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1. INTRODUCTION
The aluminium metal matrix composites (Al-
MMC’s) have been conventionally used as a pis-
ton material for automobile applications. For the 
enhanced life of engine it is a pre-requisite that is 
should possess high abrasive wear resistance [1]. 
The addition of silicon in fine form fairly increas-
es the wear resistance nature. The addition of par-
ticulates such as zircon, alumina, silica and silicon 
carbide in the aluminium matrix provides a better 
wear resistance nature and improves the antifriction 
nature. The choice of better particulate in the alu-
minium phase improves the stiffness, ductility and 
strength of Al-MMC [2,3]. 
. 
The incorporation of SiC and flyash in the alumin-
ium magnesium alloy increases its load resistance 
characteristics due to dry sliding processes. The re-
inforcement of SiC in to the aluminium metal ma-
trix changes the young’s modululs and also favours 
the change in thermal expansion of the metal matrix 
composites. High strength metals when combined 
with SiC ceramics by the molten methods alters the 
tensile strength and indentation behaviour making it 
more conducive  for the manufacturing processes of 
automobile parts [4]. The investigation of wear resis-
tance behaviour of Al-SiC MMCs against frictional 
force has received much attention due to its appli-
cations in automotive applications for disc brakes. 
These metal matrix composites improves their wear 
resistance, thermal diffusivity and strength. Friction 
and wear resistance properties help in understanding 
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the tribological behaviour of the Al-MMC’s nature. 
The strengthening of aluminium alloys with a dis-
persion of fine ceramic composites increases their 
potential application for wear resistant materials 
which finds applications in aluminium alloy disc 
brake and other automobile applications [5].

Aluminium alloy reinforced with SiC particulate 
were tested for their wear resistance nature by dry 
sliding wear test using a pin on disk wear tester. The 
results showed that, the reinforcement of the metal 
matrix with SiC and TiO2 reduces the wear rate at 
room temperature. The sliding wear behaviour of 
cenosphere-filled aluminum syntactic foam (ASF) 
has been studied in comparison with that of 10 wt% 
SiC particle reinforced aluminum matrix composite 
(AMC) by varying sliding speeds under dry and lu-
bricated conditions.  The tribological response such 
as the wear rate and the coefficient of friction draw 
main focus and requires investigations. It was noted 
that the coefficient of friction, the wear rate, and the 
temperature rise for ASF are less than that for AMC 
in both dry and lubricated conditions. The craters 
(vis-à-vis exposed cenospheres) play an important 
role in the wear mechanism for ASF [6,7]

Fabrication of Al-SiC-MMC’s were of different 
types, which includes powder metallurgy, melt 
quenching and mechanical alloying. Conventional 
techniques like casting, spraying and thixoforming 
have the advantages of higher porosity which can be 
an added advantage for the intrusion of SiC and fly-
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ash in the crystalline lattice as matrix. These alumi-
num matrix composites have attractive and interest-
ing wear properties which can be enhanced through 
reinforcement with ceramic composites [8,9]. The 
widespread challenge of usage of particulate metal 
matrix composites for engineering applications in-
cludes uniform distribution of reinforcement of the 
matrix which inturn decides the quality of compos-
ite material. 

In the present study a conventional low cost sand 
casting method was used for producing Al-SiC-
MMCs. By varying the aluminium content, dry slid-
ing wear resistance properties were investigated in 
detail by varying the load simultaneously and the 
results were discussed in detail. 

2. EXPERIMENTAL PROCEDURE 
Al-SiC-flyash metal matrix composites were syn-
thesized by classical melt technique. The required 
quantities of Aluminium (356 grade), SiC, flyash 
and magnesium was melted in a crucible and then 
this melt was poured in to a cast which is made of 
sand. The composition of the aluminium was varied 
as 75, 80 and 85 %. The SiC content was maintained 
at 10. The flyash content was varied as 14, 9 and 4 %. 
The magnesium content was mixed at 1 %. Homo-
geneous melting was done for the above mentioned 
compositions and then the samples were fabricated 
by sand casting method. The obtained samples was 
then mounted on the spindle of wear and friction set-
up to measure the tribological behaviour. The stan-
dard samples (pins – cylindrical shape) have been 
prepared (Ø12mm X 40 mm) out of castings with 
different wt. % of aluminium is shown in Fig.1.

Powder X-ray diffraction analysis was carried out 
using Rigaku (fitted with CuKα1) in the range 10 
– 80o. Scanning Electron Microscope was used to 
observed the microstructural pattern of the samples 

which was under investigation.MITUTOYO (MVK-
H11) hardness tester was used to find the Vicker’s 
hardness number. The Al-SiC-MMCs  were sub-
jected to wear analysis by varying loads (10 N, 20 
N and 30 N) and the velocity (V = 1 m/s, 1.5 m/s 
and 2 m/s). 

2.1. Materials and methods 
Aluminium-SiC-flyash-magnesium metal matrix 
composites with different ratio were melted and 
sand casting process was applied to fabricate the re-
quired samples. The chemical compositions of the 
samples are provided in Table 1.

2.2. Microstructure of flyash-AMCs
The flyash was collected from Mettur thermal power 
plant, Tamil Nadu, India. Scanning electron micro-
scopic image shown in Fig.2 reveals that the flyash 
particulates is of spheroidal nature [10]. These flyash 
particles contain both solid spheres (precipitators) 
and hollow spheres (cenospheres). The purchased 
flyash was used as they were uniform in nature.

Fig.2: SEM image of flyash particulates
 

3. RESULTS AND DISCUSSION
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The scanning electron microscopic (SEM) images 
of the SiC and flyash reinforced Al-MMCs is shown 
in Fig.3(a-f). Fig.3a represents the microstructure 
pattern of the Al-SiC-flyash metal matrix compos-
ite (Aluminium 75 %) before the application of 
frictional force. Here it is clearly evident that only 
unreacted flyash content remains on the surface of 
the samples. Fig.3b represents the surface pattern of 
the samples after the application of frictional force 
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The scanning electron microscopic (SEM) images of the SiC and flyash reinforced Al-MMCs is 
shown in Fig.3(a-f). Fig.3a represents the microstructure pattern of the Al-SiC-flyash metal 
matrix composite (Aluminium 75 %) before the application of frictional force. Here it is clearly 
evident that only unreacted flyash content remains on the surface of the samples. Fig.3b 
represents the surface pattern of the samples after the application of frictional force (at 10 N) for 
the velocity of the spindle at 1 m/s (191 RPM) for which the craters are created on the surface. 
The loss of weight increases on the surface due to the frictional force. Similarly Fig.3c represents 
the microstructure pattern for the aluminium content of 80 % before the application of frictional 
force and Fig. 3d represents the microstructure after application of the frictional force. Fig.3e 
represents the frictional force for the aluminium content at 85 % and Fig.3f represents the 
microstructure of the surface after application of the load. In all the images its clear evident that 
the surface remains clear with only unreacted flyash. Whereas, after application of load crests and 
troughs are created due to the loss of material at the surface due to frictional force [11-13] 

(at 10 N) for the velocity of the spindle at 1 m/s 
(191 RPM) for which the craters are created on the 
surface. The loss of weight increases on the surface 
due to the frictional force. Similarly Fig.3c repre-
sents the microstructure pattern for the aluminium 
content of 80 % before the application of frictional 
force and Fig. 3d represents the microstructure after 
application of the frictional force. Fig.3e represents 
the frictional force for the aluminium content at 85 
% and Fig.3f represents the microstructure of the 
surface after application of the load. In all the im-
ages its clear evident that the surface remains clear 
with only unreacted flyash. Whereas, after applica-
tion of load crests and troughs are created due to the 

loss of material at the surface due to frictional force 
[11-13]

3.2. Powder XRD analysis.
Powder X-ray diffraction analysis was performed 
for the samples of different aluminium composi-
tions Viz., 75, 80 and 85 % for which the pattern is 
shown in Fig.4. In all the compositions, the SiC con-
tent was mainatained at 10 %. It shows that the 100 
% peak at 45o corresponds to the aluminium matrix. 
The peak at 17o is due to the instrument broadening. 
These samples show no secondary phases empha-
sizing that all the composites formed is single phase 
in nature. This is more evident from the scanning 

Fig. 3(a-c). SEM images of the Al-SiC-flyash-MMCs for different aluminium compositions
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electron microscope image which indicated that the 
surface of the sintered sample showed no traces of 
SiC content [14].

Fig.4: XRDA pattern for different Al weight % compo-
sitions (a) 75 % (b) 80 and (c) 85 %

3.3. Microhardness Measurements.
Vicker’s microhardness measurement was carried 
out for the SiC-flyash reinforced aluminium metal 
matrix composites to test its mechanical strength. 
Several indentations were made on the surface at 
different points and the average hardness number 
(Hv) with respect to the aluminium composition is 
shown in Fig. 5.

Fig.5: Hardness number (Hv) Vs aluminium composi-
tion

From the figure, it can be clearly concluded that as 
the aluminium content is increased, the hardness 
number increases. When the aluminium content is 
increased from from 75 to 85 %, (thus by keeping 
the SiC content constant at 10 wt %), the hardness 
increases from 70 to 90. As the aluminium content is 
increased, the flyash content is decreased from 14 % 
to 4 %. The increase in hardness may be explained 
on the basis of difference in thermal expansion coef-
ficients of aluminium and flyash. Due to this differ-
ence, strain is induced during solidification. As the 
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strain increases, the dislocation occurs and flyash 
particles offer resistance to the propagation of cracks 
during tensile loading [15,16]. 

3.3.Tribological behaviour
3.1.1. Friction behaviour
Frictional behaviour was investigated for various 
aluminium compositions by varying the frictional 
force (10 N, 20 N and 30 N) applied and also the 
velocity of sample at which it rotates (V = 1 m/s, 1.5 
m/s and 2 m/s). From Fig. 6 it can be seen that as 
the load increases the coefficient of friction increas-
es causing loss of the materials from the surface. 
This was confirmed through the SEM results which 
showed the worn out behaviour due to the applica-
tion of load.  Also, as the velocity is increased, the 
coefficient of friction increases which can be seen 
from the below figure [17].

Fig. 6: Load Vs Coefficient of friction for different 
aluminium compositions

Coefficient of friction was determined by varying 
the velocity of rotation by maintaining the load at 10 
N for various aluminium compositions. The experi-
mental trial was repeated by increasing the load to 
20 N and 30 N for which the coefficient of friction 
is shown in Figure 7. 

Fig. 7: Velocity Vs Coefficient of friction for different 
aluminium compositions

Fig.5: Hardness number (Hv) Vs aluminium composition 

From the figure, it can be clearly concluded that as the aluminium content is increased, the 
hardness number increases. When the aluminium content is increased from from 75 to 85 %, 
(thus by keeping the SiC content constant at 10 wt %), the hardness increases from 70 to 90. As 
the aluminium content is increased, the flyash content is decreased from 14 % to 4 %. The 
increase in hardness may be explained on the basis of difference in thermal expansion coefficients 
of aluminium and flyash. Due to this difference, strain is induced during solidification. As the 
strain increases, the dislocation occurs and flyash particles offer resistance to the propagation of 
cracks during tensile loading [15,16].  

3.3.Tribological behaviour 
3.1.1. Friction behaviour 
Frictional behaviour was investigated for various aluminium compositions by varying the 
frictional force (10 N, 20 N and 30 N) applied and also the velocity of sample at which it rotates 
(V = 1 m/s, 1.5 m/s and 2 m/s). From Fig. 6 it can be seen that as the load increases the 
coefficient of friction increases causing loss of the materials from the surface. This was 
confirmed through the SEM results which showed the worn out behaviour due to the application 
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Fig. 6: Load Vs Coefficient of friction for different aluminium compositions 

Coefficient of friction was determined by varying the velocity of rotation by maintaining the load 
at 10 N for various aluminium compositions. The experimental trial was repeated by increasing 
the load to 20 N and 30 N for which the coefficient of friction is shown in Figure 7.  

Fig. 7: Velocity Vs Coefficient of friction for different aluminium compositions 

Fig.8 shows the wear rate measured by varying the frictional force (10 N, 20 N and 30 N) while 
increasing the velocity of sample simultaneously from V = 1 m/s to 2 m/s. As the load was 
increased, wear rate increases which may be accounted for the loss of sample on the surface. This 
loss increases as the aluminium content increases.  

Fig. 8: Wear rate Vs Load at different velocities of the spindle for different aluminium compositions 

3.1.1. Wear rate behaviour  
Tribological properties of coefficient of friction and wear rate were compared with the increase in 
aluminium content. The frictional force was increased from 10 N to 30 N by keeping the velocity 
of the spindly at 1 m/s as shown in Figure 9. When the velocity is increased to 1.5 m/s, similar 
measurements was carried out by varying the load from 10 N to 30 N as shown in Fig. 10. Now 
the velocity is increased to 2 m/s and the same set of load was applied for different aluminium 
content as shown in Fig.11. 
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Fig.8 shows the wear rate measured by varying the 
frictional force (10 N, 20 N and 30 N) while increas-
ing the velocity of sample simultaneously from V 
= 1 m/s to 2 m/s. As the load was increased, wear 
rate increases which may be accounted for the loss 
of sample on the surface. This loss increases as the 
aluminium content increases. 

Fig. 8: Wear rate Vs Load at different velocities of the 
spindle for different aluminium compositions

3.1.1. Wear rate behaviour 
Tribological properties of coefficient of friction and 
wear rate were compared with the increase in alu-
minium content. The frictional force was increased 
from 10 N to 30 N by keeping the velocity of the 
spindly at 1 m/s as shown in Figure 9. When the ve-
locity is increased to 1.5 m/s, similar measurements 
was carried out by varying the load from 10 N to 30 
N as shown in Fig. 10. Now the velocity is increased 
to 2 m/s and the same set of load was applied for dif-
ferent aluminium content as shown in Fig.11.

 

Fig. 9: Coefficient of friction, Wear rate Vs aluminium 
content at different loads (by keeping the velocity con-

stant at 1 m/s)

The wear rate and coefficient of friction for various 
aluminium compositions shown in the above figures 
illustrates the fact that increase in the coefficient 
of friction is governed by the increase in frictional 

Fig. 7: Velocity Vs Coefficient of friction for different aluminium compositions 
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increased, wear rate increases which may be accounted for the loss of sample on the surface. This 
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Fig. 9: Coefficient of friction, Wear rate Vs aluminium content at different loads (by keeping the velocity 
constant at 1 m/s) 

Fig. 10: Coefficient of friction, Wear rate Vs aluminium content at different loads (by keeping the velocity 
constant at 1.5 m/s) 

force which inturn increases the wear rare. When the 
load is increased from 10 N to 30 N (by keeping 
the velocity constant at 191 RPM), the coefficient 
of friction decreases when compared to the velocity 
increased to 2 m/s (382 RPM). From the microstruc-
ture, it can also be observed  that the loss of ma-
terial is due to high friction between Al-SiC-MMC 
and rotating disc. When the velocity is increased, 
the weight loss on the surface gets converted in to 
grooves which is reflected from the SEM pattern 
which shows patches of loss of material. This loss is 
reflected in the above figures 9, 10 and 11. [18-20]

4. CONCLUSIONS 
1. Silicon carbide (SiC) and flyash reinforced alu-
minium metal matrix composites (Al-SiC-flyash 
MMC) were prepared with different aluminium 
content. 
2. Microhardness measurements shows an increas-
ing trend of hardness when the composition percent-
age of aluminium increases from 75 to 85 %.
3. When the applied load was increased, the coef-
ficient of friction also increases which in turn in-
creases the wear ratio. When the aluminium content 

Fig. 9: Coefficient of friction, Wear rate Vs aluminium content at different loads (by keeping the velocity 
constant at 1 m/s) 

Fig. 10: Coefficient of friction, Wear rate Vs aluminium content at different loads (by keeping the velocity 
constant at 1.5 m/s) 

Fig. 10: Coefficient of friction, Wear rate Vs aluminium 
content at different loads (by keeping the velocity con-

stant at 1.5 m/s)

Fig. 11: Coefficient of friction, Wear rate Vs aluminium 
content at different loads (by keeping the velocity con-

stant at 2 m/s)

Fig. 11: Coefficient of friction, Wear rate Vs aluminium content at different loads (by keeping the velocity 
constant at 2 m/s) 

The wear rate and coefficient of friction for various aluminium compositions shown in the above 
figures illustrates the fact that increase in the coefficient of friction is governed by the increase in 
frictional force which inturn increases the wear rare. When the load is increased from 10 N to 30 
N (by keeping the velocity constant at 191 RPM), the coefficient of friction decreases when 
compared to the velocity increased to 2 m/s (382 RPM). From the microstructure, it can also be 
observed  that the loss of material is due to high friction between Al-SiC-MMC and rotating disc. 
When the velocity is increased, the weight loss on the surface gets converted in to grooves which 
is reflected from the SEM pattern which shows patches of loss of material. This loss is reflected 
in the above figures 9, 10 and 11. [18-20] 

4. CONCLUSIONS 
1. Silicon carbide (SiC) and flyash reinforced aluminium metal matrix composites (Al-SiC-

flyash MMC) were prepared with different aluminium content.  
2. Microhardness measurements shows an increasing trend of hardness when the 

composition percentage of aluminium increases from 75 to 85 %. 
3. When the applied load was increased, the coefficient of friction also increases which in 

turn increases the wear ratio. When the aluminium content is increased from from 75 to 
85 %, (thus by keeping the SiC content constant at 10 wt %), the hardness increases from 
70 to 90.  

4. Frictional behaviour (10 N, 20 N and 30 N) for various aluminium compositions at 
various velocity (V = 1 m/s, 1.5 m/s and 2 m/s) illustrates the fact that as the load 
increases the coefficient of friction increases leading to material loss from the surface. 

5.  The micromechanism of wear against the frictional force creates latent wear tracks along 
with fragmented SiC particulates in which fine cracks are observed.   
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is increased from from 75 to 85 %, (thus by keeping 
the SiC content constant at 10 wt %), the hardness 
increases from 70 to 90. 
4. Frictional behaviour (10 N, 20 N and 30 N) for 
various aluminium compositions at various velocity 
(V = 1 m/s, 1.5 m/s and 2 m/s) illustrates the fact 
that as the load increases the coefficient of friction 
increases leading to material loss from the surface.
5.  The micromechanism of wear against the fric-
tional force creates latent wear tracks along with 
fragmented SiC particulates in which fine cracks are 
observed.  
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