Header menu link for other important links
X
Lightweight deep network for traffic sign classification
J. Zhang, W. Wang, C. Lu, J. Wang,
Published in Springer
2020
Volume: 75
   
Issue: 7-8
Pages: 369 - 379
Abstract
Deeper neural networks have achieved great results in the field of computer vision and have been successfully applied to tasks such as traffic sign recognition. However, as traffic sign recognition systems are often deployed in resource-constrained environments, it is critical for the network design to be slim and accurate in these instances. Accordingly, in this paper, we propose two novel lightweight networks that can obtain higher recognition precision while preserving less trainable parameters in the models. Knowledge distillation transfers the knowledge in a trained model, called the teacher network, to a smaller model, called the student network. Moreover, to improve the accuracy of traffic sign recognition, we also implement a new module in our teacher network that combines two streams of feature channels with dense connectivity. To enable easy deployment on mobile devices, our student network is a simple end-to-end architecture containing five convolutional layers and a fully connected layer. Furthermore, by referring to the values of batch normalization (BN) scaling factors towards zero to identify insignificant channels, we prune redundant channels from the student network, yielding a compact model with accuracy comparable to that of more complex models. Our teacher network exhibited an accuracy rate of 93.16% when trained and tested on the CIFAR-10 general dataset. Using the knowledge of our teacher network, we train the student network on the GTSRB and BTSC traffic sign datasets. Thus, our student model uses only 0.8 million parameters while still achieving accuracy of 99.61% and 99.13% respectively on both datasets. All experimental results show that our lightweight networks can be useful when deploying deep convolutional neural networks (CNNs) on mobile embedded devices. © 2019, Institut Mines-Télécom and Springer Nature Switzerland AG.
About the journal
JournalData powered by TypesetAnnales des Telecommunications/Annals of Telecommunications
PublisherData powered by TypesetSpringer
ISSN00034347