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We show how, starting from a mapping where the independent variable advances

one step at a time, one can obtain versions of the mapping corresponding to a multi-

step evolution. The same procedure is applied to discrete Painlevé equations, and we

proceed to establish Miura relations between the single-step and the multi-step versions

(in the present study “multi” referring to double, triple, and quintuple). These Miura

relations are discrete Painlevé equations on their own right. We show that, while in

some cases it is impossible to obtain a multi-step equation for a single variable, deriving

a Miura system is still possible. We perform our analysis for equations associated

with the affine Weyl groups E
(1)

8
, E

(1)

7
, E

(1)

6
, and A

(1)

4
. Published by AIP Publishing.
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I. INTRODUCTION

One of the main characteristics of integrable systems is the existence of a wealth of interrelations

which allow us to obtain a better grasp of these all-important systems. Foremost among such relations

are the Miura transformations. The name Miura transformations comes from the analogy of such

relations with the one discovered in 1968 by Miura1 between the Korteweg-de Vries equation and

the modified Korteweg-de Vries one. Miura transformations do also exist in the domain of Painlevé

equations. The best known Miura transformation is the one related to Painlevé II. It is better expressed

as a system

dx

dz
= p − x2

− z/2, (1a)

dp

dz
= 2px + α. (1b)

Eliminating p between the two equations, one obtains the PII equation x′′ = 2x3 + zx + α ☞ 1/2, while

the prime denotes the derivative with respect to z. Eliminating x leads to the equation p′′ = p′2/(2p)

+ 2p2
☞ zp ☞ α2/(2p), which is equation XXXIV in the canonical Painlevé-Gambier list.2

The parallel between continuous and discrete Painlevé equations being quasi-perfect, it is natural

for Miura transformations to exist for discrete Painlevé equations as well. For instance, the analog of

the Miura introduced above does exist and was obtained by two of the present authors in Ref. 3. We

start by introducing the system

xn+1 = 1 −
yn + (zn + zn+1)/2

1 + xn

, (2a)

yn−1 =
m + yn(1 − xn)

1 + xn

, (2b)

which is more conveniently written as

yn = (1 + xn)(1 − xn+1) −
zn + zn+1

2
, (3a)

xn =
m + yn − yn−1

yn + yn−1

, (3b)
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with zn = αn + β. Eliminating y from this system, we obtain for x the d-PII equation xn+1 + xn−1

= (2znxn + m − (zn+1 − zn)/2)/(1 − x2
n), while eliminating x, we find (yn+1 + yn)(yn + yn−1)= (4y2

n −

m2)/(yn+(zn+zn+1)/2), which, as shown in Ref. 4, is the discrete form of equation XXXIV encountered

above.

In a recent paper,5 two of the present authors in collaboration with Willox have considered

equations constructed for discrete Painlevé equations associated with the affine Weyl group E
(1)

8
.

The method used there was to start from a discrete Painlevé equation in E
(1)

8
previously derived

in trihomographic form, consider its autonomous limit, and using the results of Ref. 6, write the

simplest possible mapping. Next, starting from the invariant of the latter and introducing homographic

transformations, we obtained all possible canonical forms of the said invariant and the mappings

corresponding to these forms. One interesting result obtained there was that we were able to obtain

equations where we skipped one step out of two.

This is better illustrated through an example. We start from the autonomous equation

Xn+1Xn−1 =A
Xn − 1

Xn

, (4)

with invariant

K =
(XnXn−1 + A)(Xn + Xn−1 − 1)

XnXn−1

. (5)

In order to obtain the mapping for a double step evolution, the simplest way is to solve (4) for Xn and

obtain an invariant involving Xn+1 and Xn☞1. We obtain thus

K =
(XnXn−2 − Xn − A)(XnXn−2 − Xn−2 − A)

XnXn−2 − A
, (6)

and, putting A = a2 and rescaling X, the mapping

(XnXn+2 − 1)(XnXn−2 − 1)=
Xn

a2Xn − a
. (7)

Several such double-step evolutions were obtained, and the corresponding mappings were subse-

quently deautonomised leading to discrete Painlevé equations.

In this paper, we shall focus on one of the equations examined in Ref. 5, and show that there

exist Miura-type relations between the equations obtained for the single step and the equations for

double or triple steps. Moreover we shall show that in the case at hand one can obtain an equation

also when one considers one step out of five (but in this case no equation for a single variable can

be obtained). In order to derive the Miura transformations, we introduce a method, based on the

singularity structure of the equations, which is easy to implement and particularly powerful.

II. FROM SINGLE-STEP TO MULTI-STEP EQUATIONS

In a recent paper, we have investigated the discrete Painlevé equations coming from specific

equations associated with the E
(1)

8
affine Weyl group.6 The equation we are going to work with in

what follows, written in trihomographic expression, is

xn+1 − (5tn − α)2

xn+1 − (tn + α)2

xn−1 − (5tn + α)2

xn−1 − (tn − α)2

xn − t2
n

xn − 49t2
n

= 1, (8)

where we consider only secular behavior in the parameters. Furthermore, we take the autonomous

limit of (8) taking α = 0 and tn = 1. We find thus

xn+1 − 25

xn+1 − 1

xn−1 − 25

xn−1 − 1

xn − 1

xn − 49
= 1. (9)

Introducing a new dependent variable X by

1

2
Xn =

xn − 25

xn − 1
(10)
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leads to

Xn+1Xn−1 =A(Xn − 1), (11)

where A = 4. By assuming A to be a genuine parameter and a function of n, we can deautonomise

(11). The application of the singularity confinement yields the relation

An+3An−2 =An+1An, (12)

which is integrated to log An = αn + β + φ2(n) + φ3(n). Here we use the notation φm(n) in order

to indicate a periodic function with period m, i.e., φm(n + m) = φm(n). Its precise expression is

φm(n)=
∑m−1

l=1
ǫ

(m)

l
exp

(

2iπ ln
m

)

. Note that, since the summation starts at 1 and not at 0, φm(n) introduces

only m ☞ 1 parameters. The corresponding discrete Painlevé equation is associated with the affine

Weyl group A
(1)

4
. Pursuing with the autonomous case, we remark that (11) being of QRT (Quispel-

Roberts-Thompson)-type has an invariant of the form

K =
(XnXn−1 + A(Xn + Xn−1) − A)(Xn + Xn−1 + A)

XnXn−1

. (13)

Using invariant (13), we can obtain a double step evolution. We solve (11) for Xn and, downshifting

the indices, we obtain the invariant

K =
(XnXn−2 − aXn − 1 + a2)(XnXn−2 − aXn−2 − 1 + a2)

XnXn−2 − 1
, (14)

where we have taken A = ☞a2 and have rescaled X so as to absorb a factor of a. From (14), we obtain

the mapping

(XnXn+2 − 1)(XnXn−2 − 1)= a2(1 − aXn), (15)

the deautonomisation of which was presented in Ref. 5. Triple-step evolutions can also be obtained.

We find in this case the invariant

K =
(AXnXn−3 − A − 1)(AXnXn−3 − Xn − Xn−3 − A − 2)

XnXn−3 − 1
, (16)

where we have absorbed a factor of A in X bringing the denominator to a canonical form. The

corresponding mapping is

(XnXn−3 − 1)(XnXn+3 − 1)=
1

A2

(Xn + 1)2

Xn − 1/A
, (17)

and its deautonomisation was given in Ref. 7.

All the discrete Painlevé equations presented up to this point are associated with the group A
(1)

4
.

However as we have shown in Ref. 5, it is not difficult to construct the equations associated with

higher affine Weyl groups, namely, E
(1)

6
, E

(1)

7
, and E

(1)

8
. In Sec. III, we shall use these results in order

to construct Miura transformations for all these discrete Painlevé equations.

III. MIURA TRANSFORMATIONS

One of the main motivations of this paper is the discovery of the Miura transformations studied

in Ref. 8 that relate equations associated with E
(1)

7
which had different canonical forms and where

one of the two was a double-step equation. The starting point is the equation

(

xn + xn+1 − zn+1

xn + xn+1

) (

xn + xn−1 − zn

xn + xn−1

)

=

xn − zn+1 − zn

xn

, (18)

already identified in Ref. 9, with zn = αn + β + φ3(n) + φ5(n), while the double step equation is
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(yn − yn+2 + (zn−1 + zn+3)2)(yn − yn−2 + (zn+1 + zn−3)2) + 4yn(zn−1 + zn+3)(zn+1 + zn−3)

(zn+1 + zn−3)(yn − yn+2 + (zn−1 + zn+3)2) + (zn−1 + zn+3)(yn − yn−2 + (zn+1 + zn−3)2)

=

yn + (zn+1 + 2zn + zn−1)(zn+1 + zn−1)

zn+1 + zn + zn−1

(19)

identified in Ref. 10. In Ref. 8, we obtained the Miura between these two equations by using an

auxiliary one

wn+1(zn + 2zn−1 − wn) + wn−1(zn + 2zn+1 + wn) − wn(zn+1 + zn−1) + zn(zn+1 − zn−1)= 0, (20)

which originates from the deautonomisation of a mapping of the HKY (Hirota-Kimura-Yahagi)

type.11 The Miura between (18) and (19) can be obtained by eliminating the variable wn from the

Miuras relating wn and xn on the one hand

xn =
(wn+1 + zn+1)(zn − wn)

2(wn+1 − wn − zn+1 − zn)
and wn = zn

xn−1 − xn

xn−1 + xn

(21)

and wn and yn on the other hand

(wn−1 − wn+1 + zn+1 + 2zn + zn+1)yn = 2wn−1wn+1(zn+1 + zn + zn+1) + wn−1(z2
n+1 − z2

n−1 − 2znzn+1)

+wn+1(z2
n−1 − z2

n+1 − 2znzn−1) + (zn+1 + zn+1)(z2
n+1 + z2

n+1) + 2zn(zn+1 + zn+1)2
− 2znzn+1zn+1

and

wn =−
yn+1 − yn−1

2(zn+2 + zn−2)
+

1

2
(zn+2 − zn−2). (22)

This is a somewhat roundabout way to present the Miura in question. Fortunately, it turns out that

one can obtain simple expressions for this Miura. We find indeed

(

yn − (2xn − zn+1 + zn−1)2) (yn+1− (2xn + zn+2 − zn)2)
= 16xn(xn + zn+2)(xn + zn−1)(xn − zn − zn+1) (23a)

complemented by

yn + (2xn − zn+1 + zn−1)(2xn−1 + zn+1 − zn−1)

xn + xn−1

=

yn − (zn+1 + zn−1)(zn+1 + 2zn + zn−1)

zn

. (23b)

Note that the Miura does not allow the construction of a single-step equation for yn: only a double-step

equation is possible.

No multiplicative equation was considered in Ref. 8 and, in fact, it is not clear whether it is

possible to find an auxiliary variable like w. However the construction of a Miura transformation

between a q equation associated with E
(1)

7
, and a double-step equation is perfectly feasible. Our

starting point is the multiplicative analog of (18),

*
,

xnxn+1 − z2
n+1

xnxn+1 − 1
+
-

(

xnxn−1 − z2
n

xnxn−1 − 1

)

=

xn − z2
n+1

z2
n

xn − 1
, (24)

where log zn = αn + β + φ3(n) + φ5(n). The Miura equation has now the form

(

yn+1 −
xnzn+2

zn

−

zn

xnzn+2

) (

yn −
xnzn−1

zn+1

−

zn+1

xnzn−1

)

=

zn+2zn−1

zn+1zn

(xn − 1)(xn − z2
nz2

n+1
)(xn − 1/z2

n−1
)(xn − 1/z2

n+2
)

x2
n

,

(25a)

yn − xnzn−1/zn+1 − xn−1zn+1/zn−1

xnxn−1 − 1
=

yn − zn+1z2
nzn−1 − 1/(zn+1zn−1)

z2
n − 1

. (25b)

Eliminating x between the two equations of (25), we obtain the double-step equation,



113506-5 Ramani, Grammaticos, and Tamizhmani J. Math. Phys. 59, 113506 (2018)

(yn+2zn−1zn+3 − yn)(yn−2zn+1zn−3 − yn) − (z2
n+1

z2
n−3
− 1)(z2

n−1
z2

n+3
− 1)

(yn+2 − zn−1zn+3yn)(yn−2 − zn+1zn−3yn) − (z2
n+1

z2
n−3
− 1)(z2

n−1
z2

n+3
− 1)/(zn+1zn−3zn−1zn+3)

= zn+3zn−3

yn − zn+1zn−1(z2
n + 1)

ynzn+1z2
nzn−1 − (z2

n + 1)
, (26)

which again has a form usually encountered in equations associated with the group E
(1)

8
.

In the examples that will follow we shall not seek an auxiliary variable like w but proceed in a

more direct approach. We start with the simple case of Eq. (11) which we write in nonautonomous

form as

xn+1xn−1 = zn(1 − xn), (27)

where log zn = αn + β + φ2(n) + φ3(n). We have seen in Sec. II that one can obtain a double-step

equation at the autonomous limit. Here we are interested in a non-autonomous form, i.e., a genuine

discrete Painlevé equation. As pointed out in Ref. 5, the latter was derived in Ref. 7. It has the form

(written admittedly with some hindsight)

(ynyn+2 − 1)(ynyn−2 − 1)=
(1 − zn+1yn/cn)(1 − zn−2yn/cn)

1 − yn/cn

, (28)

where log zn = 2αn + β + φ2(n) + φ3(n) and c(n + 2)c(n) = z(n + 1)z(n) leading to log cn = α(2n ☞ 1)

+ β + φ3(n + 1).

We claim that the two discrete Painlevé equations are related by a Miura transformation. In order

to construct it, we start by introducing the quantity

Rn =

(

1 − xn

xn−1

) (

1 − xn−1

xn

)

. (29)

This form is dictated by the singularity structure of (27).12 Using the equation obeyed by zn, we find

that the singularity pattern of (27) is {1, 0, zn+2,∞,∞, 1/zn+7, 0, 1}. This leads to the following pattern

for Rn: {0, f, ∞, 1 ☞ 1/zn+2, 1, 1 ☞ zn+7, ∞, f ′, 0}, where f, f ′ are two finite quantities depending on

the initial conditions. These two finite values are precisely due to the existence of the factors (1 ☞

xn☞1)/xn and (1 ☞ xn)/xn☞1. Using the quantity Rn, we proceed to construct the variable yn expressed

as a homography of the former. Again our guide is the singularity structure. Taking one out of two

values in Rn (since yn advances with double steps), we find the succession {0,∞, 1,∞, 0} which we

must match to the singularity pattern of (28), namely, {cn, ∞, 0, ∞, cn+8} provided cn and zn that

are defined as above. It suffices thus to introduce the relation yn = cn(1 ☞ Rn) in order to obtain the

desired singularity pattern. The first half of the Miura is thus

(ynxn − cn)(ynxn−1 − cn)= cn(cn − yn). (30a)

The second one can easily be obtained using (28). We find thus

zn(ynxn − cn)(yn+1xn − cn+1)= (1 − xn)cncn+1. (30b)

Note that (30) can be brought to a canonical form provided we define yn/cn as a new variable. Again

the Miura does not allow the construction of a single-step equation for yn but only a double-step one.

Next we turn to the E
(1)

6
-associated equation obtained in5

(xnxn+1 − 1)(xnxn−1 − 1)= (1 − xn)(1 − znxn), (31)

where log zn = 2αn + β + φ2(n) + φ5(n). Based on the singularity structure of (31), we introduce the

quantity

Rn =

(

xn − 1/zn

xn−1 − zn

) (

xn−1 − 1/zn−1

xn − zn−1

)

, (32)

and the auxiliary variable yn by Rn = (yn/ζn ☞ 1)/(ynznzn☞1/ζn ☞ 1). We obtain thus the Miura
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(znxnyn/ζn − 1)(znxnyn+1/ζn+1 − 1)=
(xn − zn−1)(xn − zn+1)(znxn − 1)

zn+1zn−1(xn − 1)
(33a)

and

(znxnyn/ζn − 1)(zn−1xn−1yn/ζn − 1)= (1 − yn/ζn)(1 − ynznzn−1/ζn), (33b)

where log ζn = α(2n ☞ 1) + β + φ5(n) + φ5(n ☞ 1) ☞ φ5(n + 2) and we have ζn+1ζn☞1 = znzn☞1.

Eliminating x from (33), we find

(yn+2yn − 1)(ynyn−2 − 1)=
(cyn − 1)(yn/c − 1)(yn/ζn − 1)

znzn−1yn/ζn − 1
, (34)

where log c = 5α + φ2(n), which is a constant since n has always the same parity.

IV. TRIPLE- AND QUINTUPLE-STEP EQUATIONS

Before proceeding further we must make here an important remark. The Miura transformations

we present are always written as a system of two first-order mappings. This system, as it stands, is

an integrable non-autonomous discrete system and, in fact, a discrete Painlevé equation on its own

right. Whether one can eliminate both ways, establishing the relation between two different discrete

Painlevé equations is ultimately immaterial. The Miura construction starts from an equation for the

variable, say x, and obtains a system involving x and a new variable y which is a new discrete Painlevé

equation. In what follows, we shall encounter several such examples.

We start with the triple-step mapping obtained from (11). In Sec. II, we gave it its form as (17)

but as pointed out in Ref. 5 this form is too simple to allow deautonomisation. Thus we rewrite

it as

(xnxn−3 − 1)(xnxn+3 − 1)= a
(xn − b)(xb − 1/b)

xn − c
, (35)

which is deautonomised to

(xnxn−3 − 1)(xnxn+3 − 1)= dznzn+1

(xn − b)(xb − 1/b)

xn − zn

, (36)

where b, d are constant and log zn = αn + β + φ2(n), an equation related to the group A
(1)

4
. The

construction of the Miura is the same as for the case of the double-step equation (28), but it turns out

that the result is trivial. It amounts to define as new variable y, one of the two factors which appears

in the left-hand side of (36). Thus we proceed to consider the next case, i.e., the triple-step equation

associated with the group E
(1)

6
. Its multiplicative form was obtained in5

(

xn+3 − zn+2xn

xn+3zn+1 − xn

) (

xn−3 − zn−2xn

xn−3zn−1 − xn

)

=

(xnzn − 1)(xn − 1)

(xn − zn−1)(xn − zn+1)
, (37)

where log zn = αn + β + φ2(n) + φ5(n). We introduce the quantity Rn just as in Eq. (32) and construct

an auxiliary variable yn by

Rn =
yn − 1

znzn−1yn − 1
. (38)

Note that given (38) and the definition of Rn, yn is to be understood as a variable at the position (n ☞
1/2). We find thus the Miura system

(

yn+2zn+1 − xn

yn+2zn+1zn+2 − xn

) (

yn+2zn+2 − xn+3

yn+2zn+1zn+2 − xn+3

)

=

yn+2 − 1

yn+2zn+1zn+2 − 1
, (39a)

(

yn+2zn+1 − xn

yn+2zn+1zn+2 − xn

) (

yn−1zn−1 − xn

yn−1zn−1zn−2 − xn

)

=

xnzn − 1

zn+2zn−2(xn − 1)
, (39b)

but given the form of (39), it is not possible to obtain an equation for y alone.

A triple-step equation associated with E
(1)

7
does also exist as shown in Ref. 5. Working with the

multiplicative case we find, starting from (24)
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*
,

xn+3xn − z2
n+1

z2
n+3

xn+3xn − 1/z2
n+2

+
-
*
,

xn−3xn − z2
nz2

n−2

xn−3xn − 1/z2
n−1

+
-
=

(xn − z2
n−2

)(xn − z2
n+3

)(xn − z2
nz2

n+1
)

(xn − 1)(xn − 1/z2
n−1

)(xn − 1/z2
n+2

)
. (40)

We shall not enter into the details of the construction of the Miura but give directly the result. We

obtain the system

(

yn−1 − xn/(znzn−2) − znzn−2/xn

) (

yn+2 − xn/(zn+1zn+3) − zn+1zn+3/xn

)

=

(xn − 1)(xn/(znzn+1) − znzn+1)(xn/zn−2 − zn−2)(xn/zn+3 − zn+3)

x2
n

, (41a)

xn+3 + xn − zn+1zn+3yn+2

xn+3xn − z2
n+1

z2
n+3

=

zn+1z2
n+2

zn+3yn+2 − z2
n+2
− 1

z2
n+1

z2
n+2

zn+32 − 1
. (41b)

Again, we remark that while it is possible to eliminate y between the two equations of (41) and get

back to (40), it is not possible to obtain a single equation for yn.

We turn now to the case of quintuple-step equations and start with the equation obtained from

(11). In contrast to the double- and triple-step equations, here it is not possible to obtain an equation

for a single variable. Still we can introduce the Miura transformation (29) and define an auxiliary

variable y by yn = 1 ☞ Rn which is to be understood as a variable in position (n ☞

1/2). We shall not

enter into the details of the calculation (which are straightforward and can be performed with the

help of computer algebra) and just give the final result. We find thus the following system:

(

yn+3zn+1 − xn

yn+3zn+1zn+2 − xn

) (

yn+3zn+4 − xn+5

yn+3zn+3zn+4 − xn+5

)

= 1 − yn+3, (42a)

(

yn+3zn+1 − xn

yn+3zn+1zn+2 − xn

) (

yn−2zn−1 − xn

yn−2zn−1zn−2 − xn

)

=

zn

zn+2zn−2

(1 − xn). (42b)

No elimination of either of the variables is possible but system (42) does define a discrete Painlevé

equation associated with the group A
(1)

4
.

The case of the E
(1)

6
-associated equation can be treated along the same lines. We start from Rn

defined by (32) and introduce a variable y by Rn = (yn/(znzn☞1) ☞ 1)/(yn ☞ 1). Using the definition of

yn and Eq. (31) for x, we find the system

(xn+5yn+3 − 1)(xnyn+3 − 1)=
(1 − yn+3)(1 − ayn+3)(1 − byn+3)

1 − yn+3/(zn+2zn+3)
, (43a)

(xnyn+3 − 1)(xnyn−2 − 1)=
(1 − xn)(1 − xn/a)(1 − xn/b)(1 − xnzn)

(1 − xn/zn−1)(1 − xn/zn+1)
. (43b)

We remind here that the variable zn obeys the relation zn+4zn☞3 = zn+2zn☞1. As a consequence,

the quantities zn+4/zn+2 and zn+1/zn+3 appearing in the numerators of Eq. (43) are constant when

one advances by a step of 5. We therefore simplify our notations by introducing two constants

a ≡ zn+4/zn+2 and b ≡ zn+1/zn+3. Equation (43) is a discrete Painlevé equation first identified in Ref. 7

[Equation (43) in that paper] albeit presented with a slightly different gauge choice.

Finally we turn to the case related to E
(1)

7
. The auxiliary variable y is defined again by (25b),

while x is given by Eq. (24). No quintuple-step equation for a single variable is possible but, just as

for the A
(1)

4
and E

(1)

6
cases, one can obtain a system involving x and y. We find

(

yn+3 − xnzn+2zn+4 −
1

xnzn+2zn+4

) (

yn−2 − xnzn−1zn−3 −
1

xnzn−1zn−3

)

=

(xnz2
n+4
− z2

n+1
)(xnz2

n−3
− z2

n)(xnz2
n+2
− 1)(xnz2

n−1
− 1)(xn − 1)

zn+4zn+2zn−1zn−3x2
n(xn − z2

n+1
z2

n)
, (44a)

yn+3 − zn+4zn+2(xn+5 + xn)

xn+5xn − 1/(z2
n+4

z2
n+2

)
= z2

n+4z2
n+2

zn+4zn+2y2
n+3
− Ayn+3 − zn+4zn+2B

zn+4zn+2(z2
n+5

z2
n+4

z2
n+3

z2
n+2

z2
n+1
− 1)yn+3 − C

,

(44b)
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where A= z2
n+4

z2
n+3

z2
n+2

+ z2
n+5

z2
n+4

+ z2
n+4

z2
n+2

+ z2
n+2

z2
n+1

, B= z2
n+5

z2
n+4

z2
n+3

z2
n+2

z2
n+1
− z2

n+5
z2

n+4
z2

n+3
−

z2
n+4

z2
n+3

z2
n+2
− z2

n+3
z2

n+2
z2

n+1
− z2

n+5
z2

n+4
− z2

n+5
z2

n+1
− z2

n+2
z2

n+1
+ 1, and C = z2

n+5
z2

n+4
z2

n+3
z2

n+2
z2

n+1
+

z2
n+5

z4
n+4

z2
n+3

+ z2
n+4

z2
n+3

z4
n+2

zn+1 + z2
n+5

z2
n+4

z2
n+2

z2
n+1

− z2
n+4

z2
n+3

z2
n+2

− z2
n+5

z2
n+4

− z2
n+4

z2
n+2

− z2
n+2

z2
n+1

.

Equation (44) is a q-discrete Painlevé equation which has not been previously derived.

V. E(1)

8
-ASSOCIATED EQUATIONS

The case of E
(1)

8
-associated equations is, quite expectedly, very cumbersome. Deriving the explicit

forms of the Miuras in the fully deautonomised case turns out not to be always possible in practice

(and even in the cases where this can be done the expressions often turn out to be too lengthy to be

reproduced in the paper). With this caveat in mind, we proceed to the examination of the simplest case,

namely, that of the Miura between two single-step equations. Our starting point is the trihomographic

equation

xn+1 − (zn+1 + 2zn + 2zn−1)2

xn+1 − z2
n+1

xn−1 − (2zn−1 + 2zn + zn−1)2

xn−1 − z2
n−1

=

xn − (2zn−1 + 3zn + 2zn−1)2

xn − z2
n

, (45)

where zn = αn + β + φ2(n) + φ3(n) + φ5(n). We start by introducing an auxiliary variable ζ related

to z through zn = ζn+6 + ζn☞6 ☞ ζn. Given the form of zn, we have for ζ the expression ζn = αn +

β + φ2(n) + φ3(n) ☞ φ5(n + 1) ☞ φ5(n ☞ 1) ☞ 2φ5(n). The Miura transformation is constructed by

introducing first the quantity

Rn =

(

xn − (2zn−1 + 3zn + 2zn−1)2

xn−1 − (2zn−1 + 2zn + zn−1)2

) (

xn−1 − (2zn + 3zn−1 + 2zn−2)2

xn − (zn + 2zn−1 + 2zn−2)2

)

(46)

and defining the new dependent variable y by

yn =
a2

nRn − b2
n

Rn − 1
, (47)

where an = ☞ζn☞4 + ζn☞3 + ζn☞2 + ζn☞1 + ζn + ζn+1 + ζn+2 ☞ ζn+3 and bn = an + 2(ζn☞4 + ζn+3). We

obtain thus the system

(yn − xn + ζ2
n−4

)(yn − xn−1 + ζ2
n+3

) + 4ynζn−4ζn+3

ζn+3(yn − xn + ζ2
n−4

) + ζn−4(yn − xn−1 + ζ2
n+3

)

=

yn − (ζn−3 + ζn−2 + ζn−1 + ζn + ζn+1 + ζn+2)2

ζn−4 + ζn+3

+ ζn−4 + ζn+3, (48a)

(xn − yn + ζ2
n−4

)(xn − yn+1 + ζ2
n+4

) + 4xnζn−4ζn+4

ζn+4(xn − yn + ζ2
n−4

) + ζn−4(xn − yn+1 + ζ2
n+4

)
=

x2
n − Axn − B

(ζn−4 + ζn+4)xn − C
, (48b)

where A, B, C are very lengthy expressions in terms of ζn, given below.

A= 2
(

ζn−4ζn−3 − ζn−4ζn−2 − ζn−4ζn−1 + ζn−4ζn+3 − ζn−4ζn+2 − ζn−4ζn+1 − ζn−4ζn + ζ2
n−3 + ζn−3ζn+4 + ζ2

n−2

+2ζn−2ζn−1 − ζn−2ζn+4 + 2ζn−2ζn+2 + 2ζn−2ζn+1 + 2ζn−2ζn + ζ2
n−1 − ζn−1ζn+4 + 2ζn−1ζn+2 + 2ζn−1ζn+1 + 2ζn−1ζn

+ζn+4ζn+3 − ζn+4ζn+2 − ζn+4ζn+1 − ζn+4ζn + ζ2
n+3 + ζ2

n+2 + 2ζn+2ζn+1 + 2ζn+2ζn + ζ2
n+1 + 2ζn+1ζn + ζ2

n

)

,

B= (2ζn−4 + ζn−3 − ζn−2 − ζn−1 + 2ζn+4 + ζn+3 − ζn+2 − ζn+1 − ζn)(ζn−3 + ζn−2 + ζn−1 + ζn+3 + ζn+2 + ζn+1 + ζn)

×(ζn−3 + ζn−2 + ζn−1 − ζn+3 + ζn+2 + ζn+1 + ζn)(−ζn−3 + ζn−2 + ζn−1 + ζn+3 + ζn+2 + ζn+1 + ζn),



113506-9 Ramani, Grammaticos, and Tamizhmani J. Math. Phys. 59, 113506 (2018)

C = ζn−4ζ
2
n−3 + 2ζn−4ζn−3ζn−2 + 2ζn−4ζn−3ζn−1 − 2ζn−4ζn−3ζn+3 + 2ζn−4ζn−3ζn+2 + 2ζn−4ζn−3ζn+1 + 2ζn−4ζn−3ζn

+ζn−4ζ
2
n−2 + 2ζn−4ζn−2ζn−1 + 2ζn−4ζn−2ζn+3 + 2ζn−4ζn−2ζn+2 + 2ζn−4ζn−2ζn+1 + 2ζn−4ζn−2ζn + ζn−4ζ

2
n−1

+2ζn−4ζn−1ζn+3 + 2ζn−4ζn−1ζn+2 + 2ζn−4ζn−1ζn+1 + 2ζn−4ζn−1ζn + ζn−4ζ
2
n+3 + 2ζn−4ζn+3ζn+2 + 2ζn−4ζn+3ζn+1

+2ζn−4ζn+3ζn + ζn−4ζ
2
n+2 + 2ζn−4ζn+2ζn+1 + 2ζn−4ζn+2ζn + ζn−4ζ

2
n+1 + 2ζn−4ζn+1ζn + ζn−4ζ

2
n + ζ2

n−3ζn+4

+2ζn−3ζn−2ζn+4 + 4ζn−3ζn−2ζn+3 + 2ζn−3ζn−1ζn+4 + 4ζn−3ζn−1ζn+3 − 2ζn−3ζn+4ζn+3 + 2ζn−3ζn+4ζn+2

+2ζn−3ζn+4ζn+1 + 2ζn−3ζn+4ζn + 4ζn−3ζn+3ζn+2 + 4ζn−3ζn+3ζn+1 + 4ζn−3ζn+3ζn + ζ2
n−2ζn+4 + 2ζn−2ζn−1ζn+4

+2ζn−2ζn+4ζn+3 + 2ζn−2ζn+4ζn+2 + 2ζn−2ζn+4ζn+1 + 2ζn−2ζn+4ζn + ζ2
n−1ζn+4 + 2ζn−1ζn+4ζn+3 + 2ζn−1ζn+4ζn+2

+2ζn−1ζn+4ζn+1 + 2ζn−1ζn+4ζn + ζn+4ζ
2
n+3 + 2ζn+4ζn+3ζn+2 + 2ζn+4ζn+3ζn+1 + 2ζn+4ζn+3ζn + ζn+4ζ

2
n+2

+2ζn+4ζn+2ζn+1 + 2ζn+4ζn+2ζn + ζn+4ζ
2
n+1 + 2ζn+4ζn+1ζn + ζn+4ζ

2
n .

Eliminating y between the two equations of (48) leads back to (45) for x. However given the form of

(48b), it is impossible to eliminate x and obtain a single equation for y.

Next we consider the double-step evolution. Starting from (45), we can obtain an equation relating

xn to xn±2. We find thus the equation

(xn − xn+2 + 16z2)(xn − xn−2 + 16z2) + 64xnz2

4z(xn − xn+2 + 16z2) + 4z(xn − xn−2 + 16z2)
=

(xn + 95z2)(xn − z2)

8z(xn + 5z2)
− 2z. (49)

Deautonomising this equation becomes a manageable task provided we introduce the parametrisation

we introduced in Ref. 13. We can show then that the non-autonomous form of (49) is equivalent to

the case 4.3.4 of that Ref. 13. Concentrating on the Miura transformation, we limit ourselves, at

first, to the autonomous case (in which case the variables z and ζ introduced above do coincide).

The Miura transformation is always given by (48) and the quantities A, B, and C are now equal to

42z2, 175z4, and 110z3, respectively. It turns out that when we consider a double-step evolution we

can eliminate x from the two equations of (48) and obtain a single equation for y. Its autonomous

form is

(yn − yn+2 + 16z2)(yn − yn−2 + 16z2) + 64ynz2

4z(yn − yn+2 + 16z2) + 4z(yn − yn−2 + 16z2)
=

(yn + 36z2)(yn − 16z2)

8z(yn + 11z2)
+ 8z. (50)

Deautonomising this equation turns out to be feasible, and it results in Eq. (4.4.1) we first derived in

our Ref. 13.

Triple- and quintuple-step evolutions can also be considered. The triple-step equation for x alone

is

(xn − xn+3 + 36z2)(xn − xn−3 + 36z2) + 144xnz2

6z(xn − xn+3 + 36z2) + 6z(xn − xn−3 + 36z2)
=

x3
n + 229x2

nz2 + 2803xnz4 + 1575z6

12z(x2
n + 46xnz2 + 145z4)

. (51)

Again, for its deautonomisation we proceed as for the double-step equation, and find that the non-

autonomous form is equivalent to Eq. (5.2.5) of Ref. 13. The Miura transformation can be obtained

from the elementary one (48). We thus find the system

(yn+2 − xn + 9z2)(yn+2 − xn+3 + 9z2) + 36ynz2

3z(yn+2 − xn + 9z2) + 3z(yn+2 − xn+3 + 9z2)
=

yn+2 + 32z2

6z
, (52a)

(xn − yn−1 + 9z2)(xn − yn+2 + 9z2) + 36xnz2

3z(xn − yn−1 + 9z2) + 3z(xn − yn+2 + 9z2)
=

(xn − 9z2)(xn + 11z2)

6z(xn + z2)
+ 6z. (52b)

Clearly no elimination of x is possible in this case, and thus we cannot obtain a single equation for y.

Finally we turn to the quintuple-step evolution. Here no single equation does exist either for x

or for y. Still it is possible to use the Miura (48) in order to obtain the system

(yn+3 − xn + 25z2)(yn+3 − xn+5 + 25z2) + 100ynz2

5z(yn+3 − xn + 25z2) + 5z(yn+3 − xn+5 + 25z2)
=

(yn+3 + 176z2)(yn+3 + 8z2)

2z(5yn+3 + 112z2)
+ 4z, (53a)
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(xn − yn−2 + 25z2)(xn − yn+3 + 25z2) + 100xnz2

5z(xn − yn−2 + 25z2) + 5z(xn − yn+3 + 25z2)
=

x3
n + 149x2

nz2 + 827xnz4 + 175z6

2z(5x2
n + 128xnz2 + 155z4)

. (53b)

In all the cases above it is, a priori, possible to use the Miura (48), involving the full expressions for

A, B, C, and obtain the non-autonomous forms for (52) and (53). However the resulting expressions

would have been prohibitively lengthy and, in that sense, not of great use. Thus we prefer to limit

ourselves to the autonomous forms.

VI. CONCLUSIONS

In this paper, we have addressed the problem of the existence of relations between discrete

Painlevé equations corresponding to evolutions with different steps. The possibility of the existence

of double- or triple-step evolution equations besides the single-step ones was already presented in

Ref. 5 in collaboration with Willox. In that paper we obtained several instances of such multi-step

equations. The aim of the present paper is different from that of Ref. 5. Instead of just deriving such

multi-step equations, we asked ourselves whether there existed Miura-like transformations relating

to these systems.

The work of the present paper was centred around one particular system, a discrete Painlevé equa-

tion associated with the affine Weyl group E
(1)

8
, the coefficients of which had periodicities involving

periods 2, 3, and 5. Starting from this equation and following the method introduced in Ref. 5, we

could derive systems associated with the groups E
(1)

7
, E

(1)

6
, and A

(1)

4
. The important ingredient of our

approach is the Miura seed, denoted by R in the text, the form of which is dictated by the singularity

structure of the system. Once R is known, the first half of the Miura introduces a new variable, say y,

which is expressed simply as a homography of R. Having the basic Miura, one can then proceed to

the construction of the double, triple, and quintuple-step equations. In the first case, one can always

obtain an equation for the variable y, but this is not possible for the case of triple- or quintuple-step

evolutions. Still the result is most interesting since the equations obtained using the basic Miura are

discrete Painlevé equations on their own right.

One important remark concerns Eqs. (25), (41), and (44). They have forms which have never

before been encountered in our studies of discrete Painlevé equations. In fact, when we first obtained

them we wondered whether these forms were canonical or not. It turned out, as we showed in Ref. 14,

that they are indeed canonical forms corresponding to cases that were missing in the previous classi-

fication15 of the canonical forms of the QRT16 mapping. This discovery opened another interesting

track for the exploration of discrete Painlevé equations.

The application of the method presented here is not in any way tailored to the system mentioned

in the second paragraph. It can be, in fact, in combination with the approach developed in Ref. 5,

applied to any of the E
(1)

8
-associated discrete Painlevé equations derived in Ref. 5. Extending the

method to multiplicative and/or asymmetric (in the QRT sense) systems is, in principle, feasible. We

intend to address such questions in future publications of ours.
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