k-RNN: Extending NN-heuristics for the TSP

Nikolas Klug ${ }^{1}$ • Alok Chauhan ${ }^{2}$ •Vijayakumar V ${ }^{2}$ •Ramesh Ragala²
Published online: 23 April 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

In this paper we present an extension of existing Nearest-Neighbor heuristics to an algorithm called k-Repetitive-NearestNeighbor. The idea is to start with a tour of k nodes and then perform a Nearest-Neighbor search from there on. After doing this for all permutations of k nodes the result gets selected as the shortest tour found. Experimental results show that for 2-RNN the solutions quality remains relatively stable between about 10% to 40% above the optimum.

Keywords Nearest-neighbor \cdot Travelling salesman problem \cdot Domination number \cdot Heuristic

1 Introduction

The traveling salesman problem (TSP) is one of the most studied problems in theoretical computer science. Despite its simplicity, no efficient algorithms exist. The problem is, in fact, NP-hard and asks to find a shortest Hamiltonian Cycle in a given graph - a permutation of vertices for which the sum of the connecting edges is the least. We refer to the TSP in undirected complete graphs as Symmetric TSP (STSP) and in directed complete graphs as Asymmetric TSP (ATSP). Following a popular convention for TSP-related algorithms, we will also refer to a Hamiltonian cycle as a tour.

Due to the problem's popularity and its broad area of application, many heuristics and approximation algorithms have emerged. One of the popular ones are the 2 -Opt heuristic [2], the 3-Opt algorithm [4] and the k-opt extension by Lin and Kernigham [5] which uses a dynamic k value. Recent work in this area include a hierarchical hybrid algorithm involving density peaks clustering algorithm, ant colony optimization algorithm and k-Opt algorithms [9]. H. D. Nguyen et al. proposed a hybrid genetic algorithm for Large-Scale Traveling Salesman Problems [10].

The idea behind the algorithm which is presented here is the "Nearest-Neighbor" heuristic (NN). It has already been mentioned in the 1960s by Bellmore and Nemhauser [1]. The basic idea of this algorithm is to pick one starting node

[^0]randomly and repeatedly extend the sub-tour by its current nearest neighbor until a full tour is formed.
k-Repetitive-Nearest-Neighbor (k-RNN), the algorithm presented here, provides some abstraction and generalization to this Nearest-Neighbor heuristic. It is applicable to both STSP and ATSP and the experimental results in Section 4 do not show a big difference in quality of solution between those two.

The original idea for this extension of Nearest-Neighbor heuristics was what now has become 2-RNN. It was inspired by an Indian philosophy called Madhyasth Darshan [6, 7].

In Section 2 we present the algorithm and show some of its properties, then we show some related work. In Section 4 we show experimental results for $1-$ and $2-\mathrm{RNN}$ obtained from running some samples from TSPLIB [8].

2 Algorithm

In this section we will present the family of algorithms we call k-Repetitive-Nearest-Neighbor (k-RNN) algorithms. This abstracts the Nearest-Neighbor (NN) and Repetitive-Nearest-Neighbor (RNN) heuristics and extend them to a more general basis.

Let $G=(V, E)$ be a complete graph and $\mathrm{k} \in \mathbb{N}$. Let v_{1}, $\mathrm{v}_{2}, \ldots, \mathrm{v}_{n}$ be distinct vertices of G. Let $\mathrm{c}: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{R}$ be a cost function describing the cost of the edge between two vertices.

The algorithm consists of the following steps:
Step 1: For every combination of the k vertices $v_{1}, v_{2}, \ldots, v_{k}$ create the partial tour $T=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ and mark the vertices $v_{1}, v_{2}, \ldots, v_{k}$ as visited.

Step 2: Set $i=k$. While there are unvisited vertices left: Select v_{i+1} as the nearest unvisited neighbor of v_{i} and append v_{i+1} to T. If there are multiple nearest neighbors, select any. Mark v_{i+1} as visited and increment i by 1 .
Step 3: Among all $\frac{n!}{(n-k)!}$ tours found select the shortest as the result

Note that for $k=1$ the algorithm equals the wellknown Repetitive-Nearest-Neighbor approach, and one might define the case $k=0$ as the popular NearestNeighbor algorithm, where one starting node gets selected randomly.

The running time of the algorithm consists of two major parts. The first is the outer for-loop in Step 1. Since for every $k \in \mathbb{N}$ there exist $\frac{n!}{(n-k)!}$ (ordered) combinations of nodes and since $\frac{n!}{(n-k)!} \in O\left(n^{k}\right)$, the for-loop in Step 1 does a total of $O\left(n^{k}\right)$ iterations. The second important part for the running time is Step 2. In order to find the nearest unvisited neighbor, the algorithm considers a maximum of n edges emerging from the current node. Since this is done for $n-k=O(n)$ nodes, the total running time of Step 2 is $O\left(n^{2}\right)$. Therefore a k-RNN run takes time $O\left(n^{2} \cdot n^{k}\right)=$ $O\left(n^{k+2}\right)$. Space complexity of the algorithm is $O\left(n^{k+1}\right)$ for $k>1$.

Similar to the k-Opt algorithms [2, 5], for $k=n, k$-RNN also gives the exact solution. In this case, the algorithm degrades to a plain brute-force search. Due to the running time of $O(n!)$ this is not the preferable way to obtain an exact solution.

In the following we refer to an execution of $k-\mathrm{RNN}$ for a specific instance and fixed k as a "run" of the algorithm. We now present a property of the algorithm about the quality of the solution found by k-RNN.

Theorem 1 For $k<l$, if there exist no vertices a, b, c with $c(a, b)=c(a, c)$, the result of an l-RNN run is always better or equal to the result of a $k-R N N$ run.

Proof Let T be a tour found by a $k-$ RNN run and $\left(v_{1}, v_{2}, \ldots, v_{l}\right)$ the first l nodes of T. A l-RNN run considers every permutation of l nodes as a starting tour, so especially the permutation $\left(p_{1}, p_{2}, \ldots, p_{l}\right)$ where $p_{i}=v_{i}$ for $1 \leq i \leq l$. From there on, both runs construct the same tour.

There are also some variations of the presented algorithm of which we want to mention two.

In case of multiple nearest neighbors in Step 2, one node gets chosen randomly. In order to avoid this nondeterministic choice, a variation of the algorithm constructs multiple paths from there on, one for each nearest neighbor.

Although this eliminates the randomness, in some cases this will make the running time exponential.

Another approach is the following: In Step 2 node v_{i+1} gets selected as the nearest unvisited neighbor of the last node of the current partial tour. This can be extended in such a way that the new node can also be selected as the nearest unvisited neighbor of the first node of the partial tour. We refer to this approach as bi-directional k-RNN (Bi- k-RNN).
Step 2 of the algorithm would then look the following:
Step 2: Set $v_{e}=v_{k}$ and $v_{s}=v_{1}$. While there are unvisited vertices left: Select q as
$\arg \min \left\{c\left(v_{e}, p\right), c\left(v_{e}, q\right) \mid p \in V\right.$ and p is univisited $\}$
and mark q as visited. If $\mathrm{c}\left(\mathrm{q}, \mathrm{v}_{s}\right)<\mathrm{c}\left(\mathrm{v}_{e}, \mathrm{q}\right)$, insert q at the start of T and set $\mathrm{v}_{s}=\mathrm{q}$. Else append q to the end of T and set $\mathrm{v}_{e}=\mathrm{q}$.

We also present results of this variation in Section 4.

3 Related work

Similar to Gutin, Yeo and Zverovich in their domination analysis of greedy heuristics for the TSP [3], for every $n \in$ \mathbb{N} we define the domination number of an algorithm for the TSP as the maximum integer $d(n)$ for which the algorithm produces a tour that is better or equal than $d(n)$ other tours.

In general the Nearest-Neighbor approach has been shown to be sub optimal [3]: For each number of nodes there exist some instances for which the algorithm produces a very poor result. In fact, the domination number for 0-RNN is 1 , the worst possible domination number. 1-RNN has a domination number of at most $n-1$ and at least $n / 2$. As shown in Theorem 1, every run of the algorithm for $k \geq 1$ considers all tours a 1-RNN run for the same instance does. Therefore for $k \geq 1, k$-RNN also has a domination number of at least $n / 2$.

Despite this all samples tested in our experiments in Section 4 produce reasonable results.

4 Experimental results

In the following we are going to present some experimental results of the algorithm. The experiments were conducted for several instances of TSPLIB [8], symmetric as well as asymmetric, comparing 1 - and $2-$ RNN runs. Because of the running time, larger k-values could not be tested adequately.

Figures 1 and 2 show the results of experiments conducted for 48 instances of the STSP and 18 instances of ATSP taken from TSPLIB [8]. It can be observed that the results of $2-\mathrm{RNN}$ are only slightly better than those of $1-\mathrm{RNN}$, sometimes they are even equal. We would like

Fig. 1 Results for 48 instances of the Symmetric TSP taken from [8]. The optimum and the result are given in absolute values. The excess represents the percentage by which the result exceeds the optimum

Dataset	Optimum	1-RNN		2-RNN		Bi-2-RNN	
		Result	Excess	Result	Excess	Result	Excess
a280	2579	2975	15.35	2953	14.50	2951	14.42
berlin52	7542	8181	8.47	7968	5.65	8380	11.11
bier127	118282	133953	13.25	128589	8.71	129133	9.17
brazil58	25395	27384	7.83	27213	7.16	27115	6.77
brg180	1950	8890	355.90	2020	3.59	8890	355.90
ch130	6110	7129	16.68	6903	12.98	6833	11.83
ch150	6528	7113	8.96	7113	8.96	7075	8.38
d1291	50801	58681	15.51	58681	15.51	58460	15.08
d1655	62128	73369	18.09	72554	16.78	71858	15.66
d198	15780	17620	11.66	17405	10.30	17753	12.50
d493	35002	40186	14.81	40186	14.81	39821	13.77
d657	48912	60174	23.03	59310	21.26	58874	20.37
dantzig42	699	864	23.61	826	18.17	848	21.32
eil101	629	746	18.60	743	18.12	738	17.33
eil51	426	482	13.15	472	10.80	483	13.38
eil76	538	608	13.01	598	11.15	576	7.06
fl400	20127	25115	24.78	24719	22.82	24587	22.16
fl417	11861	13887	17.08	13866	16.90	13581	14.50
fri26	937	965	2.99	959	2.35	960	2.45
gil262	2378	2823	18.71	2767	16.36	2768	16.40
gr120	6942	8438	21.55	8335	20.07	8411	21.16
gr17	2085	2178	4.46	2178	4.46	2178	4.46
gr21	2707	3003	10.93	2958	9.27	2998	10.75
gr24	1272	1553	22.09	1400	10.06	1476	16.04
gr48	5046	5840	15.74	5561	10.21	5695	12.86
hk48	11461	12137	5.90	12031	4.97	11990	4.62
kroA100	21282	24698	16.05	24582	15.51	24548	15.35
kroA150	26524	31479	18.68	31320	18.08	31234	17.76
kroA200	29368	34543	17.62	34543	17.62	35329	20.30
kroB100	22141	25884	16.91	25255	14.06	25546	15.38
kroB150	26130	31611	20.98	31524	20.64	30043	14.98
kroB200	29437	35389	20.22	35283	19.86	35454	20.44
kroC100	20749	23660	14.03	23603	13.75	23970	15.52
kroD100	21294	24852	16.71	24603	15.54	23722	11.40
kroE100	22068	24782	12.30	24445	10.77	24185	9.59
$\operatorname{lin} 105$	14379	16935	17.78	16147	12.30	15878	10.42
$\operatorname{lin} 318$	42029	49201	17.06	49201	17.06	48996	16.58
linhp318	41345	49201	19.00	49201	19.00	48996	18.51
nrw1379	56638	68531	21.00	67873	19.84	67415	19.03
p654	34643	43027	24.20	42935	23.94	42493	22.66
pa561	2763	3279	18.68	3269	18.31	3284	18.86
pcb1173	56892	70115	23.24	69085	21.43	69325	21.85
pcb442	50778	58950	16.09	58682	15.57	58599	15.40
pr76	108159	130921	21.04	128749	19.04	129467	19.70
si1032	92650	94083	1.55	93981	1.44	93731	1.17
si175	21407	22000	2.77	21906	2.33	21927	2.43
si535	48450	50036	3.27	50032	3.27	49853	2.90
swiss42	1273	1437	12.88	1425	11.94	1350	6.05

to point out two specific instances, the first is brg180. For this 180 -city instance, standard 1-RNN returns the poor result of 8890 (355.9% above the optimum) while $2-$ RNN is able to avoid this returning a tour with length 2020 (3.59\% above the optimum). For one other instance (br17), 2-RNN even produces the exact result.

In general all results produced by $2-\mathrm{RNN}$ are reasonable. On average, the tours produced are 10% to 40% longer than the optimum. Using these observations, we expect the algorithm to perform similarly for other instances although there might be instances were the output is of unreasonable quality.

Considering that a 2 -RNN run for an instance with 1379 vertices (namely TSPLIB's nrw1379) takes about 60
minutes to finish while a 1-RNN run for the same instance only takes about 3 seconds (tested on a standard laptop), the quality of the solution does not increase by a big enough amount to justify the running time.

The results of the bidirectional variant of $2-\mathrm{RNN}$ are of different quality. For some instances they outperform 2-RNN, for some others 2-RNN performs better. As the bidirectional version tries to extend the tour in both directions rather than only one, the running time is about twice as long as for the normal variant.

Figure 2 shows experimental results for 18 instances of the ATSP. In comparison to the 2-RNN results for the STSP, the 2-RNN results here seem to be slightly worse: Whereas there is no instance where the tour length exceeds the

Fig. 2 Results for 18 instances of the Asymmetric TSP taken from TSPLIB [8]. The optimum and the result are given in absolute values. The excess represents the percentage by which the result exceeds the optimum

Dataset	Optimum	1-RNN		2-RNN		Bi-2-RNN	
		Result	Excess	Result	Excess	Result	Excess
br17	39	56	43.59	39	0.00	56	43.59
ft 53	6905	8584	24.32	8323	20.54	8757	26.82
ft70	38673	41815	8.12	41633	7.65	41847	8.21
ftv33	1286	1590	23.64	1544	20.06	1396	8.55
ftv35	1473	1667	13.17	1606	9.03	1667	13.17
ftv38	1530	1759	14.97	1709	11.70	1792	17.12
ftv44	1613	1844	14.32	1829	13.39	1833	13.64
ftv47	1776	2173	22.35	2149	21.00	2115	19.09
ftv55	1608	1948	21.14	1854	15.30	1848	14.93
ftv64	1839	2202	19.74	2202	19.74	2176	18.33
ftv70	1950	2287	17.28	2218	13.74	2261	15.95
ftv170	2755	3582	30.02	3559	29.18	3334	21.02
kro124p	36230	43316	19.56	43102	18.97	41562	14.72
p43	5620	5684	1.14	5653	0.59	5639	0.34
rbg323	1326	1702	28.36	1684	27.00	1743	31.45
rbg358	1163	1747	50.21	1719	47.81	1570	35.00
rbg403	2465	3497	41.87	3460	40.37	2928	18.78
ry48p	14422	15575	7.99	15575	7.99	15308	6.14

optimum by more than 25% for STSP there are 4 instances for the ATSP where this is the case.

5 Conclusion

We presented an extension of the already known NearestNeighbor heuristic to a family of algorithms we call k-Repetitive-Nearest-Neighbor (k-RNN). This algorithm takes all permutations of k vertices as a starting tour and performs a Nearest-Neighbor search from there on. The result is the shortest of all tours found that way.

We have proven that as k increases, so does the quality of the tours found. Despite this, our experimental results only show a slight increase in the quality of solution as k increases, meanwhile the running time increases by a factor of n. In one case a larger $k(2-\mathrm{RNN})$ was able to avoid an undesirable result from 1-RNN, reducing the excess by over 350%.

A scope of future research could be a more thorough theoretical analysis of the algorithm, especially an extension of the domination analysis to the more general k-RNN will give more insight in its competitiveness among other algorithms. Also, experiments on more varied and larger instances are desirable.

References

1. Bellmore M, Nemhauser GL (1968) The traveling salesman problem: a survey. Oper Res 16:538-558
2. Croes GA (1958) A method for solving Traveling-Salesman problems. Oper Res 6(6):791-812
3. Gutin G, Yeo A, Zverovich A (2002) Traveling salesman should not be greedy:domination analysis of greedy-type heuristics for the TSP. Discret Appl Math 117(1):81-86
4. Lin S (1965) Computer solutions of the traveling salesman problem. Bell Syst Tech J 44(10):2245-2269
5. Lin S, Kernighan BW (1973) An effective heuristic algorithm for the Traveling-Salesman problem. Oper Res 21(2):498-516
6. Nagraj A (2011) Madhyasth Darshan Sahastitvavaad par Aadharit Samvaad (Part 1). Jeevan Vidhya Prakashan
7. Nagraj A (2013) Madhyasth Darshan Sahastitvavaad par Aadharit Samvaad (Part 2). Jeevan Vidhya Prakashan
8. Reinelt G (1991) TSPLIB - A traveling salesman problem library. ORSA J Comput 3(4):376-384
9. Liao E, Liu C (2018) A hierarchical algorithm based on density peaks clustering and ant colony optimization for traveling salesman problem. IEEE Access 6:38921-38933
10. Nguyen HD, Yoshihara I, Yamamori K, Yasunaga M (2007) Implementation of an effective hybrid GA for large-scale traveling salesman problems. IEEE Trans Syst Man Cybern B Cybern 37(1): 92-99

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Alok Chauhan
 alok.chauhan@vit.ac.in

 1 University of Augsburg, Augsburg, Germany
 2 VIT Chennai, Chennai, India

