
Received March 26, 2020, accepted April 10, 2020, date of publication April 15, 2020, date of current version April 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2988160

KeySplitWatermark: Zero Watermarking
Algorithm for Software Protection
Against Cyber-Attacks

CELESTINE IWENDI 1, (Senior Member, IEEE), ZUNERA JALIL 2, (Member, IEEE),

ABDUL REHMAN JAVED 3, THIPPA REDDY G. 4, RAJESH KALURI 4,
GAUTAM SRIVASTAVA 5,6, (Senior Member, IEEE), AND OHYUN JO 7, (Member, IEEE)
1Department of Electronics BCC, Central South University of Forestry and Technology, Changsha 410004, China
2Department of Cyber Security, Air University, Islamabad 44000, Pakistan
3National Center for Cyber Security, Air University, Islamabad 44000, Pakistan
4School of Information Technology and Engineering, VIT, Vellore 632014, India
5Department of Mathematics and Computer Science, Brandon University, Brandon, MB R7A 6A9, Canada
6Research Center for Interneural Computing, China Medical University, Taichung 40402, Taiwan
7Department of Computer Science, College of Electrical and Computer Engineering, Chungbuk National University, Cheongju 28644, South Korea

Corresponding authors: Gautam Srivastava (srivastavag@brandonu.ca) and Ohyun Jo (ohyunjo@chungbuk.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) under

Grant NRF-2018R1C1B5045013.

ABSTRACT Cyber-attacks are evolving at a disturbing rate. Data breaches, ransomware attacks, crypto-

jacking, malware and phishing attacks are now rampant. In this era of cyber warfare, the software industry

is also growing with an increasing number of software being used in all domains of life. This evolution has

added to the problems of software vendors and users where they have to prevent a wide range of attacks.

Existingwatermark detection solutions have a low detection rate in the software. In order to address this issue,

this paper proposes a novel blind Zero code basedWatermark detection approach namedKeySplitWatermark,

for the protection of software against cyber-attacks. The algorithm adds watermark logically into the code

utilizing the inherent properties of code and gives a robust solution. The embedding algorithm uses keywords

to make segments of the code to produce a key-dependent on the watermark. The extraction algorithms use

this key to remove watermark and detect tampering. When tampering increases to a certain user-defined

threshold, the original software code is restored making it resilient against attacks. KeySplitWatermark is

evaluated on tampering attacks on three unique samples with two distinct watermarks. The outcomes show

that the proposed approach reports promising results against cyber-attacks that are powerful and viable.

We compared the performance of our proposal with state-of-the-art works using two different software

codes. Our results depict that KeySplitWatermark correctly detects watermarks, resulting in up to 15.95 and

17.43 percent reduction in execution time on given code samples with no increase in program size and

independent of watermark size.

INDEX TERMS Cyber-attacks, watermarking, software, algorithm, blind detection, attack models, security.

I. INTRODUCTION

In the 21st century, with enormous computational power,

high-speed internet, Internet of Things and Blockchain tech-

nology, business can be done using Bitcoins. It shows that

digital contents are widespread on a wide range of con-

nected devices. Individuals of the current electronic era are

sharing information in real-time but at the same time face

The associate editor coordinating the review of this manuscript and

approving it for publication was Luca Ardito .

the problems of evolving cyber-attacks on their data, soft-

ware, systems, devices, and services. Digital forgeries, cyber

frauds, malware, smart bot (DDoS) attacks, software and data

breaches are quite common [1].

Digital objects such as software, databases, images, audio,

videos, and webpages get created and widely distributed over

the internet in no time. Hackers try to break the security layer

of the system by exploiting the known software vulnerabil-

ities and then attack using viruses, malware, Trojan horses,

logic bombs, backdoors, etc. Software codes are modified by

72650 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020



C. Iwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

FIGURE 1. Graphical representation of conventional watermarking.

malicious attackers to create malware and cause harm to the

software systems. According to Symantec’s Internet Security

Threat Report, 2018 [2], 99.9% of applications on third-party

App stores are malware. Software protection and increasing

its resilience is crucial for prevention against cyber-attacks.

Software is an important digital component as it is the

foundation of a computer, internet, and all communication

infrastructures. Software applications are being developed

with a rapid rate for communication, education, commerce,

health care, cloud, and many other domains. At the same

time software can be attacked and used for totally different

or malicious purposes in no time. Common Vulnerabilities

and Exposures database [3], [4] shows that more and more

new vulnerabilities are getting disclosed with each passing

day and today’s software is more vulnerable to cyber-attacks.

Exploiting vulnerabilities in software code can make it serve

a totally different purpose and can be exploited by cybercrim-

inals to perform an attack.

The existing traditional watermarking extraction needs to

provide real watermark locations. It poses a great threat to the

security of watermarks because it cannot ensure whether the

watermark locations will be leaked as shown in Figure 1.

Figure 2 explains the process of watermarking the original

source code using a blind Code based Zero Watermark algo-

rithm. The claimer firstly scrambles the source code and the

watermark positions are sent to the verifier, who will perform

the watermark detection. If the scrambling parameters are

not public, the verifier cannot derive the original watermark

positions.

The zero watermarking embedding algorithm utilizes [5]

the software code’s structure and watermark to construct a

key. This key must be registered with Certification Author-

ity (CA) along with the original watermark. In case an attack

is suspected as per user settings, the extraction algorithm

extracts the key from tampered software source code and

can identify tampering by matching this key with the CA.

In the case of tampering, if the payload is greater than a

threshold then the original software code will get restored.

FIGURE 2. Process of zero blind watermarking.

The KeySplitWatermark is evaluated on three different soft-

ware samples and two different watermarks. Experimen-

tal results prove the robustness of the algorithm under

attacks.

We propose KeySplitWatermark, a novel approach based

on blind zero watermarking to protect software source code

against cyber-attack. The algorithm is blind and adds water-

mark logically into the code using the inherent properties of

code and provides a robust solution. The algorithm is made

up of two constituents: embedding algorithm and extraction

algorithm. The algorithm creates a key using a watermark

and can retrieve the key of the software even after it gets

attacked or tampered. In case software undergoes an attack

and tampering is detected, the original code can be restored

causing attack effects to get nullified. Specifically, this work

makes the following contributions to the cybersecurity and

software watermarking community in the following ways:

1) A novel approach based on watermarking to protect

software code against the attack that does not alter the

software code to embed watermark.

2) No assumption about software code, programming lan-

guage or length is made.

3) A novel reactive approach to cyber-attacks to increase

software resilience.

4) Cyber-attacks on software code can be detected and

the original software code can be restored if tampering

increases to a user-defined threshold.

The remainder of the paper is structured as follows: Section II

provides an overview of the previous efforts done in the

software watermarking domain and for the cybersecurity of

software. The proposed embedding and extraction algorithms

are stated in detail in Section III. Section IV presents exper-

imental results under tampering attacks with three distinct

samples and two watermarks. We evaluate the performance

of the proposed approach on a total of nine attacked sam-

ples. Section V presents a comparative analysis with state-

of-the-art works. Section VI concludes this paper along with

the directions for the future works.

VOLUME 8, 2020 72651



C. Iwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

II. LITERATURE REVIEW

Software watermarking is an evolving research area and sev-

eral competitive software companies are claiming to be cre-

ating secure software codes. A robust, efficient and resilient

software watermarking solution can be a game-changer for

the information security [6]–[9] and software development

community. Cyber-attacks on software are very common

these days as more and more software vulnerabilities are

being disclosed. Digital watermarking can provide solutions

that can be helpful for software protection, content authenti-

cation, integrity checking, and fingerprinting. Several guide-

lines and approaches do exist for secure software develop-

ment [3].

Davis [5] provided an overview of existing processes,

standards, life-cycle models, frameworks, and methodologies

that support or could support secure software development.

McGraw [10] suggested 7 touchpoint activity areas, connect-

ing to software development artifacts to build secure software.

Vulnerability scanning approach [11] based on an auto-

mated pattern-matching tool has also been used to iden-

tify vulnerabilities in software code. OWASP [12] provides

a standard Secure Software Development Life Cycle and

helps developers to know what should be considered or best

practices at each phase of a development Life Cycle and

has recently suggested the top 10 security controls for web

application developers. Figure 3 gives a brief overview of

currently available software protection tools.

Many software watermarking methodologies have been

proposed in the last several decades [12]–[14]. The exist-

ing approaches towards software security are proactive

approaches where the focus is on developing secure soft-

ware following all stages of secure software development life

cycle.

Software watermarking has been done in several ways dur-

ing the last two decades, which includes static and dynamic

software watermarking techniques. These techniques are

based on software code, FP tree, registration allocation,

graph-based, dynamic path, and many others. Some of the

major techniques are grouped as follows:

A. RE-ORDERING ALGORITHMS

Re-ordering algorithms are static software watermarking

algorithms that use semantics-preserving transformations to

place a watermark in a permutation of the existing code.

Davidson and Myhrvold proposed the first block reordering

algorithm in 1996 [13]. Later, Myles et al. evaluated the

effectiveness of this algorithm on Java byte code using Sand-

mark [14]. Gong et al. proposed a watermarking method for

Java that analyzes the format of the Java class file and then

re-order the indexes to embed watermark [15].

B. REGISTER ALLOCATION ALGORITHMS

Register allocation is considered as constraint-based static

software watermarking technique. Based on this con-

cept, Qu and Potkonjak suggested a QP algorithm for

watermarking the graph coloring problem through register

allocation [16]. After this, Myles and Collberg implemented

this algorithm in Sand Mark, named as QPS algorithm

and performed its empirical evaluation [17]. Later, Zhu and

Thomborson proposed a further improvement which they call

the QPI algorithm [18].

C. SPREAD-SPECTRUM ALGORITHMS

These methods utilize ideas from spread spectrum radio com-

munications. Cox et al. proposed the idea to insert watermark

in spectral components of data [19]. Later, Stern et al. intro-

duced a robust object watermarking scheme which was more

resilient against collusion attacks [20].

D. OPAQUE PREDICATE ALGORITHMS

Collberg et. al proposed the idea of opaque constructs

in 1998 [21]. Arboit et. al proposed two methods for water-

marking Java programs that use opaque predicates [22]. Later,

this method was assessed by Myles and Collberg who imple-

mented both static and dynamic versions within the Sand-

Mark framework [23].

E. ABSTRACT INTERPRETATION ALGORITHMS

Abstract interpretation is a static analysis technique used

for, among other things, the verification of software. Cousot

and Cousot presented an abstract interpretation algorithm

that embedded the watermark in values assigned to selected

integer local variables at run time [24]. Preda and Pasqua

proposed a semantic approach to software watermarking

where they modeled the ability of the attacker to identify

the signature in the framework of abstract interpretation as

a completeness property [25].

F. DYNAMIC PATH AND GRAPH-BASED ALGORITHMS

Collberg et al. proposed a dynamic path algorithm that

inserts a watermark in the runtime branch structure of a

program [26]. Graph-based watermarking algorithms rely

on the fact that graph-generating code is difficult to ana-

lyze. Collberg and Thomborson proposed the first dynamic

graph-based software watermarking algorithm [27], [28].

G. CODE REPLACEMENT ALGORITHMS

First patented software watermarking efforts used the idea

of code replacement; that is, the watermark value replaced

the pre-decided part of code [29], [30]. Monden et al. have

explored watermarking of java programs and proposed sev-

eral techniques by swapping byte code within dummy meth-

ods (implemented as jmark) [31], [32].

Yu et al. proposed an algorithm for software protection

in cloud [33]. Guang et. al then recently proposed an algo-

rithm for the protection of software in the cloud by rigorous

theoretic treatment [34]. Hayoma et al. proposed a dynamic

software watermarking approach using return-oriented pro-

gramming [35]. Owned et al. shed light on the importance of

security against malware and hijacking techniques [36]–[38].

72652 VOLUME 8, 2020



C. Iwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

FIGURE 3. Tools for software watermarking used in literature.

Protecting software against cyber-attacks is crucial and

software watermarking is one of the solutions which can be

used to protect it after the attack on it happens and it can pre-

vent damages. The existing approaches to software security

are proactive and focusmore onwriting secure codes but none

of the approaches focuses on making software resilient once

the attack has already happened.

III. PROPOSED WORK

Protecting software against cyber-attacks is one of the most

important concerns in the digital community. Watermarking

which was initially used for copyright protection can now be

used for software protection. The process of incorporation of

awatermark into software that can uniquely identify the copy-

right owner of the software is called software watermarking.

Software watermarking proves ownership but besides this,

it also identifies tampering. If tampering increases to a certain

threshold or follows a certain pattern, it may be a clear indica-

tor for an upcoming cyber-attack. The upcoming cyber-attack

can make that software a malware or a bot used for the next

attack. In case tampering gets detected in real-time, the tam-

pered version of the software can be replacedwith the original

version (registered with CA in the name of the copyright

owner). In this way, an attacker won’t be able to launch

an attack. Many programming languages for software, its

existence in executable form and dynamic interpretation and

storage are some of the challenges and properties that need

to be considered by any software watermarking technique.

The integral requirements of a standard watermarking tech-

nique like robustness, imperceptibility, capacity, and security

also need to be addressed.

We propose novel watermarking based algorithms for the

protection of computer software against attacks. KeySplit-

Watermark first analyzes software code to identify the key-

words then make the partitions of the code on the basis of

the selected keyword. The algorithm generates a unique key

using the keywords and software code itself. If any copyright

concern is raised in the future, this key can be used to demon-

strate ownership. The embedding algorithm does not perform

any tampering in software code to watermark it and extraction

algorithms do not require watermark as input which makes it

blind.

Figure 4 explains the KeySplitWatermark where embed-

ding algorithm takes the following inputs:

1) Original code: Original software code which is to be

watermarked.

2) Cipher: A digital value to be used in the key generation

process.

3) Watermark: A group of ASCII characters.

The embedding algorithm generates the owner key as an

output. That key is recordedwith the CA and then further used

to extract watermark (if needed). The extraction algorithm

takes the following inputs:

1) Attacked code file: A software code file that is tam-

pered with and or used illegally as copyright infringe-

ment.

VOLUME 8, 2020 72653



C. Iwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

FIGURE 4. Block diagram of proposed approach.

2) Owner key: It is acquired from the certification author-

ity to identify the original owner.

A trusted Certificate Authority (CA) is a requirement for

this algorithm that registers the contents in the name of

the copyright owner. Whenever an attack is suspected, this

trusted third party performs watermark extraction and in

case tampering is detected, it provides the original software

code for restoration. The tampered code gets replaced with

original code making the attacker’s actions null and void.

The watermarking algorithm is made up of two constituents;

watermark embedding and watermark extraction. Watermark

embedding is performed by the original owner of the software

and extraction is done later by a trusted third party.

The extraction algorithm takes two inputs: 1) attacked code

and 2) owner key, and then extracts the watermark. This

watermark later proves the identity of the original owner and

then to restore the original code.

A. EMBEDDING ALGORITHM

The embedding algorithm inserts the watermark in the soft-

ware code/program and generates an owner key utilizing

keywords of the programming language in the program. The

detailed watermark embedding algorithm is stated as follows:

In this algorithm, software code is first preprocessed to

identify the most occurring ten characters and the most

occurring five keywords. It is then partitioned based on the

user-selected keyword. After that, the maximum occurring

alphabetical character is identified from each partition to

populate the MOC list. This MOC list is used to create the

owner key based on the given watermark. Each letter of the

watermark is compared with each letter in the MOC list if it

is matched then the key is populated with digit 0 (indicating

direct method) and partition number (PN). If the letter of the

watermark is not found in the MOC list then it is populated

by using shift ciphering method (SC), but first with digit

1 indicating indicates indirect method. The keyword is then

combined with the key to generating the owner key (OK). The

original watermark (W) and owner key (OK) are registered

Algorithm 1 Working of Embedding Algorithm (z26)

Represents the 26 Alphabets (a-Z)

1 Input C

2 Preprocess C

3 Count occurrences of all characters

4 Count occurrences of all keywords

5 Display top 10 character list and input W

6 Display top 5 keywords and input KW

7 Partition C based on KW

8 Identifying MOC from each partition and populate

MOC list

9 For each letter of W, repeat step 10

10 if wjǫMOC then

11 key[i]=0;

12 where j=1,2,. . .wl keyi+1=PN(MOC)

13 else if wj /∈ MOC then

14 key[i]=0; where j=1,2,. . .wl

15 keyi+1=PN(MOC)

16 else

17 key[1+1]=(wj + k)Mod26

18 where k is in z26

19 OK = concatenate (KW, Key)

20 Output OK

W Watermark KW Keyword

SC Shift Cipher OK Owner Key

C Software source code PN Partition number

MOC Maximum Occurring Character

with a certification authority with original code, date and

time. This code would be used to replace the tampered code

at a later stage if the need arises.

B. EXTRACTION ALGORITHM

The extraction algorithm extracts the watermark from the

software code when needed. It uses the watermark key pre-

viously generated by the embedding algorithm as input and

extracts watermark from the attacked software code. This

algorithm is kept with the trusted third party i.e. Certification

Authority.

The extraction algorithm is as follows:

In this algorithm, the attacked code (Ca) is partitioned

using the keyword (KW) obtained from the owner key (OK).

After this, the maximum occurring character (MOC) from

each partition is identified and the MOC list is populated.

The contents of the watermark key (WK) are later used

to attain watermark from the source code. The extracted

watermark can then be matched with the original watermark

previously registered with CA to prove ownership by using

any pattern matching metric (e.g. similarity index). In case

matching increases a user-defined threshold or in case a

certain tampering pattern is found, the original software code

replaces the tampered code.

72654 VOLUME 8, 2020



C. Iwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

Algorithm 2Working of Extraction Algorithm

1 Input Ca
2 Preprocess Ca
3 Partition C based on KW (Obtained from OK)

4 Identify MOC from each partition and make MOC list

5 L1 = length (KW), keyindex = L1 + 1, L2=length(W)

6 while keyindex < L2 do

7 if OKi++
= 0 then

8 We(I)= MOC (PN)

9 else

10 We(I ) = ReverseSC

11 Increment I

12 OutputWe

Ca Attacked code KW Keyword

W Watermark We Extracted Watermak

OK Owner Key SC Shift Cipher

MOC Maximum Occurring Character

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed KeySplitWater-

mark, we used three different samples of software source

codes and we name these as S1, S2, and S3. These samples

are obtained from three independent sources of code written

in the C++ programming language, a bus reservation sys-

tem [39], a hospital management system [40] and a student

information system [41]. These code samples include classes,

public member functions, iteration, and decision structures.

The KeySplitWatermark does not dependent on any specific

programming language and can be executed in the same way

on codes written in other programming languages.

Two different watermark samples (WM1 and WM2) are

used of 370 and 592 characters respectively. Details about

three software code samples (S1, S2, and S3) and two water-

mark samples (WM1 and WM2) obtained from [42] and [43]

are mentioned in Table 6. The chosen samples vary in several

lines of words, lines of code (LOCs) and several special

characters.

Possible attacks on software source code are termed as

tampering which means random insertion and deletion of

words and lines; to and from the software source code. In code

obfuscation attacks, software codes are modified to serve

the desired purpose whether it be a malicious activity or

copyright violation or any other. Tampering can be made at

a single location in code to make it do something different

which is termed as localized tampering or it is done at mul-

tiple different points in code which is named as dispersed

tampering. The location and volume of tampering in software

code cannot be anticipated in advance by software owner as

he/she may not know the intention of the attacker. Generally,

attackers make combined insertion and deletion attack to

insert their piece of malicious code. Therefore, the KeySplit-

Watermark is evaluated against such type of attacks.

FIGURE 5. Accuracy of the retrieved watermark samples with both
watermarks.

The original code samples S1, S2 and S3 are given to three

different individuals (software programmers) to perform

tampering attacks independently. Three attack samples of

each sample are obtained. Details of attacked code samples

can be seen in Tables 2, 3 and 4. Table 2 shows that for S1,

attackers reduced lines of code and number of words signifi-

cantly in first and third attacked samples (S1A1 and S1A3).

Code sample S2 is also attacked significantly which

resulted in the reduction of lines of codes (LOCs) for all three

attack samples, particularly in the first sample (S2A1) more

than 80 lines of codes are removed and up to 500 characters

are removed (Table 3).

Table 4 shows the attack impact on code sample 3 where

more than 90 lines of codes got reduced for attacked sample 3

(S3A3) representing significant modification on the original

code sample.

We conduct experiments to assess the performance of

the KeySplitWatermark on all the attacked samples. The

extracted watermarks are compared with the original water-

marks generated by the embedding algorithm using original

code samples.

First, we evaluate the performance of the KeySplitWater-

mark on code sample 1 (S1) using both watermarksWM1 and

WM2 on all three attacked code samples (S1A1, S1A2, and

S1A3). Figure 5 shows the accuracy of the retrieved water-

mark samples with both watermarks. It can be observed that

watermark accuracy is more than 76% on both watermarks

for all samples and above 81% on average. This is considered

sufficient to identify the original copyright owner of the

software code. Once the original copyright owner gets iden-

tified, the original software code replaces tampered code and

cancels the attacker’s efforts of either performing attack on a

user’s system or making it perform the network-based attack.

Hence, the performance/functionality of software remains

unaltered and exploit codes make no use for attackers shown

in Figure 5.

Next, a similar experiment is performed for sam-

ple 2 (S2). Figure 6 shows the accuracy of the obtained

watermark on attacked samples (S2A1, S2A2, and S2A3).

VOLUME 8, 2020 72655



C. Iwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

TABLE 1. Detail of original code files and watermark samples.

TABLE 2. Details of three attacked samples (S1A1, S1A2, AND S1A3) obtained after attack on original code sample S1.

TABLE 3. Details of three attacked samples (S2A1, S2A2, AND S2A3) obtained after attack on original code sample S2.

TABLE 4. Details of three attacked samples (S3A1, S3A2, AND S3A3) obtained after attack on original code sample S3.

TABLE 5. Comparative table of the State-of-art-work. Ke GT- Graph Theoretic, PB - Path/branch, MM - Mathematical Model, EB - Encoded Binary.

Average watermark accuracy is above 70% using both water-

marks. S2A1 is a significantly attacked sample. Accuracy of

extracted watermarks on this sample is 76.11% and 71.58%

for WM1 and WM2 respectively which shows the robustness

of KeySplitWatermark.

Then, we test our KeySplitWatermarks on the third code

sample (S3). Figure 7 shows the accuracy of the obtained

watermark on attacked samples (S3A1, S3A2, and S3A3).

The average watermark accuracy for both watermarks

remained greater than 90%. S3A3 sample is obtained after

massive tampering (reduction in 90 LoCs) but we are still able

to achieve 81.16 and 79.75% accuracy on that sample.

Experimental results show that the algorithm poses good

resistance against tampering attacks of different types and

volume as even in the worst case (S2A1) 69.56% watermark

is successfully retrieved which is sufficient to identify the

original software owner. The results prove that the proposed

system is robust, practical and secure against random tamper-

ing attacks on all nine samples. Watermarks survived com-

bined insertion and deletion attack which are both localized

and dispersed. It provides better security since the attacker

won’t be aware of the existence of such an anti-malware sys-

tem. Also, the algorithm has linear complexity whichmakes it

computationally efficient and obtains better accuracy. Getting

user input with a watermark to produce key in embedding

algorithm makes it more robust as there are least chances of

having the same key for two different software codes even

with the same watermark.

Using Zero-watermarking of static software code and par-

ticularly to prevent against cyber-attack is a novel idea and

no such zero software watermarking algorithms are available

to make a comparison of our proposed approach. However,

it is hereby claimed that none of the previous static soft-

ware watermarking gives above 80% watermark accuracy on

72656 VOLUME 8, 2020



C. Iwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

FIGURE 6. Accuracy of obtained watermark samples on three attacked
samples (S2A1, S2A2, and S2A3) obtained after the attack on original
code sample S2.

FIGURE 7. Accuracy of obtained watermark samples on three attacked
samples (S3A1, S3A2 and S3A3) obtained after attack on original code
sample S3.

average and to our best knowledge, watermarking has not

been used as a way to prevent cyber-attacks in past.

The KeySplitWatermark can be applied to protect software

source codes written in any programming language and of

finite length against attacks. The proposed approach can

be deployed as an anti-malware system and can make the

attacker’s efforts null and void. Also, we can detect and

observe the tampered part of code to identify attackers’ inten-

tions.

V. COMPARATIVE ANALYSIS

This section compares the performance of the KeySplitWa-

termark with the most recent relevant work on software

watermarking Experiments are carried out on this two pro-

grams: CompressDemo and CryptoEncryption used in pre-

vious research work by [40], to facilitate comparison and

used watermarks for 128, 256, 512, and 1024-bit random

binary sequences. The experimental setup is kept the same

as in [40] and the experiments are conducted in a system

environment with Intel Core I5 CPU, 4GB of RAM, and

Windows 10 operating system.

FIGURE 8. Execution time of KeySplitWatermark as compared with [40]
for CompressDemo program for 1.23, and 7.26 MB of data with varied size
watermarks.

To evaluate the watermarked program execution time

objectively, two different inputs are selected for each pro-

gram. To reduce the interference of the operating system,

memory, and other environments on program execution time,

we run the programs 20 times with each input and calculated

the average time. The comparative results of experiments per-

formed on the CompressDemo programwith 1.23MBfiles as

input and varied sizes of watermarks are given in Table 6. The

KeySplitWatermark is zero watermarking algorithm, hence

it does not utilize exceptions, so no binary encoding for

exceptions is needed. With our algorithm, there is no increase

in file size and execution time.

The comparative results of experiments performed on

CryptoEncryption program with 31KB file as input and var-

ied size of watermarks are given in table 2. The reduction in

execution time can be observed in KeySplitWatermark due to

zero watermarking approach and no additional computation

needed for exception handling.

The reduction in execution time of the watermarked

CryptoEncryption and CompressDemo for [40] and for

KeySplitWatermark with different input sizes are shown in

Figures 8 and 9, respectively. Figure 8 shows the reduction

in execution time (ms) for input files of size 1.23 MB and

7.26 MB for the KeySplitWatermark as compared with [40]

after the watermarks of 128, 256, 512 and 1024 bits are

embedded in CompressDemo program. The KeySplitWater-

mark has reduced execution time with both input files even

when watermark size is 1024 bits.

Figure 9 shows the reduction in execution time (ms) for

input files of size 3 and 48 KB for KeySplitWatermark as

compared with [40] after the watermarks of 128, 256, 512 and

1024 bits are embedded in CryptoEncryption program. The

KeySplitWatermark reduce the execution time with both input

files for watermarks of varied sizes.

The execution time of theKeySplitWatermark is not depen-

dent on watermark length. As the input size increases,

the watermarked program execution time increases too but

VOLUME 8, 2020 72657



C. Iwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

TABLE 6. Comparative results for increase in the size of the watermarked code and in execution time for CompressDemo with 1.23 MB file.

TABLE 7. Comparative results for increase in the size of the watermarked code and in execution time for CrptoEncryption with 31KB file.

FIGURE 9. Execution time of KeySplitWatermark as compared with [40]
for CryptoEncryption program for with different inputs and varied size
watermarks.

that is a natural increase with no overhead of excep-

tion handling as in [40]. The algorithm proposed by

Wang et al. [40] shows degraded performance on programs

with a large number of loops, since if the watermarks are

embedded in these loops, large quantities of exception han-

dling get executed, resulting in a significant increase in pro-

gram execution time. In KeySplitWatermark, an increase in

the number of loops does not make any effect on program

execution time even with large inputs.

To further evaluate the robustness of the KeySplitWater-

mark, we use attack tools ASProtect, Upx, and Aspack to

attack the watermarked program and verify the correctness

of the extracted watermark. The experimental results are

shown in Table 8. The watermark can be extracted correctly

after attacks of encryption, shelling, and compression of

the watermarked programs. The original semantics of the

program are still maintained, although different attacks are

conducted.

The existing watermarking algorithms for static as well as

dynamic watermarking embed watermark in program files

which increase file size and execution time. In our proposed

method, we make no changes in program file, rather gen-

TABLE 8. Attacks and results.

erate key using the structure of file thus make no increase

in program size. The KeySplitWatermark also extracts 100%

watermark since the compression, encryption and shelling

does not change program code.Wang et al. [40] also extracted

100% watermark but at the cost of increased execution time

and increased file size. In our proposed approach, even if

program code gets tampered and 80% watermark sequence

gets extracted, it would be sufficient to claim copyright own-

ership. In KeySplitWatermark, where watermarking embed-

ding is done once only and extraction is done only if any

copyright issues arises. There is no need to increase program

size and enhance execution time of program for watermark

embedding.

VI. CONCLUSION

In this work, we proposed KeySplitWatermark, a novel zero

watermarking approach to protect software code against

cyber-attacks. The algorithm is blind and adds watermark

logically into the code using the inherent properties of code

and provides a robust solution. The source code and the

user-provided watermark are used to produce a personalized

key that gets registered with the Certification Authority (CA)

and is used later by the extraction algorithm to identify the

original owner and to restore the original software code. Our

KeySplitWatermark logically embeds watermark, the pres-

ence of watermark is known by the original owner and CA

only. It is not possible to destroy the watermark without

altering the code significantly and if any change occurs in

code, the original code gets restored. The performance of

the algorithm was evaluated for tampering attacks made on

three different code samples and the results prove that the

72658 VOLUME 8, 2020



C. Iwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

KeySplitWatermark is robust, secure and efficient with mini-

mal computational requirements. We also compared the pro-

posed algorithm with the relevant work and it outperformed

in terms of execution time, capacity and size. In this work,

we have used two watermarks and limited samples written

in two programming languages. In the future, this work can

be extended and evaluated for application-specific software

codes written in other programming languages with different

set and number of keywords.

REFERENCES

[1] A. R. Javed, M. O. Beg, M. Asim, T. Baker, and A. H. Al-Bayatti,

‘‘AlphaLogger: Detecting motion-based side-channel attack using smart-

phone keystrokes,’’ J. Ambient Intell. Humanized Comput., pp. 1–14,

Feb. 2020.

[2] A. K. Abdulrahman and S. Ozturk, ‘‘A novel hybrid DCT and DWT based

robust watermarking algorithm for color images,’’Multimedia Tools Appl.,

vol. 78, no. 12, pp. 17027–17049, Jun. 2019.

[3] W.Hu, R.-G. Zhou, J. Luo, andB. Liu, ‘‘LSBs-based quantum color images

watermarking algorithm in edge region,’’ Quantum Inf. Process., vol. 18,

no. 1, p. 16, Jan. 2019.

[4] Z. Jalil and A. M. Mirza, ‘‘An invisible text watermarking algorithm using

image watermark,’’ in Innovations in Computing Sciences and Software

Engineering. Dordrecht, The Netherlands: Springer, 2010, pp. 147–152.

[5] N. Davis, ‘‘Secure software development life cycle processes: A technol-

ogy scouting report,’’ Carnegie-Mellon Univ., Pittsburgh, PA, USA, Tech.

Rep. ADA447047, 2005.

[6] M. E. Kumar, G. T. Reddy, K. Sudheer, M. Reddy, R. Kaluri, D. S. Rajput,

and K. Lakshmanna, ‘‘Vehicle theft identification and intimation using

gsm & iot,’’ in Proc. Mater. Sci. Eng. Conf., vol. 4, 2017, Art. no. 042062.

[7] G. T. Reddy, R. Kaluri, P. K. Reddy, K. Lakshmanna, S. Koppu, and

D. S. Rajput, ‘‘A novel approach for home surveillance system using

IoT adaptive security,’’ in Proc. Int. Conf. Sustain. Comput. Sci., Technol.

Manage. (SUSCOM), vol. 3. Rajasthan, India: Amity Univ. Rajasthan,

Feb. 2019, pp. 1616–1625, doi: 10.2139/ssrn.3356525.

[8] G. T. Reddy, K. Sudheer, K. Rajesh, and K. Lakshmanna, ‘‘Employing

data mining on highly secured private clouds for implementing a security-

asa-service framework,’’ J. Theor. Appl. Inf. Technol., vol. 59, no. 2,

pp. 317–326, 2014.

[9] R. Raghavan, J. K. Singh, T. G. Reddy, K. Sudheer, P. Venkatesh, and

S. O. Olabiyisi, ‘‘A case study: Home environment monitoring system

using Internet of Things,’’ Int. J. Mech. Eng. Technol., vol. 8, no. 11,

pp. 173–180, 2017.

[10] J. Epstein, S. Matsumoto, and G. McGraw, ‘‘Software security and SOA:

Danger, will robinson!’’ IEEE Secur. PrivacyMag., vol. 4, no. 1, pp. 80–83,

Jan. 2006.

[11] A. Al-Ghamdi, ‘‘A survey on software security testing techniques,’’ Int. J.

Comput. Sci. Telecommun., vol. 4, pp. 14–18, Apr. 2013.

[12] G. S. Leite and A. B. Albuquerque, ‘‘The importance of safe coding prac-

tices and possible impacts on the lack of their application,’’ in Proc. Com-

put. Sci. On-line Conf. Cham, Switzerland: Springer, 2019, pp. 214–224.

[13] R. I. Davidson and N. Myhrvold, ‘‘Method and system for generating

and auditing a signature for a computer program,’’ U.S. Patent 5 559 884,

Sep. 24, 1996.

[14] G. Myles, C. Collberg, Z. Heidepriem, and A. Navabi, ‘‘The evaluation

of two software watermarking algorithms,’’ Softw., Pract. Exper., vol. 35,

no. 10, pp. 923–938, Aug. 2005.

[15] D. Gong, F. Liu, B. Lu, P. Wang, and L. Ding, ‘‘Hiding informationin in

java class file,’’ in Proc. Int. Symp. Comput. Sci. Comput. Technol., vol. 2,

2008, pp. 160–164.

[16] G. Qu and K. Potkonjak, ‘‘Analysis of watermarking techniques for graph

coloring problem,’’ in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design.

Dig. Tech. Papers, Nov. 1998, pp. 190–193.

[17] G. Myles and C. Collberg, ‘‘Software watermarking through register allo-

cation: Implementation, analysis, and attacks,’’ in Proc. Int. Conf. Inf.

Secur. Cryptol. Berlin, Germany: Springer, 2003, pp. 274–293.

[18] W. Zhu and C. Thomborson, ‘‘Algorithms to watermark software through

register allocation,’’ in Proc. Int. Conf. Digit. Rights Manage. Berlin,

Germany: Springer, 2005, pp. 180–191.

[19] I. J. Cox, J. Kilian, T. Leighton, and T. Shamoon, ‘‘A secure, robust

watermark for multimedia,’’ in Proc. Int. Workshop Inf. Hiding. Berlin,

Germany: Springer, 1996, pp. 185–206.

[20] J. P. Stern, G. Hachez, F. Koeune, and J.-J. Quisquater, ‘‘Robust object

watermarking: Application to code,’’ in Proc. Int. Workshop Inf. Hiding.

Berlin, Germany: Springer, 1999, pp. 368–378.

[21] C. Collberg, C. Thomborson, andD. Low, ‘‘Manufacturing cheap, resilient,

and stealthy opaque constructs,’’ in Proc. 25th ACM SIGPLAN-SIGACT

Symp. Princ. Program. Lang. (POPL), 1998, pp. 184–196.

[22] G. Arboit, ‘‘A method for watermarking java programs via opaque pred-

icates,’’ in Proc. 5th Int. Conf. Electron. Commerce Res. (ICECR), 2002,

pp. 102–110.

[23] G.Myles and C. Collberg, ‘‘Software watermarking via opaque predicates:

Implementation, analysis, and attacks,’’ Electron. Commerce Res., vol. 6,

no. 2, pp. 155–171, Apr. 2006.

[24] P. Cousot and R. Cousot, ‘‘An abstract interpretation-based framework

for software watermarking,’’ ACM SIGPLAN Notices, vol. 39, no. 1,

pp. 173–185, Jan. 2004.

[25] M. Dalla Preda and M. Pasqua, ‘‘Software watermarking: A semantics-

based approach,’’ Electron. Notes Theor. Comput. Sci., vol. 331, pp. 71–85,

Mar. 2017.

[26] C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kececioglu,

C. Linn, and M. Stepp, ‘‘Dynamic path-based software watermarking,’’

in Proc. ACM SIGPLAN Conf. Program. Lang. design Implement., 2004,

pp. 107–118.

[27] C. Collberg and C. Thomborson, ‘‘Software watermarking: Models and

dynamic embeddings,’’ in Proc. 26th ACM SIGPLAN-SIGACT Symp.

Princ. Program. Lang. (POPL), 1999, pp. 311–324.

[28] C. S. Collberg and C. Thomborson, ‘‘Watermarking, tamper-proofing,

and obfuscation–tools for software protection,’’ IEEE Trans. Softw. Eng.,

vol. 28, no. 8, pp. 735–746, Aug. 2002.

[29] K. Holmes, ‘‘Computer software protection,’’ U.S. Patent 5 287 407,

Feb. 15, 1994.

[30] P. R. Samson, ‘‘Apparatus and method for serializing and validating copies

of computer software,’’ U.S. Patent 5 287 408, Feb. 15, 1994.

[31] J. Hamilton and S. Danicic, ‘‘A survey of static software watermark-

ing,’’ in Proc. World Congr. Internet Secur. (WorldCIS), Feb. 2011,

pp. 100–107.

[32] B. B. Madan, M. Banik, and D. Bein, ‘‘Securing unmanned autonomous

systems from cyber threats,’’ J. Defense Model. Simul., Appl., Methodol.,

Technol., vol. 16, no. 2, pp. 119–136, Apr. 2019.

[33] A. Dey, S. Bhattacharya, and N. Chaki, ‘‘Software watermarking: Progress

and challenges,’’ INAE Lett., vol. 4, no. 1, pp. 65–75, Mar. 2019.

[34] S. Guang, F. Xiaoping, F. Sha, S. Yingjie, and L. Huifang, ‘‘Software

watermarking in the cloud: Analysis and rigorous theoretic treatment,’’

J. Softw. Eng., vol. 9, no. 2, pp. 410–418, Feb. 2015.

[35] H. Ma, K. Lu, X. Ma, H. Zhang, C. Jia, and D. Gao, ‘‘Software water-

marking using return-oriented programming,’’ in Proc. 10th ACM Symp.

Inf., Comput. Commun. Secur. (ASIA CCS), 2015, pp. 369–380.

[36] C. Iwendi, M. Uddin, J. A. Ansere, P. Nkurunziza, J. H. Anajemba, and

A. K. Bashir, ‘‘On detection of Sybil attack in large-scale VANETs using

spider-monkey technique,’’ IEEE Access, vol. 6, pp. 47258–47267, 2018.

[37] C. Iwendi, A. Allen, and K. Offor, ‘‘Smart security implementation for

wireless sensor network nodes,’’ J. Wireless Sensor Netw., vol. 1, no. 1,

pp. 1–13, 2015.

[38] C. O. Iwendi and A. R. Allen, ‘‘Cia security management for wireless

sensor network nodes,’’ in Proc. 12th Annu. PostGraduate Symp. Converg.

Telecommun., Netw. Broadcast. Liverpool, U.K.: Liverpool John Moores

Univ., 2011, pp. 123–128.

[39] K. Lu, S. Xiong, and D. Gao, ‘‘RopSteg: Program steganography with

return oriented programming,’’ in Proc. 4th ACM Conf. Data Appl. Secur.

Privacy (CODASPY), 2014, pp. 265–272.

[40] Y.Wang, D. Gong, B. Lu, F. Xiang, and F. Liu, ‘‘Exception handling-based

dynamic software watermarking,’’ IEEE Access, vol. 6, pp. 8882–8889,

2018.

[41] J. Wang, P. Xie, Y. Wang, and Z. Rong, ‘‘A survey of return-oriented

programming attack, defense and its benign use,’’ in Proc. 13th Asia Joint

Conf. Inf. Secur. (AsiaJCIS), Aug. 2018, pp. 83–88.

[42] H. P. Joshi, A. Dhanasekaran, and R. Dutta, ‘‘Impact of software obfus-

cation on susceptibility to return-oriented programming attacks,’’ in Proc.

36th IEEE Sarnoff Symp., Sep. 2015, pp. 161–166.

[43] A. Alrehily and V. Thayananthan, ‘‘Software watermarking based on

return-oriented programming for computer security,’’ Int. J. Comput. Appl.,

vol. 166, no. 8, pp. 21–28, 2017.

VOLUME 8, 2020 72659



C. Iwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

CELESTINE IWENDI (Senior Member, IEEE)

received the master’s degree in communication

hardware and microsystem engineering fromUpp-

sala University, Sweden, in 2008, and the Ph.D.

degree in electronics from the University of

Aberdeen, U.K., in 2013. He is an Associate Pro-

fessor from Sweden. He ranked under 100 in the

world university ranking. He is a highly moti-

vated researcher with a Wireless Sensor Network

Security book and over 100 publications. He is

currently a Senior Lecturer with the Department of Electronics BCC, Cen-

tral South University of Forestry and Technology, China. He has strong

teaching emphasis on communication, hands-on experience, willing-to-learn

and 18 years of technical expertise. He currently teaches engineering team

project, circuit theory, data networks, and distributed systems, and control

systems. He has developed operational, maintenance, and testing procedures

for electronic products, components, equipment, and systems; provided

technical support and instruction to staff and customers. He is a wireless

sensor network Chief Evangelist, a Researcher, and a Designer. He has

been a Board Member of the IEEE Sweden Section, since 2017, and a

Fellow of The Higher Education Academy, U.K., to add to his teaching

and professional experiences. He is an Editor of International Journal of

Engineering and Allied Disciplines, in 2015, a Newsletter Editor of the IEEE

Sweden Section, from 2016 to 2018, the Editor-in-Chief of Wireless Sensor

Network Magazine, in 2009, a Committee Member of International Advi-

sory Panel, International Conference on Marine, Ocean and Environmental

Sciences and Technologies (MAROCENET), from 2014 to 2016, the Editor-

in-Chief of Journal of Wireless Sensor Network, in 2009, and an Advisory

Board member of International Journal of Innovative Computer Science and

Engineering (IJICSE), in 2013. He is the Co-Chair of the special session on

Wireless Sensor Networks.

ZUNERA JALIL (Member, IEEE) received the

B.Sc. degree from Punjab University, Lahore,

Pakistan, in 1999, and the M.S. degree in com-

puter science and the Ph.D. degree in computer

science with information security specialization

from the FAST National University of Com-

puter and Emerging Sciences, Islamabad, Pak-

istan, in 2007 and 2010, respectively. She is cur-

rently an Assistant Professor with the Depart-

ment of Cyber Security and a Researcher with the

National Cybercrimes and Forensics Laboratory, Air University, Islamabad.

Her research interest includes but is not limited to computer forensics,

intelligent systems, and data privacy protection.

ABDUL REHMAN JAVED received the mas-

ter’s degree in computer science from the

FAST-National University of Computer and

Emerging Sciences, Islamabad, Pakistan. He is

currently a Research Assistant with the National

Center for Cyber Security and a Visiting Lec-

turer with the Department of Computer Science,

Air University, Islamabad. His research interests

include but are not limited to mobile and ubiq-

uitous computing, data analysis, knowledge dis-

covery, data mining, natural language processing, smart homes, and their

applications in human activity analysis, humanmotion analysis, and e-health.

He aims to contribute to interdisciplinary research of computer science and

human-related disciplines.

THIPPA REDDY G. received the B.Tech. degree in
computer science and engineering fromNagarjuna

University, Andhra Pradesh, India, the M.Eng.

degree in computer science and engineering from

Anna University, Chennai, India, and the Ph.D.

degree from the Vellore Institute of Technology,

Vellore, India. He is currently working as an Assis-

tant Professor (Senior) with the School of Infor-

mation Technology and Engineering, VIT, Vellore,

India. He has 14 years of experience in teaching.

He produced more than 25 international/national publications. His current

research interests include machine learning, deep learning, computer vision,

and big data analytics, Blockchain.

RAJESH KALURI received the B.Tech. degree in

CSE from JNTU, Hyderabad, the M.Tech. degree

in CSE from ANU, Guntur, India, and the Ph.D.

degree in computer vision from VIT University,

India. He is having more than ten years of teach-

ing experience. He was a Visiting Professor with

the Guangdong University of Technology, China,

in 2015 and 2016. He is currently working as

a Senior Assistant Professor with the School of

Information Technology and Engineering, VIT

University, India. He has published research articles in various reputed

international journals. His current research is in the areas of computer vision,

human-computer interaction, and blockchain.

GAUTAM SRIVASTAVA (Senior Member, IEEE)

received the B.Sc. degree from Briar Cliff Uni-

versity, USA, in 2004, and the M.Sc. and Ph.D.

degrees from the University of Victoria, Victo-

ria, BC, Canada, in 2006 and 2011, respectively.

He then taught for three years at the Department of

Computer Science, University of Victoria, where

he was regarded as one of the top undergraduate

professors in the computer science course instruc-

tion. In 2014, he joined a tenure-track position at

Brandon University, Brandon, MB, Canada, where he is currently active

in various professional and scholarly activities. He was promoted to an

Associate Professor, in January 2018. He, as he is popularly known, is active

in research in the field of data mining and big data. In his eight-year academic

career, he has published a total of 60 articles in high impact conferences

in many countries and high-status journals (SCI and SCIE) and has also

delivered guest lectures on big data, cloud computing, Internet of Things, and

cryptography at many Taiwanese and Czech universities. He currently has

active research projects with other academics in Taiwan, Singapore, Canada,

Czech Republic, Poland, andUSA.He is constantly looking for collaboration

opportunities with foreign professors and students. He received the Best Oral

Presenter Award in FSDM 2017 which was held at the National Dong Hwa

University (NDHU), Hualien County, Shoufeng, Taiwan, in November 2017.

He is an Editor of several international scientific research journals.

OHYUN JO (Member, IEEE) received the B.S.,

M.S., and Ph.D. degrees in electrical engineering

from the Korea Advanced Institute of Science and

Technology (KAIST), in 2005, 2007, and 2011,

respectively. From April 2011 to February 2016,

he was with Samsung Electronics in charge of

research and development for future wireless com-

munication systems, applications, and services.

From March 2016 to July 2017, he was a Senior

Researcher with the Electronics and Telecommu-

nications Research Institute (ETRI) and from August 2017 to February

2018, he was an Assistant Professor with the Department of Electrical

Engineering. He is currently an Assistant Professor with the Department

of Computer Science, Chungbuk National University. He has authored or

coauthored more than 40 articles and holds more than 150 registered and

filed patents. His research interests include millimeter-wave communica-

tions, next-generation WLAN/WPAN systems, 5G mobile communication

systems, military communications, Internet of Things, future wireless solu-

tions/applications/services, machine learning, and embedded communica-

tions ASIC design. During his appointment at Samsung, he was a recipient

of numerous recognitions, including Gold Prize in Samsung Annual Award,

the Most Creative Researcher of the Year Award, the Best Mentoring Award,

Major R & D Achievement Award, and the Best Improvement of Organiza-

tion Culture Award.

72660 VOLUME 8, 2020


