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INVARIANT APPROXIMATIONS, GENERALIZED

I -NONEXPANSIVE MAPPINGS AND NON-CONVEX DOMAIN

HEMANT KUMAR NASHINE

Abstract. Common fixed point results for generalized I -nonexpansive mappings, and nonlinear map on nonstar-

shaped domain have been obtained in the present work. Various invariant approximation results have also been

determined by its application. These results extend and generalize various existing known results in the literature. A

property called property (Γ) has also been introduced in it.

1. Introduction

Fixed point theorems have been applied in the field of invariant approximation theory

since last four decades and several interesting and valuable results have been studied.

Meinardus [9] was the first to employ a fixed-point theorem of Schauder to establish the

existence of an invariant approximation. Further, Brosowski [3] obtained a celebrated result

and generalized the Meinardus’s result. Later, several results [7, 14, 16] have been proved in

the direction of Brosowski [3]. In the year 1988, Sahab, Khan and Sessa [11] extended the

result of Hicks and Humpheries [7] and Singh [14] by considering one linear and the other

nonexpansive mappings.

Al-Thagafi [1] generalized result of Sahab, Khan and Sessa [11] and proved some results

on invariant approximations for commuting mappings. The introduction of non-commuting

maps to this area, Shahzad [12, 13] further extended Al-Thagafi’s results and obtained a num-

ber of results regarding invariant approximation. All the above mentioned results are obtained

on starshaped domain and linearity or affinness condition of mapping.

In this context, it may be mentioned that Dotson [4] proved the existence of fixed point for

nonexpansive mapping. He further extended his result without starshapedness under non-

convex condition [5]. Mukherjee and Som [10] used it to prove existence of fixed point and

further applied it for proving existence of best approximant. This resulted in extension of

Singh [14] without starshapedness condition.

Attempt has been made to find existence results on common fixed point theorem to gener-

alize I -nonexpansive maps non-linear map to a domain which is not necessarily starshaped.
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Various invariant approximation results have also been obtained. These results extend, gen-

eralize, and compliment those of Al-Thagafi [1], Dotson [4, 5], Habiniak [6], Mukherjee and

Som [10], Sahab, Khan and Sessa [11], Shahzad [12, 13] and Singh [14]. For it, a property

called property (Γ) has been introduced.

2. Preliminaries

In the material to be produced have, the following definitions have been used:

Definition 2.1.([1]) Let X be a normed space and let C be a non-empty subset of X . Let

x0 ∈X . An element y ∈C is called a best approximant to x0 ∈X , if

‖x0 − y‖= di st(x0,C )= inf{‖x0 − z‖ : z ∈C }.

Let PC (x0) be the set of best C -approximant to x0 and so

PC (x0) = {z ∈C : ‖x0 − z‖= di st(x0,C )}.

Definition 2.2.([1]) Let X be a normed space. A set C in X is said to be convex, if λx +

(1−λ)y ∈C , whenever x, y ∈C and 0≤ λ≤ 1.

A set C in X is said to be starshaped, if there exists at least one point p ∈C such that the

line segment [x, p] joining x to p is contained in C for all x ∈C (that is λx + (1−λ)p ∈C , for

all x ∈C and 0 <λ< 1). In this case p is called a starcenter of C .

Each convex set is starshaped with respect to each of its points, but not conversely.

Definition 2.3.([11]) A map T : C → C is said to be I−contraction, if there exists a self-

map I on C and a real number k ∈ (0,1) such that

‖T x −T y‖≤ k‖I x −I y‖,

for all x, y ∈C . If k = 1, then T is called I−nonexpansive.

Definition 2.4. The map T : C →X (C is subset of X ) is said to be completely continu-

ous if {xn } converges weakly to x implies that {T xn } converges strongly to T x.

Definition 2.5.([13]) A pair (I ,T ) of self-mappings of a Banach space X is said to be

(1) commutative on C (C ⊂X ), if IT x =T I x for all x ∈C ;

(2) R-weakly commuting on C , it there exists a real number R > 0 such that ‖T I x −

IT x‖ ≤R‖T x −I x‖ for all x ∈C .

Suppose C is p−starshaped with p ∈ F (I ) and is both T − and I− invariant. Then T

and I are called

(3) R-subweakly commuting on C [13] if there exists R ∈ (0,∞) such that ‖T I x−IT x‖≤

R di st(I x, [T x, p]) for all x ∈ C , where di st(I x, [T x, p]) = inf{‖I x − z‖ : z ∈ [T x, p]}.

Clearly commutativity implies R-subweak commutativity, but the converse may not be true

[13].
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For this, the following example is considered:

Example 2.6.([12]) Consider X = R with norm ‖x‖ = |x| and Y = [1,∞). Let T and I be

defined by

T x = 4x −3, I x = 2x2
−1

for all x ∈ X . Then T and I are R-subweakly commuting on Y . However, they are not

commuting on Y .

Further, definition providing the notion of contractive jointly continuous family intro-

duced by Dotson [5] may be written as:

Definition 2.7.([5]) Let C be a subset of metric space (X ,d) and F = { fα}α∈C a family

of functions from [0,1] into C such that fα(1) = α for each α ∈ C . The family F is said to be

contr acti ve if there exists a function φ : (0,1) → (0,1) such that for all α,β ∈C and all t ∈ (0,1)

we have

d( fα(t), fβ(t))≤φ(t)d(α,β).

The family is said to be j oi ntl y conti nuous if t → t0 in [0,1] and α → α0 in C imply that

fα(t)→ fα0 (t0) in X .

Definition 2.8.([5]) If X is a normed linear space and F is a family as in Definition 2.7,

then F is said to be j oi ntl y weakl y conti nuous if t → t0 in [0,1] and α→w α0 in C imply

that fα(t)→w fα0 (t0)) in X .

Hence, pr oper t y (Γ) on contractive jointly continuous family F can now be defined as:

Definition 2.9. A self mapping I of C is said to satisfy the property (Γ), if for any t ∈ [0,1],

for all x ∈C and for all fx ∈F , we have I ( fx (t))= fI x (t), where { fx (t)} is defined as above.

For clarification of a metric space that satisfies the notion of a contractive and jointly con-

tinuous family of functions, a lemma is presented below, it gives the concept of contractive

and jointly continuous family of functions. It also implies that in Euclidean n-space such a

set must be connected.

Lemma 2.10. Let (X ,d) be a metric space and C a nonempty subset which (as a subspace)

is not connected. Suppose that C = C0 ∪C1, C0 ∩C1 = φ where C0 and C1 are both open and

closed, and suppose that there exist x ∈ C0 and y ∈ C1 such that d(x, y) = d(C0,C1). Then C

does not admit a jointly continuous contractive family F = { fα}α∈C ; i.e. C does not have the

property of contractiveness and joint continuity.

Proof. We first note that the distance between C0 and C1 must be positive since otherwise

we would have x = y , contradicting C0 ∩C1 = φ. If C had a jointly continuous contractive

family F = { fα}α∈C , then, since d(C0,C1) > 0, by taking t sufficiently close to 1 we shall have

d(x, fx (t)) < d(C0,C1) and d(y, fy (t)) < d(C0,C1) by joint continuity, so that we must have

fx (t)∈C0 and fy (t)∈C1. This leads to

d(C0,C1) ≤ d( fx (t), fy (t))≤φ(t)d(x, y) < d(x, y) = d(C0,C1)
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a contradiction.

A consequence of this lemma is that, in a finite-dimensional Banach space, every bounded

subset (considered as a metric space) that has the property of contractiveness and joint con-

tinuity must be connected. For closed bounded sets are compact, and the conditions of the

lemma are satisfied in this case.

Common fixed point result given below is a consequence of Theorem 1 of Berinde [2], and

would be needed in the sequel.

Theorem 2.11.([13, Theorem 2.1]) Let C be a closed subset of a metric space (X ,d) and T

and I be R-weakly commuting self-maps of C such that T (C ) ⊂ I (C ). Suppose there exists

λ∈ (0,1) such that

d(T x,T y) ≤λ max{d(I x,I y),d(T x,I x),d(T y,I y),d(T x,I y),d(T y,I x)]}

for all x, y ∈C . If cl(T (C )) is complete and T is continuous, then there is a unique point z in

C such that T z =I z = z.

F (T )(resp. F (I )) has been denoted as the set of fixed point of mapping T (resp. I ) in

the following text.

3. Main results

One may now prove common fixed theorem in nonconvex domain.

Theorem 3.1. Let C be a closed subset of a metric space (X ,d) and T and I continuous

self-mappings of C such that T (C ) ⊂ I (C ). Suppose that C admits a contractive and jointly

continuous family F = { fα}α∈C , and that I satisfies property (Γ). Suppose further that T and

I satisfy the following conditions:

d(T I x,IT x) ≤Rd( fT x (k),I x) (3.1)

d(T x,T y) ≤ max{d(I x,I y),d( fT x (k),I x),d( fT y (k),I y),

d( fT y (k),I x),d( fT x (k),I y)} (3.2)

for all x, y ∈C , all k ∈ (0,1) and some R > 0. If cl(T (C )) is compact, then C ∩F (T )∩F (I ) 6=φ.

Proof. Choose a sequence kn ∈ (0,1) with kn → 1 as n →∞, and define, for each n ∈N, the

mapping

Tn x = fT x (kn).

Each Tn maps C into itself, and Tn (C ) ⊂ I (C ). Indeed, let y ∈ C . Since T (C ) ⊂ I (C ), we

have T y =I z for some z ∈C . Then, by property (Γ)

Tn y = fT y (kn) = fI z (kn) =I fz (kn )∈I (C ).
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Again by property (Γ), we have

d(TnI x,ITn x) ≤ d( fT I x (kn),I fT x (kn)) = d( fT I x (kn), fIT x (kn))

≤ φ(kn)d(T I x,IT x) ≤φ(kn)R,d( fT x (kn),I x)

= φ(kn)R,d(Tn x,I x)

using (3.1). Thus Tn and I are φ(kn)R− weakly commuting. By contractiveness and (3.2),

we have

d(Tn x,Tn y) = d( fT x (kn), fT y (kn)) ≤φ(kn)d(T x,T y)

≤ φ(kn)max{d(I x,I y),d( fT x (kn),I x),d( fT y (kn),I y),

d( fT y (kn),I x),d( fT x (kn),I y)}

≤ φ(kn)max d(I x,I y),d(Tn x,I x),d(Tn y,I y),d(Tn y,I x),d(Tn x,I y)}.

Since cl(T (C )) is compact, cl(Tn (C )) is also compact. Indeed, if (xm ) is a sequence in Tn (C )

then xm = Tn ym for some ym . Now some subsequence of (T ym) converges since cl(T (C ))

is compact, and since xm = fT ym (kn), that same subsequence of (xm) converges to a point

in cl(Tn (C )). Hence cl(Tn (C )) is compact. Since φ(kn) < 1, Theorem 2.11 now yield xn ∈

C such that xn = Tn xn = I xn . Since cl(T (C )) is compact, (T xn ) contains a convergent

subsequence, say, T xm → y ∈ cl(T (C )). Then we have

xm =Tm xm = fT xm (km) → fy (1) = y.

Since T is continuous, T xm →T y and since T xm → y, we have y =T y. From the continu-

ity of I we have xm =I xm →I y, so that I y = y and we have C ∩F (T )∩F (I ) 6=φ.

Theorem 3.2. Let C be a subset of a Banach space X and T and I self-mappings of C

such that T (C ) ⊂ I (C ). Suppose that C has a contractive family of functions F = { fα}α∈C ,

that I satisfies property (Γ) and that T and I satisfy (3.1) and (3.2) of Theorem 3.1 (d is the

metric induced on C from X ). If T is continuous, then C ∩F (T )∩F (I ) 6=φ, provided one of

the following conditions holds:

(i) C is weakly compact, T and I are weakly continuous and the family F is weakly jointly

continuous.

(ii) C is weakly compact, T is completely continuous, I is continuous, and the family F is

jointly continuous.

Proof. (i) As in Theorem 3.1, there exists xn ∈ C such that xn = Tn xn = I xn . Since C is

weakly compact, (xn ) contains a convergent subsequence, say, (xm ) such that xm → u ∈ C .

Since T is weakly continuous, T xm →w
T u and hence xm = fT xm (km) → fT u (1) = T u.

Also since xm → u and the weak topology is Hausdorff, we have T u = u. From the weakly

continuity of I we have xm =I xm →I u, so that I u = u. Hence C ∩F (T )∩F (I ) 6=φ.

(ii) As in Theorem 3.1, there exists xn ∈ C such that xn = Tn xn = I xn . Since C is weakly

compact, (xn ) contains a convergent subsequence, say, (xm) such that xm → u ∈C . Since T

is completely continuous, T xm →T y as m →∞. Then we have

xm = fT xm (km) → fT y (1) =T y.
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Thus T xm → T
2 y and consequently T

2 y = T y implies that T z = z, where z = T y. But,

since I xm = xm → T y = z, using the continuity of I and the uniqueness of the limit, we

have I z = z. Hence C ∩F (T )∩F (I ) 6=φ.

From Theorem 3.1, one obtains the following:

Corollary 3.3. Let C be a closed subset of a metric space (X ,d) and T and I continuous

self-mappings of C such that T (C ) ⊂ I (C ). Suppose that C admits a contractive and jointly

continuous family F = { fα}α∈C , and that I satisfies property (Γ). Suppose further that T and

I satisfy (3.1) and T is I -nonexpansive on C . If cl(T (C )) is compact, then C ∩F (T )∩F (I ) 6=

φ.

Corollary 3.4. Let C be a closed subset of a metric space (X ,d) and T and I continuous

self-mappings of C such that T (C ) ⊂ I (C ). Suppose that C admits a contractive and jointly

continuous family F = { fα}α∈C . Suppose further that T and I are commutative and satisfy

(3.2) for all x, y ∈C . If cl(T (C )) is compact, then C ∩F (T )∩F (I ) 6=φ.

Remark 3.5. In the light of the comment given by Dotson [5] and Khan, Latif, Bano and

Hussain [8] if C ⊆X is p−starshaped and fα(t) = (1− t)p + tα, (α∈C , t ∈ [0,1]), then { fα}α∈C

is a contractive jointly continuous family with φ(t) = t . Thus the class of subsets of X with the

property of contractiveness and joint continuity contains the class of starshaped sets which

in turn contain the class of convex sets. If for a subset C of X , there exists a contractive jointly

continuous of family F = { fα}α∈C , then we say that C has the property of contractiveness and

joint continuity.

Corollary 3.6. Let C be a closed subset of a metric space (X ,d) and T and I continuous

self-mappings of C such that T (C ) ⊂ I (C ). Suppose C is q-starshaped, and I is affine with

respect to q ∈ F (I ). Suppose further that T and I are R-subweakly commuting and satisfy,

for all x, y ∈C ,

d(T x,T y) ≤ max{d(I x,I y),di st([T x, q],I x),di st([T y , q],I y),

1

2
[di st([T y , q],I x)+di st([T x, q],I y)]}. (3.3)

If cl(T (C )) is compact, then C ∩F (T )∩F (I ) 6=φ under each of the conditions of Theorem 3.1.

Remark 3.7. One can obtain similar Corollary 3.3, 3.4 and 3.6 from Theorem 3.2.

As an application of Theorem 3.1, we have following result on invariant approximations:

Following Al-Thafgafi [1], one defines D =PC (x0)∩D
I

C
(x0), where D

I

C
(x0) = {x ∈C : I x ∈

PC (x0)}.

Theorem 3.8. Let X be a normed space and T and I self-mappings of X . Let C be subset

of X such that T (∂C ∩C ) ⊂ C and x0 ∈ F (T )∩F (I ). Suppose that PC (x0) is nonempty, D

has a contractive family F = { fα}α∈D , I satisfies the property (Γ) on D, I (D) =D and I is
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nonexpansive on PC (x0)∪ {x0}. Suppose further that T and I satisfy (3.1) for all x ∈D, some

R > 0, and satisfy

‖T x −I x‖ ≤







‖I x −I x0‖, if y = x0;

max{‖I x −I y‖,‖I x − fT x (k)‖,‖I y − fT x (k)‖,

‖I y − fT x (k)‖,‖I y − fT x (k)‖}, if y ∈D.

(3.4)

for all x, y ∈ D ∪ {x0} and all k ∈ (0,1). If T is continuous, then PC (x0)∩F (T )∩F (I ) 6= φ,

provided one of the following conditions holds:

(i) D is closed, cl(T (D)) is compact, I is continuous, and family F is jointly continuous,

(ii) X is Banach space, D is weakly compact, I and T are weakly continuous, family F is

weakly jointly continuous,

(iii) X is Banach space, D is weakly compact, T is completely continuous, I is continuous,

and family F is jointly continuous.

Proof. Let x ∈ D. Then, x ∈ PC (x0) and hence ‖x − x0‖ = di st(x0,C ). Note that for any

k ∈ (0,1),

‖kx0 + (1−k)x − x0‖= (1−k)‖x − x0‖ < di st(x0,C ).

It follows that the line segment {kx0 + (1−k)x : 0 < k < 1} and the set C are disjoint. Thus x

is not in the interior of C and so x ∈ ∂C ∩C . Since T (∂C ∩C ) ⊂ C , T x must be in C . Also

since I x ∈PC (x0), x0 =T x0 =I x0 and T and I satisfy (3.4), we have

‖T x − x0‖= ‖T x −T x0‖ ≤ ‖I x −I x0‖ = ‖I x − x0‖= di st(x0,C ).

Thus, T x ∈PC (x0). As I is nonexpansive on PC (x0)∪ {x0}, we have

‖IT x − x0‖ ≤ ‖T x −T x0‖≤ ‖I x −I x0‖ = ‖I x − x0‖= di st(x0,C ).

Thus IT x ∈PC (x0) and so T x ∈D
I

C
(x0). Hence T x ∈D. Consequently, T (D) ⊂D =I (D).

Now Theorem 3.1 and 3.2 guarantee that

PC (x0)∩F (T )∩F (I ) 6=φ.

Remark 3.9. It is remark that the Theorem 3.8 is trivial if x0 ∈C , because the statement in

the proof that C and the line segment kx0 + (1−k)x are disjoint is no longer necessarily true

if x0 ∈C .

Theorem 3.10. Let X be a normed space and T and I self-mappings of X . Let C be subset

of X such that T (∂C ∩C )⊂C and x0 ∈ F (T )∩F (I ). Suppose that PC (x0) is nonempty, D has

a contractive family F = { fα}α∈D , I satisfies the pr oper t y (Γ) on D and I (D) = D. Suppose

further that T and I are commuting on D and satisfy (3.4) for all x, y ∈ D ∪ {x0}. If T is

continuous, then PC (x0)∩F (T )∩F (I ) 6=φ under each of the conditions of Theorem 3.8.

Proof. Let x ∈D, then proceeding as in the proof of Theorem 3.8, we obtain T x ∈PC (x0).

Moreover, since T commutes with I on D and T and I satisfies (3.4),

‖IT x − x0‖ = ‖T I x −T x0‖ ≤ ‖I
2x −I x0‖ = ‖I x − x0‖= di st(x0,C ).
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Thus IT x ∈PC (x0) and so T x ∈D
I

C
(x0). Hence T x ∈D. Consequently, T (D) ⊂D =I (D).

Now Theorem 3.1 and 3.2 guarantees that PC (x0)∩F (T )∩F (I ) 6=φ.

Theorem 3.11. Let X be a normed space and T and I self-mappings of X . Let C be subset

of X such that T (∂C ∩C ) ⊂ C and x0 ∈ F (T )∩F (I ). Suppose that PC (x0) is nonempty, D

has a contractive family F = { fα}α∈D and I (C )∩D ⊂ I (D) ⊂ D. Suppose further that T

and I are commuting on D and satisfy (3.4) for all x ∈ D ∪ {x0}. If T is continuous, then

PC (x0)∩F (T )∩F (I ) 6=φ under each of the conditions of Theorem 3.8.

Proof. Let x ∈D. As in Theorem 3.8, we obtain T x ∈D, that is, T (D) ⊂D and x ∈ ∂C ∩C

and so T (D) ⊂T (∂C ∩C ) ⊂I (C ). Thus, we can choose y ∈C such that T x =I y. Because

I y = T x ∈ PC (x0), it follows that y ∈ D
I

C
(x0). Consequently, T (D) ⊂ I (DI

C
(x0)) ⊂ PC (x0).

Therefore, T (D) ⊂I (C )∩D ⊂I (D) ⊂D. Now Theorem 3.1 and 3.2 guarantees that PC (x0)∩

F (T )∩F (I ) 6=φ.

Remark 3.12. We observe that I (PC (x0)) ⊂PC (x0) implies PC (x0) ⊂D
I

C
(x0) and hence

D =PC (x0). Consequently, Theorem 3.8, 3.10 and 3.11 remain valid when D =PC (x0). Hence

one gets the following results.

Corollary 3.13. Let X be a normed space and T and I self-mappings of X . Let C be

subset of X such that T (∂C ∩C ) ⊂ C and x0 ∈ F (T )∩F (I ). Suppose that D =PC (x0) is

nonempty and has a contractive family F = { fα}α∈D and I (D) = D. Suppose further that I

satisfies the pr oper t y (Γ), I is nonexpansive on D, T and I satisfy (3.1) for all x ∈ D, some

R > 0, and T and I satisfy (3.4), for all x, y ∈ D∪ {x0}, all k ∈ (0,1). If T is continuous, then

PC (x0)∩F (T )∩F (I ) 6=φ under each of the conditions of Theorem 3.8.

Corollary 3.14. Let X be a normed space and T and I self-mappings of X . Let C be subset

of X such that T (∂C ∩C ) ⊂C and x0 ∈ F (T )∩F (I ). Suppose that D =PC (x0) is nonempty

and has a contractive family F = { fα}α∈D and I (D) =D. Suppose I is nonexpansive on D, T

and I commuting for x ∈D, and T and I satisfy (3.4), for all x ∈D∪ {x0}, all k ∈ (0,1). If T is

continuous, then D∩F (T )∩F (I ) 6=φ under each of the conditions of Theorem 3.8.

Corollary 3.15. Let X be a normed space and T and I self-mappings of X . Let C be

subset of X such that T (∂C ∩C ) ⊂ C and x0 ∈ F (T )∩F (I ). Suppose that D =PC (x0) is

nonempty and has a contractive family F = { fα}α∈D . Suppose I satisfies the property (Γ), T

and I satisfy (3.1) for all x ∈D, some R > 0, and T is I -nonexpansive, for all x ∈D∪ {x0}, all

k ∈ (0,1), I is nonexpansive on D, then D∩F (T )∩F (I ) 6= φ under each of the conditions of

Theorem 3.8.

Remark 3.16. Remark 3.5, Theorem 3.8 − Cor 3.15 generalize Theorem 2.2 and 3.2 of Al-

Thagafi [1], Theorem 3 of Sahab, Khan and Sessa [11] and Singh [14, 15] in the sense that the

domain of mappings need not be starshaped, map I is not necessarily linear and generalized

nonexpansive non-commutative maps have been used in place of relatively nonexpansive

commutative maps.
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Remark 3.17. Remark 3.5, Theorem 3.8 − Cor 3.15 generalize and improve related results

of Shahzad [12, 13] in the sense that the domain of mappings need not be starshaped, maps

I is not necessarily affine and mappings are not R-subweakly commuting.

Remark 3.18. Theorem 3.8 − Cor 3.15 generalize Theorem 2 of Mukherjee and Som [10]

in the sense that the two mappings are used in place of one and generalized nonexpansive

non-commutative mappings have been used in place of nonexpansive of a mapping.

Remark 3.19. Theorem 3.1 − Cor 3.6 generalize the results of of Dotson [4, 5] and Habiniak

[6].
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