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Abstract

The intra-islet microvasculature is a critical interface 
between the blood and islet endocrine cells governing 

a number of cellular and pathophysiological processes 
associated with the pancreatic tissue. A growing body 

of evidence indicates a strong functional and physical 
interdependency of βcells with endothelial cells (ECs), 

the building blocks of islet microvasculature. Intra-islet 
ECs, actively regulate vascular permeability and appear 

to play a role in fine-tuning blood glucose sensing 
and regulation. These cells also tend to behave as 

“guardians”, controlling the expression and movement 

of a number of important immune mediators, thereby 
strongly contributing to the physiology of islets. This 
review will focus on the molecular signalling and 
crosstalk between the intraislet ECs and βcells and 

how their relationship can be a potential target for 
intervention strategies in islet pathology and islet 

transplantation.

Key words: Islets; Endothelial cells; Islet cell trans-
plantation; Beta-cells; Microvasculature; Paracrine 
signalling

© The Author(s) 2017. Published by Baishideng Publishing 

Group Inc. All rights reserved.

Core tip: This review article summarizes recent 

developments in the crosstalk relationship between 

intraislet endothelial cells and beta cells. The molecules 

involved in the signalling pathways can be potential 

targets for therapeutic strategies and islet transplantation. 
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INTRODUCTION

Pancreatic islets represent endocrine “island” cell 

clusters, embedded and scattered throughout the 

pancreas within large amounts of exocrine acinar 

tissue
[1]

. Islets are perfused by a dense, specialized 

microcirculation and receive 10% of the pancreatic 

blood flow despite comprising only 1%-2% of the 

overall tissue mass
[2]

. Most islets are irregularly shaped 

spheroids with a size distribution ranging from 50-500 

μm, each composed of 800-3000 individual cells. 
The islet microcirculation is characterized by pre islet 

arterioles that rapidly arcade to a dense population of 

capillaries
[3]

.

The cellular components of the islet include 

β-cells, other endocrine cells, as well as endothelium, 

perivascular, and support cells such as pericytes
[4-9]

. 

The cellular composition of islets is not uniform across 

species. Rodent and rabbit islets are primarily composed 

of a β-cell core with other cell types in the periphery 

whereas human and primate islets exhibit endocrine cell 

types intermingled with each other
[4,10,11]

. Beta cells, the 

central regulator of glucose homeostasis, are the largest 

cellular component of islets in most species
[9,10]

.

Studies using vascular corrosion casts have demon-

strated that 1-3 arterioles feed larger islets[12]
. The 

capillary network within islets is about five times denser 
in comparison with exocrine tissue

[3]
. The capillary wall is 

composed of a permeable layer of ECs and contains ten 

times more fenestrae than ECs present in the exocrine 

pancreas
[13,14]

. The islet endothelial fenestra are highly 

specialized and contain a diaphragm that regulates 

solute transport
[15,16]

. Typically, a microvessel consists of 

ECs arranged into a tube formation wrapped by one or 

more layers of perivascular cells. Vascular ECs represent 

a major cell type present in islets and these cells are 

organized into a highly regulated and morphologically 

unique microcirculation. In culture, islet ECs express 

the classic endothelial markers such as von Willebrand 

factor, CD31, CD105, CD146, uptake of acetylated LDL, 
expression of leucocyte adhesion molecules, contain 

Weibel-Palade bodies in the cytoplasm, and form 

tight junctions
[17,18]

. Other markers expressed within 

islet ECs include α-1 antitrypsin, a major proteinase 

inhibitor
[17,19,20]

; nephrin, a highly specific barrier pro-

tein
[16]

; platelet-activating factor receptor
[21]

, and genes 

expressing angiogenic (vascular endothelial growth 

factor, VEGF) and angiostatic (endostatin, pigment 

epithelial-derived factor) molecules
[22]

. 

Islet ECs have a significant relationship with islet 

function. For example, islets grafts, when co-trans-

planted
[23]

 with ECs in diabetes induced rats or coated
[24]

 

with ECs in diabetes induced mice, have better engraft-

ment capacity and improved islet function. Donor islet 

ECs, immediately after transplantation, participate 

in neovascularization by increasing β-cell survival
[25]

 

and promote both pancreatic stem cell proliferation 

and islet regeneration after β-cell injury
[26]

. Research 

performed over the last two decades has evaluated the 

link between islets and the ECs, demonstrating how the 

molecular interplay between these two cell types can 

regulate many critical physiological processes associated 

with the islet.

THE SIGNALS FROM β-CELL TO ECS

In vitro studies demonstrate that conditioned medium 

derived from cultured rat islets induces liver and islet-

derived EC proliferation and migration
[27]

, suggesting 

presence and secretion of paracrine pro-angiogenic 

factors (Figure 1) which promote islet vascularization
[28]

. 

As a major soluble β-cell secreted product, insulin 

promotes β-cell survival. In addition, insulin causes the 

upregulation of endothelial nitric oxide synthase in ECs 

promoting intra-islet blood flow
[29]

. Post-natal beta mass 

is dynamic and can increase in function and mass to 

compensate for additional physiological requirements
[30]

.

VEGFs
The family of VEGF ligands and their receptors are 

critical as they regulate a number of developmental 

processes and play major roles in wound healing and 

vessel homeostasis in adult organisms
[31,32]

. VEGF 

secretion is stimulated by tumor, hypoxia, low pH and 

many other factors. Beta-cells secrete large amounts 

of VEGF-A early in development and throughout adult 

life
[33]

. The VEGF binds to its receptor (VEGFR) located 

on the blood vessel ECs, which activates multiple 

signalling cascades eventually resulting in the production 

of enzymes and other specific molecules required for EC 
growth and proliferation. Other activation effects include 

mobilization of endothelial progenitor cells from bone 

marrow, increased vascular permeability and tissue 

factor induction
[34]

. The VEGF family comprises seven 

secreted glycoproteins that are designated VEGF-A, 

VEGF-B, VEGF-C, VEGF-D, VEGF-E, placental growth 

factor and VEGF-F
[35-37]

. VEGF family members interact 

with three main receptors, VEGFR-1 (FLt-1), VEGFR-2 
(KDR in humans and Flk-1 in mice) and VEGFR-3 
(Flt4), all tyrosine kinase receptors and members of the 

PGDF receptor family. VEGFR-2 appears to be the main 

receptor responsible for mediating the proangiogenic 

effects of VEGF-A
[35,38,39]. The consequence of this specific 

ligand-receptor interaction facilitates EC proliferation 

via the PKC-Ras pathway (by inducing MAPK/ERK 

pathways)
[40,41]

; promotes cytoskeletal reorganization 

and cell migration via p38 and focal adhesion kinase 
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differentiation, maturation, and survival
[83-85]

. Other BM 

components such as fibronectin and heparin sulfate also 
play roles in β-cell migration, growth, differentiation and 

survival
[1,86-88]

.

Connective tissue growth factor
The β-cell proliferative factor, connective tissue growth 

factor (CTGF/CCN2), is a member of the CCN family of 

secreted ECM-associated proteins
[89,90]

 and is expressed 

in ECs during development
[90,91]

. It induces expression 

of platelet derived growth factor B (PDGF-B) in ECs, 

required for pericyte recruitment and retention
[91]

. 

CTGF promotes β-cell regeneration
[92]

, proliferation
[93]

, 

and modulates the response to high glucose
[94]

. Its 

inactivation results in defects in islet cell lineage allocation 

and β-cell proliferation during embryogenesis
[95]

.

Hepatocyte growth factor
Islet ECs release the hepatocyte growth factor (HGF)

[13]
 

which induces β-cell proliferation and differentiation in 

embryonic and postnatal pancreas
[47,75,95-98]

. HGF plays 

a positive role in β-cell mitogenesis, differentiation, 

glucose sensing, and transplant survival
[99,100]

. In 

vitro, VEGF-A and insulin are islet-derived factors that 

induce the HGF secretion within purified islet ECs. In 

vivo, utilizing of pregnant rat pancreas, where a high 

physiological proliferation of β cells occur, resulted in a 

prominent expression of HGF, coinciding with the peak 

of β-cell proliferation
[74]

.

Thrombospondins
Thrombospondins are matricellular glycoproteins 

that participate in a regulating cell proliferation, 

migration, and apoptosis, and have been implicated in 

angiogenesis, tumour invasion, and metastasis
[101,102]

. 

Thrombospondin-1 (TSP-1) is almost exclusively 

expressed by the intra-islet endothelium
[71,103,104]

 and 

is not downregulated by hypoxia
[105]

. TSP-1 is mainly 

known for its antiangiogenic properties
[106]

 but also may 

alter the morphology of pancreatic islets and function 

as a major activator of transforming growth factor 

TGFβ-1[107]
. Animals deficient of this glycoprotein are 

characterized by hypervascular islets
[107]

 and the EC-

derived TSP-1 is important to maintain β-cell function 

postnatally
[71]

.

Endothelins
Endothelin is a vasoconstrictive protein. Endothelin-1 

(ET-1) predominantly is found to have strong effects 

on native islet blood vessels
[108] while ET-1 and ET-3 

may directly stimulate β-cell insulin secretion and 

release
[73,109]

. The gene expression of ET-1 in both ECs 

and islet endocrine cells is regulated by hypoxia
[110,111]

. 

Insulin can also stimulate the expression and secretion 

of ET-1 from bovine ECs
[112]

 and endogenous insulin can 

regulate circulating ET-1 concentrations in humans
[113]

. 

ET-1 also upregulates the expression of the FOXO1 gene 

suggest that Eph-ephrin interaction between exocrine 

and endocrine cells contributes to pancreatic function
[64]

. 

Ephrin-A and its receptor EphA play a role in β-cell to 

β-cell communication; specifically, ephrin subtype A5 is 
required for glucose stimulated insulin secretion and the 

EphA-ephrin-A mediated interaction between β-cells is 

bidirectional
[65]

. The blood vessel ECs within pancreatic 

islets express Eph subtype A4 receptors
[66]

 but how 

these ligands and receptors play a role between EC and 

β-cell crosstalk is subject to investigation.

Extracellular vesicles
Recent reports establish extracellular vesicles (EVs) as 

a novel player in cell-to-cell communication
[67,68]

 and 

have been characterized both in human islets
[69]

 and in 

experimental models of human islet xenotransplanta-

tion in SCID mice
[70]

. Studies exploring the functional 

contribution of β-cell EVs on islet ECs demonstrate 

that islet-derived EVs have the capacity to affect the 

surrounding ECs, which are then able to internalize the 

islet EVs in a dose dependent manner
[69]

. Furthermore, 

internalization of islet EVs results in transfer of multiple 

RNAs, including insulin mRNA and various microRNAs. 

Uptake of islet EVs conferred endothelial cell resistance 

to apoptosis and up-regulated expression of numerous 

proangiogenic factors
[69]

. In a different study, endothelial 

progenitor cell EVs, when internalized by islet α-, β- 
and ECs resulted in improved glucose-stimulated  

proliferation and angiogenesis
[70]

.

THE ENDOCRINE EFFECT OF ISLET ECS 

ON β-CELLS

Islet ECs, apart from their pivotal role in angiogenesis, 

also possess endocrine function. They produce multiple 

factors (Figure 1) that govern proliferation, survival, and 

gene expression, which contribute to the physiology and 

function of the β-cell
[71-75]

.

Basement membrane
ECM proteins provide biochemical cues interpreted by 

cell surface receptors and initiate signalling cascades 

controlling morphogenesis, cell survival, proliferation, 

differentiation, and stem cell state
[76-78]

. Islets are 

surrounded by a peri-islet basement membrane (BM) 

and an associated interstitial matrix containing multiple 

components such as collagen, laminin, fibronectin, 

perlecans, nidogens, and heparin sulphate
[79,80]

. Beta-

cells depend on intra-islet ECs to synthesize their ECM 

components
[75]

. It has been reported that collagen IV, 

secreted by islet endothelium, can potentiate insulin 

secretion via interaction with its receptor integrin α1β1 

on β-cells
[81]

 similar to other BM components such as 

laminins and fibronectin which have been reported 

to act as endothelial signals promoting insulin gene 

expression and proliferation in β-cells
[75,82]

. Interaction of 

collagen IV with its receptors also contributes to β-cell 
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(encoding a transcription factor) on ECs contributing to 

its survival
[114]

.

Endoglin
Endoglin (Eng) is a homodimeric transmembrane glycol 

protein within the TGF-β superfamily and is expressed 

by vascular ECs
[115-118]

. Studies have identified two 

distinct Eng positive cell types within human and mouse 

islets: The ECs and the mesenchymal stromal cells
[119]

. 

EC-specific endoglin expression in islets is sensitive 

to VEGF playing partial roles in driving islet vascular 

development
[120]

.

IMPLICATIONS OF β-CELL AND 

ENDOTHELIAL CROSSTALK ON ISLET 

TRANSPLANTATION

Islet transplantation and revascularization
The human islet isolation technique completely severs 

the islet vasculature
[121,122]

. During the enzymatic 

digestion step, islets undergo a number of cellular 

assaults such as ischemia, mechanical stress, loss 

of basement proteins, and partial disruption of intra-

islet ECs
[123-125]

 resulting in a substantial loss of viability 

before transplantation. Other than being devoid of ECs 

to support rapid revascularization, cytotoxic damage and 

cell death account for a loss of up to 80% of transplanted 
islets

[126,127]
. Rapid and adequate revascularization 

is critical for survival and function of transplanted 

islets
[121,128,129]

. Transplanted islet grafts initially have a 

significant reduction in vascular supply and low oxygen 
tension in comparison to normal islets

[130-132]
. The return 

of islet function depends on re-establishment of new 

vessels within islet grafts to derive blood flow from the 
host vascular system

[123,133]
. Islet engraftment is a slow 

process, while the islet blood flow re-establishment 

requires about two weeks, vessel maturation is likely to 

take a much longer period. Using immunosuppressive 

drugs such as rapamycin further affect this process by 

exerting antiangiogenic activities on mouse and human 

islet endothelium
[134]

. 

Though transplanted islets are considered avascular, 

freshly isolated islets retain angiogenic capacity as they 

contain intra-islet ECs. These cells can be triggered 

by various inducers such as VEGF to form vessels via 

angiogenic sprouting
[33,135,136]

. Revascularization is an 

important process for adequate engraftment of islets. 

Prevascularizing islets prior to transplantation could 

potentially improve islet survivability and function 

by aiding islet-to-host inosculation
[25]

. The intra-islet 

vasculature can also act as a barrier against infiltrating 
insults of autoreactive cells in type 1 diabetes (T1D) 

thereby implicating ECs as an important target in type 2 

diabetes (T2D)
[137-139]

. 

Studies involving cell and tissue engineering ap-

proaches have considered factors such as pancreatic 

islet size-dependency
[140]

, use of stem cells
[141-144]

, 

creating engineered vascular beds and hydrogels
[145-147]

, 

endothelial progenitor cell derived microvesicles
[70]

, 

and repurposed biological scaffolds
[148]

 to improve islet 

revascularization potential. The angiogenic capacity 

of islet ECs has been previously determined
[136]

. A 

number of factors which may potentially improve islet 

transplantation involve ECs. For example, vascular 

ECs of the embryonic aorta induce the development of 

endocrine cells from pancreatic epithelium in mice
[149,150]

 

and the overexpression of VEGF-A in transplanted 

mouse islets improves insulin secretion and blood 

glucose regulation in recipient mice
[33,53]

. Identifying 

novel factors and understanding nature of mechanisms 

that underlie bidirectional communication between β-cells 
and ECs should be of immense relevance for improved 

human islet transplantation or preventing pancreas 

associated diseases such as pancreatitis and diabetes. 

ECs and β-cell crosstalk: Islet pathophysiology, current 

perspectives and future directions
Evaluation of factors contributing to mechanisms 

responsible for regulating the interaction between β-cells 

and intra-islet ECs would broaden our understanding 

of pancreatic tissue function, growth, and disease. In 

this context, VEGF-A has been the most well studied 

molecule
[51,53]

; however, reports have suggested the 

detrimental effects of VEGF on islets. Continued β-cell 

overexpression of VEGF-A impairs islet morphology and 

function by eliciting an inflammatory response
[57,151]

. 

Elevated levels of serum VEGF, Ang-2, and soluble 

Tie-2 have also been associated with T2D and vascular 

dysfunction
[152-154]

. Achieving an optimal VEGF-A dose 

to potentiate islet vascularization is subject to further 

investigation. The HGF production is increased during 

pregnancy in adult rats
[74]

 and helps balance high 

glucose levels in diabetes induced mice
[155]

. HGF gene 

therapy has been suggested as a potential approach for 

improving islet transplantation rates and treatment of 

diabetes
[156,157]

.

The dense pancreatic vasculature along with its 

associated ECM plays a key role in the physiology and 

disease associated with pancreatic islets. The islet is an 

ideal “tissue” model because of its heterogeneous cell 

population embedded within the ECM. Understanding 

the nature of how these cells communicate with each 

other and with their underlying BM is crucial for normal 

islet physiology and pathology. The β-cells rely on 

intra-islet ECs to synthesise their ECM components
[75]

. 

This dependency may potentially be compromised 

in chronic inflammatory pancreatic diseases such as 

chronic pancreatitis which is characterized by a number 

of alterations within ECM formation and composition 

resulting in destruction of acinar and islet cells, and 

subsequent replacement by connective tissue
[158,159]

. This 

connective tissue appears to result from an increased 

deposition and disorganization of the ECM proteins 

including collagens, fibronectins, and laminins
[160-163]

. 

Moreover, reports also suggest that one of the most 

Narayanan S et al . Intra-islet endothelial cell and βcell crosstalk



122 April 24, 2017|Volume 7|Issue 2|WJT|www.wjgnet.com

enriched groups of over-expressed proteins in pancreatitis 

(mild and severe) and pancreatic ductal adenocarcinoma 

include those involved in the ECM structure and 

organization
[164,165]

. In addition, glycoproteins, especially 

those with N-linked glycosylation sites, are significantly 
enriched among the over-expressed proteins in mild 

and chronic pancreatitis
[164]

. Collagen, proteoglycans, 

and other ECM specialized glycoproteins such as fibrillin, 
fibronectin, and laminin, all part of the peri-islet BM, 

contain various degrees of glycosylation
[166]

. 

The connection between ECs and β-cells has been 

previously evaluated
[28,51,57,167,168]

, particularly where 

different approaches have been utilized to increase β-cell 

mass and thereby insulin production. New factors have 

also been identified which may potentially contribute 

in further understanding islet cell communication and 

function. For example, R-spondins-1, an intestinal 

growth factor containing a thrombospondin domain, 

has been identified as a novel β-cell growth factor and 

insulin secretagogue
[169]

. It has potential to enhance 

β-cell growth and function in patients with T2D, and 

enhance of β-cell mass
[170]

. Connexins, ephrins, and 

cadherins, members of the transmembrane family 

of proteins are expressed in pancreatic islets. The 

major β-cell connexin is Cx36[171], Cx43, and Cx45 are 
specifically expressed on intra-islet ECs

[172]
 whereas 

Cx30.2, recently identified, is expressed at cell-cell 
junctions in both cell types

[173]
. 

A number of studies have demonstrated that ECs 

play a very critical role within the islet microenvironment. 

A dysfunctional intra-islet vascular endothelium may 

contribute to the severity or progression of pancreatic 

disease etiologies. A deeper knowledge of islet endo-

thelial phenotype and function will help identify specific 
targets and strategies for T1D prevention and successful 

outcomes for islet transplantation. Identifying and 

validating the potential therapeutic benefits of novel 

factors which either maintain the integrity of EC and β-cell 
communication or reinstate and balance the disrupted 

crosstalk is likely to benefit patients with diabetes and 
other pancreatic disorders. 
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