Header menu link for other important links
Influence of Titanium on dry sliding Wear Behaviour of Sintered P/M low Alloy Steel (Fe-C-W)
, , Venkatesan N, Sharma A, Ahmed S, Shah Y.A.
Published in Elsevier BV
Volume: 97
Pages: 2110 - 2118
Powder metallurgy (P/M) manufacturing process is one of the rapidly emerging fields and has extended the applications i aerospace, automotive, manufacturing industries replacing all traditional methods of metal forming operations because of its le energy consumption, maximum material utilization, low relative material wastage, low capital cost. The mechanical properties mainly depends on the final density of sintered P/M alloys. The typical microstructure characteristics of sintered steel represe an important parameter affecting their wear behaviour. The present research work pertains to the study of dry sliding we characteristics of sintered P/M Fe-1%C-1%W-1%Ti low alloy steel with different densities (85%, 90%, 95%), as they fin several applications in manufacturing industries, particularly in automobile industries. These components usually face workin conditions involving abrasion, rolling and sliding, making it important to study the wear phenomenon. The wear behavior of th as-sintered preforms were studied under dry conditions on pin-on disc arrangement (ASTM G99) against EN 38 steel disc Hardness HRC 60 with a sliding speed of 2 m/s and at a normal loads of 30, 50, 70N respectively. Wear mechanism of the wor out surfaces and microstructure of sintered P/M alloy steel has been characterized using both optical microscopy and SEM Ferritic-pearlite microstructure are revealed from the as-sintered P/M alloy steels. Wear rate increases gradually with increase i porosity with respect to applied load. The main wear mechanism in the Ti alloyed P/M steel seems to be delamination wear in th higher load and oxidation wear at lower load. Failure by a delamination process is clearly indicated by the shape of the debr particles. © 2014 Published by Elsevier Ltd.
About the journal
JournalData powered by TypesetProcedia Engineering
PublisherData powered by TypesetElsevier BV
Open AccessNo