rs77834747 I/S 119 Ile/Ser Tolerated 0.34

45 rs77829017 G/E 46 Gly/Glu Damaging 0.01

46 rs77738682 N/I 392 Asn/Ile Damaging 0.00

47 rs77451368 G/E 202 Gly/Glu Damaging 0.02

48 rs77369218 D/V 409 Asp/Val Tolerated 0.06

49 rs77321207 Y/C 395 Tyr/Cys Damaging 0.00

50 rs77284004 D/A 380 Asp/Ala Damaging 0.00

51 rs77035024 F/L 411 Phe/Leu Tolerated 0.30

52 rs77019233 N/K 117 Asn/Lys Tolerated 0.21

53 rs76910485 P/L 391 Pro/Leu Damaging 0.00

(Continued)
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Table 1 | Continued

S. No rsID Alleles Position AA change Prediction Score

54 rs76763715 N/S 370 Asn/Ser Damaging 0.05

55 rs76763715 N/T 370 Asn/Thr Damaging 0.04

56 rs76539814 T/I 323 Thr/Ile Tolerated 0.48

57 rs76228122 Y/C 363 Tyr/Cys Damaging 0.00

58 rs76026102 Y/C 205 Tyr/Cys Damaging 0.00

59 rs76014919 W/C 378 Trp/Cys Damaging 0.00

60 rs75954905 F/L 37 Phe/Leu Tolerated 0.30

61 rs75671029 D/N 443 Asp/Asn Tolerated 0.93

62 rs75636769 A/E 190 Ala/Glu Tolerated 1.00

63 rs75564605 I/T 402 Ile/Thr Damaging 0.04

64 rs75548401 T/M 369 Thr/Met Tolerated 0.08

65 rs75528494 S/R 366 Ser/Arg Damaging 0.03

66 rs75385858 N/T 396 Asn/Thr Damaging 0.00

67 rs75243000 F/S 397 Phe/Ser Damaging 0.02

68 rs75090908 D/E 399 Asp/Glu Tolerated 0.17

69 rs74979486 R/Q 359 Arg/Gln Tolerated 0.05

70 rs74953658 D/E 24 Asp/Glu Damaging 0.01

71 rs74752878 Y/C 418 Tyr/Cys Damaging 0.00

72 rs74731340 S/N 271 Ser/Asn Tolerated 0.26

73 rs74598136 P/L 401 Pro/Leu Damaging 0.00

74 rs74500255 F/Y 216 Phe/Tyr Tolerated 0.34

75 rs74462743 G/E 195 Gly/Glu Damaging 0.00

76 rs61748906 W/R 184 Trp/Arg Damaging 0.00

77 rs11558184 R/Q 353 Arg/Gln Tolerated 0.59

78 rs2230288 E/K 326 Glu/Lys Tolerated 0.86

79 rs1141820 H/R 60 His/Arg Tolerated 0.54

80 rs1141818 H/Y 60 His/Tyr Tolerated 0.09

81 rs1141815 M/T 53 Met/Thr Tolerated 0.59

82 rs1141814 R/W 48 Arg/Trp Damaging 0.00

83 rs1141812 R/S 44 Arg/Ser Tolerated 0.14

84 rs1141811 T/I 43 Thr/Ile Damaging 0.01

85 rs1141811 T/R 43 Thr/Arg Damaging 0.02

86 rs1141808 E/K 41 Glu/Lys Tolerated 0.52

87 rs1141804 S/G 16 Ser/Gly Tolerated 1.00

88 rs1141802 L/S 15 Leu/Ser Tolerated 0.63

89 rs1064651 D/H 409 Asp/His Tolerated 0.05

90 rs1064648 R/H 329 Arg/His Tolerated 0.17

91 rs1064644 S/P 196 Ser/Pro Tolerated 0.17

92 rs421016 L/P 444 Leu/Pro Damaging 0.00

93 rs381737 F/I 213 Phe/Ile Tolerated 0.18

94 rs381427 V/E 191 Val/Glu Tolerated 0.16

95 rs381427 V/G 191 Val/Gly Tolerated 0.16

96 rs368060 A/P 456 Ala/Pro Tolerated 0.09

97 rs364897 N/S 188 Asn/Ser Tolerated 0.17

The consensus SNPs are shown in bold.

were identified to be deleterious with a tolerance index score
≤0.05 (Kumar et al., 2009). Among 47 deleterious nsSNPs, 25
nsSNPs were found to be highly deleterious.

VALIDATION OF HARMFUL MUTATIONS
The MutPred score is the probability that an AAS is
deleterious/disease-associated. A missense mutation with a

MutPred score >0.5 could be considered as “harmful,” while a
MutPred score >0.75 should be considered a high confidence
“harmful” prediction (Li et al., 2009). Among the 47 deleterious
nsSNPs, 8 were found to be harmful mutations with a score
of >0.5 and <0.75 and 38 were found to be high confidence
(highly harmful) mutations and 1 nsSNP found to be normal
with the score of 0.193 (Table 2).
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Table 2 | Prediction of functional effects of nsSNPs using MutPred.

S. No rsID Alleles Position AA change MutPred prediction Score

1 rs121908314 L/V 371 Leu/val High confidence 0.824

2 rs121908313 F/L 251 Phe/Leu High confidence 0.778

3 rs121908311 G/S 377 Gly/Ser Neutral 0.193

4 rs121908310 V/F 298 Val/Phe High confidence 0.765

5 rs121908306 C/G 342 Cys/Gly High confidence 0.792

6 rs121908304 W/C 312 Trp/Cys Harmful mutation 0.735

7 rs121908303 F/V 216 Phe/Val High confidence 0.879

8 rs121908300 Y/H 212 Tyr/His High confidence 0.82

9 rs121908295 P/R 415 Pro/Arg High confidence 0.914

10 rs80356771 R/C 463 Arg/Cys Harmful mutation 0.664

11 rs80356769 V/L 394 Val/Leu High confidence 0.794

12 rs80205046 P/L 182 Pro/Leu High confidence 0.892

13 rs80116658 G/D 265 Gly/Asp High confidence 0.963

14 rs79796061 D/V 127 Asp/Val High confidence 0.754

15 rs79696831 R/H 285 Arg/His High confidence 0.884

16 rs79653797 R/Q 120 Arg/Gln High confidence 0.902

17 rs79637617 P/L 122 Pro/Leu High confidence 0.835

18 rs79215220 P/R 166 Pro/Arg High confidence 0.836

19 rs79185870 F/L 417 Phe/Leu High confidence 0.905

20 rs78911246 G/V 189 Gly/Val Harmful mutation 0.713

21 rs78715199 D/E 380 Asp/Glu High confidence 0.837

22 rs78396650 A/V 309 Ala/Val High confidence 0.776

23 rs78198234 H/R 311 His/Arg High confidence 0.873

24 rs77829017 G/E 46 Gly/Glu High confidence 0.856

25 rs77738682 N/I 392 Asn/Ile High confidence 0.814

26 rs77451368 G/E 202 Gly/Glu Harmful mutation 0.676

27 rs77321207 Y/C 304 Tyr/Cys High confidence 0.909

28 rs77284004 D/A 380 Asp/Ala High confidence 0.872

29 rs76910485 P/L 391 Pro/Leu High confidence 0.889

30 rs76763715 N/S 370 Ans/Ser High confidence 0.876

31 rs76763715 N/T 370 Asn/Thr High confidence 0.89

32 rs76228122 Y/C 363 Tyr/Cys High confidence 0.93

33 rs76026102 Y/C 205 Tyr/Cys High confidence 0.857

34 rs76014919 W/C 378 Trp/Cys High confidence 0.842

35 rs75564605 I/T 402 IleThr High confidence 0.838

36 rs75528494 S/R 366 Ser/Arg Harmful mutation 0.681

37 rs75385858 N/T 396 Asn/Thr High confidence 0.848

38 rs75243000 F/S 397 Phe/Ser Harmful mutation 0.724

39 rs74953658 D/E 24 Asp/Glu High confidence 0.818

40 rs74752878 Y/C 418 Tyr/Cys High confidence 0.872

41 rs74598136 P/L 401 Pro/Leu High confidence 0.888

42 rs74462743 G/E 195 Gly/Glu High confidence 0.859

43 rs61748906 W/R 184 Trp/Arg High confidence 0.902

44 rs1141814 R/W 48 Arg/Trp High confidence 0.804

45 rs1141811 T/I 43 Thr/Ile Harmful mutation 0.504

46 rs1141811 T/R 43 Thr/Arg Harmful mutation 0.579

47 rs421016 L/P 444 Leu/Pro High confidence 0.899

The consensus SNPs are shown in bold.

DISEASE-ASSOCIATED nsSNPs
Out of 47 deleterious nsSNPs, 43 were found to be a dis-
ease causing nsSNPs and 4 were found to be neutral nsSNPs
(Table 3).

VALIDATION BY PANTHER
The protein sequence was given as input and analyzed for the
deleterious effect on protein function. The subPSEC scores are
values from 0 (neutral) to about −10 (deleterious) (Thomas
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Table 3 | The results from nsSNP Analyzer, PMUT, PROVEAN, and SNPs&GO.

S. No rsID Allele Position AA change nsSNP PMUT PROVEAN SNPs&GO

Analyzer
Score Prediction

1 rs121908314 L/V 371 Leu/val Neutral Neutral −2.331 Neutral Disease

2 rs121908313 F/L 251 Phe/Leu Disease Pathological −4.567 Deleterious Disease

3 rs121908311 G/S 377 Gly/Ser Disease Neutral −5.128 Deleterious Disease

4 rs121908310 V/F 398 Val/Phe Disease Neutral −4.185 Deleterious Disease

5 rs121908306 C/G 342 Cys/Gly Disease Pathological −11.467 Deleterious Disease

6 rs121908304 W/C 312 Trp/Cys Disease Pathological −12.258 Deleterious Disease

7 rs121908303 F/V 216 Phe/Val Disease Neutral −7 Deleterious Disease

8 rs121908300 Y/H 212 Tyr/His Disease Neutral −4.267 Deleterious Disease

9 rs121908295 P/R 415 Pro/Arg Disease Pathological −8.793 Deleterious Disease

10 rs80356771 R/C 463 Arg/Cys Disease Pathological −5.279 Deleterious Disease

11 rs80356769 V/L 394 Val/Leu Neutral Neutral −2.031 Neutral Disease

12 rs80205046 P/L 182 Pro/Leu Disease Neutral −9.917 Deleterious Disease

13 rs80116658 G/D 265 Gly/Asp Disease Neutral −6.442 Deleterious Disease

14 rs79796061 D/V 127 Asp/Val Disease Pathological −8.625 Deleterious Disease

15 rs79696831 R/H 285 Arg/His Disease Neutral −4.792 Deleterious Disease

16 rs79653797 R/Q 120 Arg/Gln Disease Neutral −3.641 Deleterious Disease

17 rs79637617 P/L 122 Pro/Leu Disease Neutral −9.265 Deleterious Disease

18 rs79215220 P/R 266 Pro/Arg Disease Neutral −8.275 Deleterious Disease

19 rs79185870 F/L 417 Phe/Leu Disease Neutral −5.095 Deleterious Disease

20 rs78911246 G/V 189 Gly/Val Disease Neutral −6.4 Deleterious Disease

21 rs78715199 D/E 380 Asp/Glu Neutral Neutral −3.797 Deleterious Disease

22 rs78396650 A/V 309 Ala/Val Disease Pathological −3.533 Deleterious Disease

23 rs78198234 H/R 311 His/Arg Disease Neutral −7.667 Deleterious Disease

24 rs77829017 G/E 46 Gly/Glu Disease Pathological −5.925 Deleterious Disease

25 rs77738682 N/I 392 Asn/Ile Disease Neutral −7.593 Deleterious Disease

26 rs77451368 G/E 202 Gly/Glu Disease Pathological −5.178 Deleterious Disease

27 rs77321207 Y/C 304 Tyr/Cys Disease Neutral −8.358 Deleterious Disease

28 rs77284004 D/A 380 Asp/Ala Disease Neutral −7.593 Deleterious Disease

29 rs76910485 P/L 391 Pro/Leu Disease Pathological −9.269 Deleterious Disease

30 rs76763715 N/S 370 Ans/Ser Neutral Neutral −2.128 Neutral Disease

31 rs76763715 N/T 370 Asn/Thr Disease Neutral −3.062 Deleterious Disease

32 rs76228122 Y/C 363 Tyr/Cys Disease Pathological −8.492 Deleterious Disease

33 rs76026102 Y/C 205 Tyr/Cys Disease Pathological −7.552 Deleterious Disease

34 rs76014919 W/C 378 Trp/Cys Disease Pathological −12.306 Deleterious Disease

35 rs75564605 I/T 402 IleThr Disease Pathological −4.363 Deleterious Disease

36 rs75528494 S/R 366 Ser/Arg Disease Pathological −2.806 Deleterious Disease

37 rs75385858 N/T 396 Asn/Thr Disease Neutral −5.562 Deleterious Disease

38 rs75243000 F/S 397 Phe/Ser Disease Pathological −4.782 Deleterious Disease

39 rs74953658 D/E 24 Asp/Glu Disease Neutral −3.037 Deleterious Disease

40 rs74752878 Y/C 418 Tyr/Cys Disease Pathological −8.526 Deleterious Disease

41 rs74598136 P/L 401 Pro/Leu Disease Pathological −8.136 Deleterious Disease

42 rs74462743 G/E 195 Gly/Glu Disease Pathological −7.767 Deleterious Disease

43 rs61748906 W/R 184 Trp/Arg Disease Pathological −13.028 Deleterious Disease

44 rs1141814 R/W 48 Arg/Trp Disease Pathological −-6.879 Deleterious Disease

45 rs1141811 T/I 43 Thr/Ile Disease Neutral −3.515 Deleterious Disease

46 rs1141811 T/R 43 Thr/Arg Disease Pathological −2.557 Deleterious Disease

47 rs421016 L/P 444 Leu/Pro Disease Neutral −4.995 Deleterious Disease

The consensus SNPs are shown in bold.
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Table 4 | Mutant scores from PANTHER.

S. NO rsID Alleles Position AA change subPSEC Pdeleterious

1 rs121908314 L/V 371 Leu/val −3.34802 0.58614

2 rs121908313 F/L 251 Phe/Leu −2.59088 0.39912

3 rs121908311 G/S 377 Gly/Ser −5.35062 0.91298

4 rs121908310 V/F 398 Val/Phe −3.36629 0.59056

5 rs121908306 C/G 342 Cys/Gly −3.57193 0.63921

6 rs121908304 W/C 312 Trp/Cys −2.59838 0.40092

7 rs121908303 F/V 216 Phe/Val −4.88341 0.868

8 rs121908300 Y/H 212 Tyr/His −5.32716 0.9111

9 rs121908295 P/R 415 Pro/Arg −4.90228 0.87015

10 rs80356771 R/C 463 Arg/Cys −4.45218 0.81033

11 rs80356769 V/L 394 Val/Leu −2.8436 0.46098

12 rs80205046 P/L 182 Pro/Leu −6.3153 0.96495

13 rs80116658 G/D 265 Gly/Asp −6.00914 0.95299

14 rs79796061 D/V 127 Asp/Val −6.29967 0.96442

15 rs79696831 R/H 285 Arg/His −4.32962 0.79078

16 rs79653797 R/Q 120 Arg/Gln −4.52062 0.82063

17 rs79637617 P/L 122 Pro/Leu −4.49053 0.81616

18 rs79215220 P/R 266 Pro/Arg −6.27743 0.96365

19 rs79185870 F/L 417 Phe/Leu −4.16977 0.7631

20 rs78911246 G/V 189 Gly/Val −3.38537 0.59517

21 rs78715199 D/E 380 Asp/Glu −2.02623 0.27413

22 rs78396650 A/V 309 Ala/Val −4.2769 0.78192

23 rs78198234 H/R 311 His/Arg −4.57198 0.82807

24 rs77829017 G/E 46 Gly/Glu −5.04065 0.885

25 rs77738682 N/I 392 Asn/Ile −4.02188 0.73534

26 rs77451368 G/E 202 Gly/Glu −1.32995 0.15842

27 rs77321207 Y/C 304 Tyr/Cys −6.26737 0.96329

28 rs77284004 D/A 380 Asp/Ala −2.36947 0.34739

29 rs76910485 P/L 391 Pro/Leu −6.12534 0.95793

30 rs76763715 N/S 370 Ans/Ser −2.69603 0.42459

31 rs76763715 N/T 370 Asn/Thr −1.97735 0.26451

32 rs76228122 Y/C 363 Tyr/Cys −4.75749 0.85289

33 rs76026102 Y/C 205 Tyr/Cys −5.89294 0.9475

34 rs76014919 W/C 378 Trp/Cys −5.31772 0.91033

35 rs75564605 I/T 402 IleThr −3.78009 0.6857

36 rs75528494 S/R 366 Ser/Arg −2.07688 0.28432

37 rs75385858 N/T 396 Asn/Thr −3.61569 0.64924

38 rs75243000 F/S 397 Phe/Ser −2.88329 0.47086

39 rs74953658 D/E 24 Asp/Glu −4.17446 0.76395

40 rs74752878 Y/C 418 Tyr/Cys −6.31864 0.96506

41 rs74598136 P/L 401 Pro/Leu −2.14888 0.2992

42 rs74462743 G/E 195 Gly/Glu −4.74669 0.85153

43 rs61748906 W/R 184 Trp/Arg −3.5793 0.64091

44 rs1141814 R/W 48 Arg/Trp −7.03366 0.9826

45 rs1141811 T/I 43 Thr/Ile −4.20869 0.77007

46 rs1141811 T/R 43 Thr/Arg −4.05221 0.7412

47 rs421016 L/P 444 Leu/Pro −3.43747 0.60766

The consensus SNPs are shown in bold.
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FIGURE 1 | Sets of various mutations identified using various software tools. The respective locations of 44 amino acids responsible for all 47 mutations
are shown in the sequence (center, colored in bold) and 22 common mutations are highlighted as consensus.

et al., 2003). Out of 47 deleterious nsSNPs, 8 were found to be
more than −6 (highly deleterious) and rest were found to be less
deleterious. The mutant with a greater Pdeleterioustends to have
more severe destructions in function. It was found that 32 out of
47 deleterious nsSNPs scored greater than 3 and rests were below
the damage threshold (Table 4).

FUNCTIONAL IMPACT OF MUTATIONS ON PROTEINS
The functional impact of 47 deleterious nsSNPs in protein of
GBA was analyzed using PMUT server. Of the 47 nsSNPs, 22

are classified as pathological, and the remaining were neutral
(Table 3).

PROTEIN VARIATION EFFECT ANALYSIS
PROVEAN predicts the effect of the variant on the biological
function of the protein based on sequence homology. PROVEAN
scores are classified as “deleterious” if below a certain threshold
(here −2.5) and “neutral” if above it (Choi et al., 2012). Out of 47
nsSNPs, 44 were predicted to be “deleterious” and 3 were found
to be “neutral” (Table 3).
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PREDICTION OF DISEASE RELATED MUTATIONS BY SNPs&GO
SNPs&GO is trained and tested with cross-validation proce-
dures in which similar proteins are placed together as a dataset
to calculate the LGO score derived from the GO data base.
All 47 deleterious nsSNPs showed the disease related mutations
(Table 3).

DISCUSSION
In the recent years, SNPs have emerged as the new generation
molecular markers. The harmful SNPs for the GBA gene were
never been predicted to date in silico. This study was designed to
understand the genetic variations associated with GBA gene. We
have predicted the harmful nsSNPs using SIFT, MutPred, nsSNP
Analyzer, PANTHER, PMUT, PROVEAN, and SNPs&GO state of
the art computational tools. Among 97 nsSNPs, 47 were found
to be deleterious with a tolerance index score of ≤0.05 found
by SIFT program. Among the 47 deleterious nsSNPs, 46 were
found to be harmful nsSNPs found by MutPred, 43 were found
to be disease causing nsSNPs by nsSNP Analyzer tool, 32 are
highly deleterious found by PANTHER program, 22 are classi-
fied as pathological mutations by PMUT, 44 were predicted to
be deleterious by PROVEAN server while all 47 deleterious nsS-
NPs showed the disease related mutations by SNPs&GO. Also,
we found that SNPs&GO was most successful of all state of the
art SNP prediction programs that were used for this compar-
ative study. In this work, we found 22 nsSNPs that are com-
mon in all (SIFT, MutPred, nsSNP Analyzer, PANTHER, PMUT,
PROVEAN, and SNPs&GO) prediction (Figure 1). These sets
of 22 nsSNPs (F251L, C342G, W312C, P415R, R463C, D127V,
A309V, G46E, G202E, P391L, Y363C, Y205C, W378C, I402T,
S366R, F397S, Y418C, P401L, G195E, W184R, R48W, and T43R)
are possibly the main targeted mutation for the GD (Tables 1–4).
The previous work has shown that, in 60 patients with types 1 and
3, the most common Gaucher mutations identified were L444P,
N370S, and R463C. L444P was the most common mutation in
GD types 1, 2, and 3 (Latham et al., 1990; Sidransky et al., 1994).
In our analysis, out of 7 methods, 6 methods (Sift, MutPred,
PROVEAN, PANTHER, nsSNP Analyzer, and SNPs&GO) shows
L444P mutation as damaging, 3 methods shows N370S muta-
tion as damaging and all the 7 methods shows R463C mutation
as damaging. D409H, A456P, E326K, and V460V mutations were
also identified in patients with GD (Tsuji et al., 1987; Park et al.,
2002). In our analysis SIFT result shows D409H, A456P, and
E326K mutation is the tolerated mutation. Further studies using
these mutations will shed light on the genetic understanding of
this major lysosomal storage disease.
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