Locating-total domination in graphs

Michael A. Henning ${ }^{\mathrm{a}, *}$, Nader Jafari Rad ${ }^{\mathrm{b}, \mathrm{c}}$
${ }^{\text {a }}$ Department of Mathematics, University of Johannesburg, Auckland Park, 2006, South Africa
${ }^{\text {b }}$ Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
${ }^{\text {c }}$ Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

A R T I C L E IN F O

Article history:

Received 24 August 2011
Received in revised form 4 April 2012
Accepted 9 April 2012
Available online 9 May 2012

Keywords:

Total domination
Locating-total domination

Abstract

In this paper, we continue the study of locating-total domination in graphs. A set S of vertices in a graph G is a total dominating set in G if every vertex of G is adjacent to a vertex in S. We consider total dominating sets S which have the additional property that distinct vertices in $V(G) \backslash S$ are totally dominated by distinct subsets of the total dominating set. Such a set S is called a locating-total dominating set in G, and the locatingtotal domination number of G is the minimum cardinality of a locating-total dominating set in G. We obtain new lower and upper bounds on the locating-total domination number of a graph. Interpolation results are established, and the locating-total domination number in special families of graphs, including cubic graphs and grid graphs, is investigated.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The problem of placing monitoring devices, such as surveillance cameras or fire alarms, in a system such that every site in the system (including the monitoring devices themselves) is adjacent to a monitor can be modeled by total domination in graphs. Applications where it is also important that if there is a problem in the system its location can be uniquely identified by the set of monitors, can be modeled by a combination of total domination and locating sets.

Let $G=(V, E)$ be a graph with vertex set V, edge set E and no isolated vertex. A total dominating set, abbreviated TD-set, of G is a set S of vertices of G such that every vertex is adjacent to a vertex in S. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a TD-set. The literature on this subject has been surveyed and detailed in the domination book by Haynes et al. [7]. A recent survey of total domination in graphs can be found in [9].

The study of locating-dominating sets in graphs was pioneered by Slater [12,13] and this concept was later extended to total domination in graphs. A locating-total dominating set, abbreviated LTD-set, in G is a TD-set S with the property that distinct vertices in $V \backslash S$ are totally dominated by distinct subsets of S. Every graph G with no isolated vertex has a LTD-set, since V is such a set. The locating-total domination number, denoted $\gamma_{t}^{L}(G)$, of G is the minimum cardinality of a LTD-set of G. A LTD-set of cardinality $\gamma_{t}^{L}(G)$ is called a $\gamma_{t}^{L}(G)$-set. This concept of locating-total domination in graphs was first studied by Haynes et al. [8] and has been studied, for example, in [1-5] and elsewhere.

1.1. Notation

For notation and graph theory terminology, we in general follow [7]. Specifically, let G be a graph with vertex set $V(G)=V$ of order $|V|=n$ and size $|E(G)|=m$, and let v be a vertex in V. The open neighborhood of v is $N_{G}(v)=\{u \in V \mid u v \in E(G)\}$ and the closed neighborhood of v is $N_{G}[v]=\{v\} \cup N(v)$. The degree of v is $d_{G}(v)=\left|N_{G}(v)\right|$. If the graph G is clear from the

[^0]context, we simply write $N(v)$ and $d(v)$ rather than $N_{G}(v)$ and $d_{G}(v)$, respectively. For a set $S \subseteq V$, its open neighborhood is the set $N(S)=\cup_{v \in S} N(v)$, and its closed neighborhood is the set $N[S]=N(S) \cup S$. Thus a set $S \subseteq V$ is a TD-set in G if $N(S)=V$, while S is a LTD-set if it is a TD-set and for every pair of distinct vertices u and v in $V \backslash S$, we have $N(u) \cap S \neq N(v) \cap S$. For sets $A, B \subseteq V$, we say that A dominates B if $B \subseteq N[A]$, while A totally dominates B if $B \subseteq N(A)$. The maximum distance among all pairs of vertices of G is the diameter of G, which is denoted by diam (G).

A cycle on n vertices is denoted by C_{n}, while a path on n vertices is denoted by P_{n}. We denote by K_{n} the complete graph on n vertices and by $K_{m, n}$ the complete bipartite graph with one partite set of cardinality m and the other of cardinality n. A star is a complete bipartite graph of the form $K_{1, n}$. A vertex of degree one is called a leaf, and its neighbor is called a support vertex. We denote the set of leaves of G by $L(G)$. An edge incident with a leaf is called a pendant edge. The corona, $\operatorname{cor}(G)$, of a graph G is that graph obtained from G by adding a pendant edge to each vertex of G. For a subset $S \subseteq V$, the subgraph induced by S is denoted by $G[S]$. The girth of G is the length of a shortest cycle in G, which we denote by $g(G)$.

If X and Y are two vertex disjoint subsets of V, then we denote the set of all edges of G that join a vertex of X and a vertex of Y by $[X, Y]$. Further, if all edges are present between the vertices in X and the vertices in Y, we say that $[X, Y]$ is full, while if there are no edges between the vertices in X and the vertices in Y, we say that $[X, Y]$ is empty.

For graphs G and H, the Cartesian product $G \square H$ is the graph with vertex set $V(G) \times V(H)$ where two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent if and only if either $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$ or $v_{1}=v_{2}$ and $u_{1} u_{2} \in E(G)$.

1.2. Known results and observations

Every LTD-set of a graph is also a TD-set of the graph, implying the following observation.
Observation 1 ([8]). $\gamma_{t}^{L}(G) \geq \gamma_{t}(G)$ for every graph G.
In the special case when G is a path, every TD-set of G is also a LTD-set of G. Thus the locating-total domination number of a path is precisely its total domination number.

Observation 2 ([8]). For $n \geq 2, \gamma_{t}^{L}\left(P_{n}\right)=\gamma_{t}\left(P_{n}\right)=\lfloor n / 2\rfloor+\lceil n / 4\rceil-\lfloor n / 4\rfloor$.
It is also a simple exercise to determine the locating-total domination number of certain well-studied families of graphs.
Observation 3. The following hold.
(a) For $n \geq 3, \gamma_{t}^{L}\left(C_{n}\right)=\gamma_{t}\left(C_{n}\right)=\lfloor n / 2\rfloor+\lceil n / 4\rceil-\lfloor n / 4\rfloor$.
(b) For $n \geq 2, \gamma_{t}^{L}\left(K_{1, n}\right)=n$.
(c) For $m \geq n \geq 2, \gamma_{t}^{L}\left(K_{m, n}\right)=m+n-2$.
(d) For $n \geq 3, \gamma_{t}^{L}\left(K_{n}\right)=n-1$.

A lower bound on the locating-total domination number of a tree in terms of its order is given in [8] and the extremal trees achieving equality in the bound are also characterized.

Theorem 4 ([8]). If T is a tree of order $n \geq 2$, then $\gamma_{t}^{L}(T) \geq 2(n+1) / 5$.
Chen and Sohn [6] established the following lower and upper bounds on the locating-total domination number of a tree in terms of its order and number of leaves and support vertices. Furthermore they constructively characterize the extremal trees achieving the bounds.

Theorem 5 ([6]). If T is a tree of order $n \geq 3$ with ℓ leaves and s support vertices, then $(n+\ell+1) / 2-s \leq \gamma_{t}^{L}(T) \leq(n+\ell) / 2$.
We remark that the concept of a locating-paired dominating set, where we require that the paired-dominating set (a dominating set that contains a perfect matching) is also a locating set, has been studied in [11]. Although every graph with no isolated vertex has a LTD-set, not every graph with no isolated vertex has a locating-paired dominating set. However using an identical proof as in Proposition 6 in [11], we have the following result.

Theorem 6 ([11]). If G is a graph of order $n \geq 3$ and maximum degree $\Delta \geq 2$ with no isolated vertex, then $\gamma_{t}^{L}(G) \geq 2 n /(\Delta+2)$, and this bound is sharp.

The following observation follows readily from the definition of a LTD-set in a graph.
Observation 7. Let S be a LTD-set in a graph G and let X be a subset of vertices of G.
(a) If $N[u]=N[v]$ for every pair $u, v \in X$, then $|S \cap X| \geq|X|-1$.
(b) If $N(u)=N(v)$ for every pair $u, v \in X$, then $|S \cap X| \geq|X|-1$.

2. Results

2.1. Lower bounds and interpolation results

We first establish a lower bound on the locating-total domination number of a graph in terms of its order.
Lemma 8. If G is a connected graph of order $n \geq 2$ with $\gamma_{t}^{L}(G)=a$, then $n \leq 2^{a}+a-1$.
Proof. Let S be a $\gamma_{t}^{L}(G)$-set. Then, $|S|=a \geq 2$. For each $v \in V \backslash S$, let $N_{v}=N(v) \cap S$. Then, N_{v} is a non-empty subset of the set S. Since there are $2^{a}-1$ distinct non-empty subsets of an a-element set, and since $N_{u} \neq N_{v}$ for every pair of distinct vertices u and v in $V \backslash S$, we have that $n-a=|V \backslash S| \leq 2^{a}-1$, or, equivalently, $n \leq 2^{a}+a-1$.

Corollary 9. If G is a connected graph of order $n \geq 2$, then $\gamma_{t}^{L}(G) \geq\left\lfloor\log _{2} n\right\rfloor$.
Proof. Let $\gamma_{t}^{L}(G)=a$, where $a \geq 2$. By Lemma $8, n \leq 2^{a}+a-1$. For $a \geq 2$, we have that $a-1<2^{a}$, and so $n<2 \cdot 2^{a}=2^{a+1}$. Thus, $a>\left(\log _{2} n\right)-1$, implying that $\gamma_{t}^{L}(G)=a \geq\left\lfloor\log _{2} n\right\rfloor$.

By Lemma 8 , if G is a graph with $\gamma_{t}^{L}(G)=a$ for some integer $a \geq 1$, then the order of G is at most $2^{a}+a-1$. We prove next the following interpolation result for the locating-total domination number of a graph.

Theorem 10. For every two integers a, b with $2<a+1 \leq b \leq 2^{a}+a-1$, there exists a connected graph G of order b with $\gamma_{t}^{L}(G)=a$.
Proof. Let a and b be integers with $a \geq 2$ and $a+1 \leq b \leq 2^{a}+a-1$. If $b=a+1$, then we simply take $G=K_{1, a}$. In this case, G has order b and, by Observation $3, \gamma_{t}^{L}(G)=a$. Suppose that $a+2 \leq b \leq 2 a-1$. Then, $1 \leq b-(a+1) \leq a-2$ and we let G be the graph obtained from a star $K_{1, a}$ by subdividing $b-(a+1)$ edges exactly once. Note that G has $2 a-b+1$ leaves that have a common neighbor. Every $\gamma_{t}^{L}(G)$-set contains the $b-a$ support vertices of G as well as $2 a-b$ leaves that have a common neighbor. Thus, G has order b and $\gamma_{t}^{L}(G)=(b-a)+(2 a-b)=a$.

Finally suppose that $2 a \leq b \leq 2^{a}+a-1$. Let G_{a} be the corona $\operatorname{cor}\left(K_{a}\right)$ of a complete graph K_{a} and let S be the set of a vertices of the complete graph. We note that the set S has $2^{a}-a-1$ distinct subsets of cardinality 2 or more. Select $b-2 a$ such distinct non-empty subsets of S, and let G be the graph obtained from G_{a} by adding $b-2 a$ new vertices corresponding to these $b-2 a$ distinct subsets of S and joining each element of S to those new vertices corresponding to subsets it is a member of. Then, G has order b. By construction, distinct vertices not in the set S have distinct intersections with the set S, implying that the set S is a LDT-set of G, and so $\gamma_{t}^{L}(G) \leq|S|$. However, every LTD-set in G contains the set S, and so $\gamma_{t}^{L}(G) \geq|S|$. Consequently, $\gamma_{t}^{L}(G)=|S|=a$.

As a special case of Theorem 10, we note that, for every integer $a \geq 2$, there exists a connected graph G of order $n=$ $2^{a}+a-1$ with $\gamma_{t}^{L}(G)=a=\left\lfloor\log _{2} n\right\rfloor$. Hence the lower bound in Corollary 9 is sharp. Next, we obtain lower bound for the locating-total domination number in terms of the diameter diam (G) of a graph G.

Theorem 11. If G is a connected graph of order at least 2 , then $\gamma_{t}^{L}(G) \geq(\operatorname{diam}(G)+1) / 2$.
Proof. Let $d=\operatorname{diam}(G)$, and let x and y be two vertices of G with $d(x, y)=d$. For $i=0,1,2, \ldots, d$, let V_{i} be the set of all vertices of G at distance i from x. Let S be an LTD-set. Let $X_{0}=V_{0} \cup V_{1} \cup V_{2}$, and for $i=1, \ldots,\lfloor(d-2) / 4\rfloor$, let $X_{i}=V_{4 i-1} \cup V_{4 i} \cup V_{4 i+1} \cup V_{4 i+2}$. If $d \not \equiv 2(\bmod 4)$, let

$$
X_{\left\lceil\frac{d-2}{4}\right\rceil}=\bigcup_{i=4\left\lfloor\frac{d-2}{4}\right\rfloor+3}^{d} V_{i}
$$

In order to totally dominate the vertices in $V_{0} \cup V_{1}$ we have that $\left|S \cap X_{0}\right| \geq 2$. For $i=1, \ldots,\lfloor(d-2) / 4\rfloor$, in order to totally dominate the vertices in $V_{4 i} \cup V_{4 i+1}$ we have that $\left|S \cap X_{i}\right| \geq 2$. If $d \equiv 0(\bmod 4)$, then in order to totally dominate the vertices in V_{d} we have that $\left|S \cap X_{\lceil(d-2) / 4\rceil}\right| \geq 1$. If $d \equiv 1(\bmod 4)$, then in order to totally dominate the vertices in $V_{d-1} \cup V_{d}$ we have that $\left|S \cap X_{\lceil(d-2) / 4\rceil}\right| \geq 2$. Therefore the following holds. If $d \equiv 0(\bmod 4)$, then $|S| \geq 2+2\lfloor(d-2) / 4\rfloor+1=(d+2) / 2$. If $d \equiv 1(\bmod 4)$, then $|S| \geq 2+2\lfloor(d-2) / 4\rfloor+2=(d+3) / 2$. If $d \equiv 2(\bmod 4)$, then $|S| \geq 2+2\lfloor(d-2) / 4\rfloor=(d+2) / 2$. If $d \equiv 3(\bmod 4)$, then $|S| \geq 2+2\lfloor(d-2) / 4\rfloor=(d+1) / 2$. In all four cases, we have that $|S| \geq(d+1) / 2$. Since S is an arbitrary LTD-set in G, the desired lower bound follows.

That the bound of Theorem 11 is sharp may be seen as follows. Let $G=P_{n}$, where $n \geq 4$ and $n \equiv 0(\bmod 4)$. Then, $\operatorname{diam}(G)=n-1$ and by Observation $2, \gamma_{t}^{L}(G)=n / 2$. Consequently, $\gamma_{t}^{L}(G)=(\operatorname{diam}(G)+1) / 2$.

2.2. Upper bounds

In this section, we present upper bounds in the locating-total domination number of a graph. Our first result characterizes graphs with large locating-total domination numbers.

Theorem 12. Let G be a connected graph of order $n \geq 3$. Then, $\gamma_{t}^{L}(G) \leq n-1$, with equality if and only if G is a star or a complete graph.
Proof. Let $G=(V, E)$ be a connected graph of order $n \geq 3$ and let v be a vertex of minimum degree in G. Then, $V \backslash\{v\}$ is a LTD-set in G, and so $\gamma_{t}^{L}(G) \leq n-1$. By Observation 3 , if G is a star or a complete graph of order $n \geq 3$, then $\gamma_{t}^{L}(G)=n-1$. This establishes the sufficiency.

To prove the necessity, let $G=(V, E)$ be a connected graph of order $n \geq 3$ satisfying $\gamma_{t}^{L}(G)=n-1$. For the sake of contradiction, assume that G is neither a star nor a complete graph. Let u and v be two vertices at maximum distance apart in G, and so $d(u, v)=\operatorname{diam}(G)$. Since G is not a complete graph, $\operatorname{diam}(G) \geq 2$. If $\operatorname{diam}(G) \geq 3$, then $V \backslash\{u, v\}$ is a LTD-set in G, and so $\gamma_{t}^{L}(G) \leq n-2$, a contradiction. Hence, $\operatorname{diam}(G)=2$. Let w be a common neighbor of u and v. Suppose $d(u)=1$. Then, w is adjacent to every vertex in G. Since G is not a star, there are two neighbors of w, say x and y, that are adjacent. But then $V \backslash\{u, x\}$ is a LTD-set in G, and so $\gamma_{t}^{L}(G) \leq n-2$, a contradiction. Hence, $\delta(G) \geq 2$. If there is a vertex $x \in V$ such that $N(x)=\{u, w\}$, then the set $S=V \backslash\{v, x\}$ is a TD-set in G. In this case, we note that $u \in N(x) \cap S$ but $u \notin N(v) \cap S$, and so $N(x) \cap S \neq N(v) \cap S \neq \emptyset$. Thus, S is a LTD-set in G, a contradiction. Hence there is no vertex $x \in V$ such that $N(x)=\{u, w\}$. Since $\delta(G) \geq 2$, the set $S=V \backslash\{u, w\}$ is therefore a TD-set in G. However, $v \in N(w) \cap S$ but $v \notin N(u) \cap S$, and so $N(u) \cap S \neq N(w) \cap S \neq \emptyset$. Thus, S is a LTD-set in G, once again a contradiction. Therefore, G is either a star or a complete graph.

We show next that even if we impose a minimum degree condition and structural requirements in the statement of Theorem 12, then the upper bound of Theorem 12 can only be improved slightly.

Theorem 13. Let G be a connected bipartite graph of order n with minimum degree $\delta(G)=\delta \geq 2$. Then, $\gamma_{t}^{L}(G) \leq n-2$, with equality if and only if $G=C_{6}$ or $G=K_{\delta, n-\delta}$.
Proof. Let G be a connected bipartite graph of order n with minimum degree $\delta(G)=\delta \geq 2$. By Theorem $12, \gamma_{t}^{L}(G) \leq n-2$. If $G=C_{6}$, then $\gamma_{t}^{L}(G)=4=|V(G)|-2$, while if $G=K_{\delta, n-\delta}$, then by Observation $3(\mathrm{c}), \gamma_{t}^{L}(G)=(n-\delta)+\delta-2=|V(G)|-2$. This establishes the sufficiency.

To prove the necessity, suppose that $G=(V, E)$ is a connected bipartite graph of order n with minimum degree $\delta(G)=\delta \geq 2$ satisfying $\gamma_{t}^{L}(G)=n-2$. Let u and v be two vertices at maximum distance apart in G, and so $d(u, v)=\operatorname{diam}(G)$. Let $P: u=v_{0}, v_{1}, \ldots, v_{k}=v$ be a $u-v$ path of length $\operatorname{diam}(G)$, and so $k=\operatorname{diam}(G)$. For $i=0,1,2, \ldots$, k, let $V_{i}=\{x \mid d(u, x)=i\}$. Then, $V_{0}=\{u\}, V_{1}=N(u)$ and for $i=2, \ldots, k$, we note that $v_{i} \in V_{i}$. Further for $0 \leq i<j \leq k$, if $j-i \geq 2$, then $\left[V_{i}, V_{j}\right]$ is empty. Since G is a bipartite graph, each set $V_{i}, 0 \leq i \leq k$, is an independent set in G.

If $k \geq 4$, then since each set V_{i} is an independent set in G and since $\delta \geq 2$, the set $S=V \backslash\left\{v_{0}, v_{1}, v_{k}\right\}$ is a LTD-set in G, and so $\gamma_{t}^{L}(G) \leq|S|=n-3$, a contradiction. Hence, $k \leq 3$. Further since G is a bipartite graph and $\delta \geq 2$, the graph G is not a complete graph, and so $k \in\{2,3\}$.

Suppose that $k=3$. We consider the sets $N(u)$ and $N(v)$. As observed earlier, $N(u)=V_{1}$. Since V_{1} is an independent set, we note that $N(x) \backslash\{u\} \subseteq V_{2}$ for each vertex $x \in V_{1}$ and since V_{3} is an independent set, we note that $N(x) \subseteq V_{2}$ for each vertex $x \in V_{3}$. In particular, $N(v) \subseteq V_{2}$. Further since $\delta \geq 2$, each vertex in V_{1} has at least one neighbor in V_{2}, while each vertex in V_{3} has at least two neighbors in V_{2}.

Suppose that $[N(u), N(v)]$ is full. Then the set $S=V \backslash\left\{u, v_{1}, v_{2}\right\}$ is a TD-set in G. Further, $N(u) \cap S=V_{1} \backslash\left\{v_{1}\right\}$, $N\left(v_{1}\right) \cap S=V_{2} \backslash\left\{v_{2}\right\}$, while $N\left(v_{2}\right) \cap S \subseteq\left(V_{1} \backslash\left\{v_{1}\right\}\right) \cup\{v\}$. Thus, S is a LTD-set of G, and so $\gamma_{t}^{L}(G) \leq|S|=n-3$, a contradiction. Hence, $[N(u), N(v)]$ is not full. Let x and y be two nonadjacent vertices, where $x \in N(u)$ and $y \in N(v)$.

If $S_{u}=V \backslash\{u, x, y\}$ is a TD-set in G, then S_{u} is a LTD-set of G, and so $\gamma_{t}^{L}(G) \leq|S|=n-3$, a contradiction. Hence, S_{u} is not a TD-set in G, implying that there is a vertex $y^{\prime} \in V_{1}$ of degree 2 such that $N\left(y^{\prime}\right)=\{u, y\}$ (and so the vertex y^{\prime} is not totally dominated by S_{u}. Analogously, considering the set $S_{v}=V \backslash\{v, x, y\}$, there is a vertex $x^{\prime} \in V_{2}$ of degree 2 such that $N\left(x^{\prime}\right)=\{v, x\}$. Hence, $F=G\left[\left\{u, v, x, x^{\prime}, y, y^{\prime}\right\}\right]$ is an induced 6-cycle in G.

If $d(x) \geq 3$, then let $D=V \backslash\left\{u, x, x^{\prime}\right\}$. If $d(y) \geq 3$, then let $D=V \backslash\left\{v, y, y^{\prime}\right\}$. If $d(u) \geq 3$, then let $D=V \backslash\left\{u, x, y^{\prime}\right\}$. If $d(v) \geq 3$, then let $D=V \backslash\left\{v, x^{\prime}, y\right\}$. In all four cases, the set D is a LTD-set of G, and so $\gamma_{t}^{L}(G) \leq n-3$, a contradiction. Hence, $d(u)=d(v)=d(x)=d(y)=2$. Thus every vertex of the induced 6-cycle F has degree 2 in G, implying by the connectivity of G that $G=F=C_{6}$.

Suppose that $k=2$. Let x be an arbitrary vertex in V_{1} and let y be an arbitrary vertex in V_{2}. Since both V_{1} and V_{2} are independent sets, the vertices x and y have no common neighbor. However diam $(G)=2$, implying that x and y are adjacent. Hence, $\left[V_{1}, V_{2}\right.$] is full. Therefore, G is a complete bipartite graph with partite sets $V_{0} \cup V_{2}$ and V_{1}. Thus, $G=K_{a, b}$ for some integers a, b, where $a \geq b \geq 2$. Equivalently since $n=a+b$ and $\delta=b$, we have that $G=K_{\delta, n-\delta}$.

Let G be a connected graph of large order $n \geq 3$. By Theorem 12 , if $\operatorname{diam}(G)=1$, then $\gamma_{t}^{L}(G)=n-1$. By Theorem 13 , if $\operatorname{diam}(G)=2$, then it is possible that $\gamma_{t}^{L}(G)=n-2$. For large minimum degree and large diameter, we have the following upper bound on the locating-total domination number.

Fig. 1. A graph in the family \mathscr{F}_{11}.

Theorem 14. Let G be a connected graph of order n with minimum degree at least 3 and diameter diam $(G)=d \geq 3$. Then, $\gamma_{t}^{L}(G) \leq n-\lfloor d / 2\rfloor-1$.

Proof. Let $G=(V, E)$ and let u and v be two vertices at maximum distance apart in G, and so $d(u, v)=\operatorname{diam}(G)$. Let $P: u=v_{0}, v_{1}, \ldots, v_{d}=v$ be a $u-v$ path of length $\operatorname{diam}(G)$, and so $d=\operatorname{diam}(G)$. We now consider the induced path $P=P_{d+1}$ on $d+1$ vertices. Let

$$
S=\bigcup_{i=0}^{\lfloor d / 2\rfloor}\left\{v_{2 i}\right\}
$$

Then, $|S|=\lfloor d / 2\rfloor+1$. We now consider the set $D=V \backslash S$. Let $X=V \backslash V(P)$. Then, $D=X \cup(V(P) \backslash S)$, and so $X \subset D$. Since $\delta(G) \geq 3$, every vertex on the path P has at least one neighbor in X, and so the set D dominates V. In particular every vertex of D on the path P has at least one neighbor in X and is therefore totally dominated by D. Every vertex in X that has a neighbor in X is totally dominated by D. Further, if v is an isolated vertex in $G[X]$, then by our choice of the path P and the minimum degree requirement we must have that $d_{G}(v)=3$ and that the three neighbors of v are consecutive vertices on P. However, since D contains one vertex from every two consecutive vertices on P, the vertex v is totally dominated by D. Therefore the set D is a TD-set in G. Let x and y be two arbitrary vertices in $V \backslash D$. If x and y are consecutive vertices on P, then either x or y belongs to the set D, a contradiction. Hence, renaming x and y, if necessary, we may assume that $x=v_{i}$ and $y=v_{j}$, where $0 \leq i \leq j-2 \leq d$. If $i<j-2$, then $v_{i+1} \in N(x) \cap D$ but $v_{i+1} \notin N(y) \cap D$, and so x and y are totally dominated by distinct subsets of D. If $i=j-2$, then either $i \geq 1$, in which case $v_{i-1} \in N(x) \cap D$ but $v_{i-1} \notin N(y) \cap D$, or $i=0$, in which case $v_{3} \in N(y) \cap D$ but $v_{3} \notin N(x) \cap D$. Once again, x and y are totally dominated by distinct subsets of D. Hence, D is a LTD-set of G, implying that $\gamma_{t}^{L}(G) \leq|D|=n-|S|=n-\lfloor d / 2\rfloor-1$.

The bound in Theorem 14 is asymptotically best possible, as may be seen as follows. Let $k \geq 3$ and $\delta \geq 3$ be a fixed integers and let $d=3 k-1$. Let \mathcal{F}_{d} denote the family of graphs that can be obtained from a path $v_{0} v_{1} v_{2} \ldots v_{d}$ of length d by replacing each vertex $v_{i}, 0 \leq i \leq d$, with a clique A_{i}, where $\left|A_{i}\right|=1$ if $i \not \equiv 1(\bmod 3)$ and $\left|A_{i}\right|=\delta$ if $i \equiv 1(\bmod 3)$, and adding all edges between A_{i} and A_{i+1}. In particular, we note that $A_{i}=\left\{v_{i}\right\}$ for $i \not \equiv 1(\bmod 3)$. (A graph in the family \mathcal{F}_{11} with $\delta=3$, for example, is illustrated in Fig. 1.)

Let $F \in \mathcal{F}_{d}$ have order n and let S be a LTD-set in F. Let $Q: v_{0}=u_{0}, u_{1}, u_{2}, \ldots, u_{d}=v_{d}$ be a $v_{0}-v_{d}$ path in F. Necessarily, $u_{i} \in A_{i}$ for $i=0,1, \ldots, d$. By Observation 7(a), $\left|S \cap A_{i}\right| \geq\left|A_{i}\right|-1$ for every i with $\left|A_{i}\right|=\delta$. Renaming vertices if necessary, we may assume that $A_{i} \backslash\left\{u_{i}\right\} \subseteq S \cap A_{i}$ for every i with $\left|A_{i}\right|=\delta$. Hence the only possible vertices of F not in the LTD-set S are the $3 k$ vertices on the path Q. For $i=0,1, \ldots, k-1$, let $X_{i}=\left\{u_{3 i}, u_{3 i+1}, u_{3 i+2}\right\}$. Thus, $\left(X_{0}, X_{1}, \ldots, X_{k-1}\right)$ is a partition of $V(Q)$. In order for u_{0} and u_{1} (respectively, $u_{3 k-2}$ and $u_{3 k-1}$) to be totally dominated by distinct subsets of S we must have $\left|S \cap X_{0}\right| \geq 1$ and $\left|S \cap X_{k-1}\right| \geq 1$. Let $i \in\{1,2, \ldots, k-2\}$. If $S \cap X_{i}=\emptyset$, then in order for $u_{3 i}$ and $u_{3 i+1}$ to be totally dominated by distinct subsets of S we must have $u_{3 i-1} \in S$ and in order for $u_{3 i+1}$ and $u_{3 i+2}$ to be totally dominated by distinct subsets of S we must have $u_{3 i+3} \in S$. Hence, if $\left|S \cap X_{i}\right|=0$, then $\left\{u_{3 i-1}, u_{3 i+3}\right\} \subset S$. Let $R \subset V(Q)$ consist of four consecutive vertices on the path Q. Suppose that $R \cap S=\emptyset$. If $X_{i} \subset R$ for some $i, 0 \leq i \leq k-1$, we get a contradiction. Hence, $R=\left\{v_{3 i+1}, v_{3 i+2}, v_{3 i+3}, v_{3 i+4}\right\}$ for some $i, 0 \leq i \leq k-2$. In order for $u_{3 i+1}$ and $u_{3 i+2}$ (respectively, $u_{3 i+3}$ and $u_{3 i+4}$) to be totally dominated by distinct subsets of S we must have $u_{3 i} \in S$ (respectively, $u_{3 i+5} \in S$). Hence at most four consecutive vertices on the path Q are not in S. Further, $\left|S \cap X_{0}\right| \geq 1$ and $\left|S \cap X_{k-1}\right| \geq 1$. Therefore, $|S \cap V(Q)| \geq d / 5$, implying that $|S|=|V(F)|-|V(Q) \backslash S| \geq|V(F)|-4 d / 5=n-4 d / 5$. This is true for every LTD-set S in F, implying that $\gamma_{t}^{L}(F) \geq n-4 d / 5$.

2.3. Cubic graphs

We show next that the locating-total domination number and the total domination number of a connected cubic graph can differ significantly. The complete graph on four vertices minus one edge is called a diamond, sometimes written as $K_{4}-e$.

Lemma 15. For every integer $k \geq 1$, there exists a connected cubic graph G satisfying $\gamma_{t}^{L}(G)-\gamma_{t}(G) \geq 2 k$.
Proof. Let $k \geq 1$ be a given fixed integer. Let G_{k} be the connected cubic graph constructed as follows. Take $4 k$ disjoint copies $F_{1}, F_{2}, \ldots, F_{4 k}$ of a diamond, where $V\left(F_{i}\right)=\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}$ and where $a_{i} b_{i}$ is the missing edge in F_{i}. Let G_{k} be obtained from the disjoint union of these $4 k$ diamonds by adding the edges $\left\{a_{i} b_{i+1} \mid i=1,2, \ldots, 4 k-1\right\}$ and adding the edge $a_{4 k} b_{1}$. The graph G_{1}, for example, is illustrated in Fig. 2.

Fig. 2. The graph G_{1}.
For $i=0,1, \ldots, k-1$, let $Y_{i}=V\left(F_{4 i+1}\right) \cup V\left(F_{4 i+2}\right) \cup V\left(F_{4 i+3}\right) \cup V\left(F_{4 i+4}\right)$ and let $X_{i}=\left\{a_{4 i+1}, a_{4 i+2}, b_{4 i+3}, b_{4 i+4}, c_{4 i+1}, c_{4 i+4}\right\}$. Then, $\left(Y_{0}, Y_{1}, \ldots, Y_{k-1}\right)$ is a partition of $V\left(G_{k}\right)$. Since X_{i} totally dominates the set Y_{i} for each $i, 0 \leq i \leq k-1$, we have that $X=\cup_{i=0}^{k-1} X_{i}$ is a TD-set in G_{k}, implying that $\gamma_{t}\left(G_{k}\right) \leq|X|=6 k$.

Let S be a LTD-set in G_{k}. For each $j, 1 \leq j \leq 4 k$, we note that in the graph G_{k} we have $N\left[c_{j}\right]=N\left[d_{j}\right]$. Hence by Observation 7(a), we have that $\left|S \cap\left\{c_{j}, d_{j}\right\}\right| \geq 1$ for all $j=1,2, \ldots, 4 k$. Renaming vertices if necessary, we may assume that $C \subseteq S$, where $C=\cup_{j=1}^{4 k}\left\{c_{j}\right\}$. For each vertex $c_{j}, 1 \leq j \leq 4 k$, let c_{j}^{\prime} be a vertex in S that totally dominates c_{j}, and so $c_{j} c_{j}^{\prime}$ is an edge in G_{k}. Since the vertices in the set C are pairwise at distance at least 3 apart in G_{k}, we note that $c_{i}^{\prime} \neq c_{j}^{\prime}$ for $1 \leq i<j \leq 4 k$. Hence, $|S| \geq 2|C|=8 k$. This is true for every LTD-set S in G_{k}, implying that $\gamma_{t}^{L}\left(G_{k}\right) \geq 8 k$. Hence, $\gamma_{t}^{L}\left(G_{k}\right)-\gamma_{t}\left(G_{k}\right) \geq 8 k-6 k=2 k$.

Let g_{n} denote the family of all connected cubic graphs of order n. We define

$$
\xi(n)=\max \left\{\frac{\gamma_{t}^{L}(G)}{\gamma_{t}(G)}\right\}
$$

where the maximum is taken over all graphs $G \in \mathcal{g}_{n}$. If $G \in \mathcal{g}_{4}$, then $G=K_{4}$ and $\gamma_{t}^{L}(G)=3$ and $\gamma_{t}(G)=2$, and so $\xi(4)=3 / 2$. If $G \in g_{6}$, then either $G=K_{3,3}$, in which case $\gamma_{t}^{L}(G)=4$ and $\gamma_{t}(G)=2$, or G is the prism $C_{3} \square K_{2}$, in which case $\gamma_{t}^{L}(G)=3$ and $\gamma_{t}(G)=2$. Thus, $\xi(6)=2$. For $n \geq 16$, the family G_{k} of connected cubic graphs constructed in the proof of Lemma 15 yields the following result.

Lemma 16. For $n \equiv 0(\bmod 16)$, we have $\xi(n) \geq \frac{4}{3}$.
We pose the following two open questions that we have yet to settle.
Question 1. Is it true that for n sufficiently large, we have $\xi(n) \leq \frac{4}{3}$?
Question 2. Is it true that if G is a connected cubic graph of order $n \geq 8$, then $\gamma_{t}^{L}(G) \leq n / 2$?

2.4. Grid graphs

In this section we investigate the locating-total domination number in a grid graph $P_{m} \square P_{n}$ for small m.

Theorem 17. If $n \equiv r(\bmod 5)$, where $0 \leq r<5$, then

$$
\gamma_{t}^{L}\left(P_{2} \square P_{n}\right)= \begin{cases}4\left\lfloor\frac{n}{5}\right\rfloor+r & \text { if } r \neq 1 \\ 4\left\lfloor\frac{n}{5}\right\rfloor+2 & \text { if } r=1\end{cases}
$$

Proof. We proceed by induction on $n \geq 1$. It is a routine exercise to verify that $\gamma_{t}^{L}\left(P_{2} \square P_{1}\right)=\gamma_{t}^{L}\left(P_{2} \square P_{2}\right)=2$, $\gamma_{t}^{L}\left(P_{2} \square P_{3}\right)=3$, and $\gamma_{t}^{L}\left(P_{2} \square P_{4}\right)=\gamma_{t}^{L}\left(P_{2} \square P_{5}\right)=4$. This establishes the base cases. Suppose then that $n \geq 6$ and that the result holds for all grids $P_{2} \square P_{n^{\prime}}$, where $1 \leq n^{\prime}<n$. Let $G=P_{2} \square P_{n}$ and let $V(G)=\cup_{i=1}^{n}\left\{a_{i}, b_{i}\right\}$, where $a_{1} a_{2} \ldots a_{n}$ and $b_{1} b_{2} \ldots b_{n}$ are paths P_{n} and $a_{i} b_{i}$ is an edge for $i=1,2, \ldots, n$. For $i=1,2, \ldots, n$, let $X_{i}=\left\{a_{i}, b_{i}\right\}$. Further let $X_{\geq i}=\cup_{j=i}^{n} X_{j}$ and let $X_{\leq i}=\cup_{j=1}^{i} X_{j}$. Let $F=G\left[X_{\geq 6}\right]$, and so $F=P_{2} \square P_{n-5}$.

Among all $\gamma_{t}^{L}(G)$-set, let S be chosen so that
(1) $\left|S \cap X_{\leq 5}\right|$ is a minimum.
(2) Subject to (1), $\left|S \cap X_{1}\right|$ is a minimum.
(3) Subject to (2), $\left|S \cap X_{2}\right|$ is a minimum.
(4) Subject to (3), $\left|S \cap X_{3}\right|$ is a minimum.
(5) Subject to (4), $\left|S \cap X_{4}\right|$ is a minimum.

Fig. 3. A LTD-set for the grid $P_{3} \square P_{22}$.
Suppose $X_{1} \subset S$. If $X_{2} \subset S$, then $\left(S \backslash X_{1}\right) \cup X_{3}$ is a LTD-set of G, contradicting our choice of the set S. Hence, $\left|X_{2} \cap S\right| \leq 1$. Suppose that $\left|X_{2} \cap S\right|=1$. By symmetry, we may assume that $a_{2} \in S$, and so $b_{2} \notin S$. But then $\left(S \backslash\left\{b_{1}\right\}\right) \cup\left\{b_{3}\right\}$ is a LTD-set of G, contradicting our choice of the set S. Hence, $X_{2} \cap S=\emptyset$. But then $\left(S \backslash X_{1}\right) \cup X_{2}$ is a LTD-set of G, contradicting our choice of the set S. Therefore, $\left|X_{1} \cap S\right| \leq 1$.

Suppose $\left|X_{1} \cap S\right|=1$. By symmetry, we may assume that $a_{1} \in S$, and so $b_{1} \notin S$. Therefore, $a_{2} \in S$ in order to totally dominate a_{1}. If $b_{2} \in S$, then $\left(S \backslash\left\{a_{1}\right\}\right) \cup\left\{a_{3}\right\}$ is a LTD-set of G, contradicting our choice of the set S. Hence, $b_{2} \notin S$. By our choice of the set S, the set $S^{\prime}=\left(S \backslash\left\{a_{1}\right\}\right) \cup\left\{b_{2}\right\}$ is not a LTD-set of G. This implies that $a_{3} \notin S$ and that a_{1} and a_{3} are not totally dominated by distinct subsets of S^{\prime}, and so $N\left(a_{1}\right) \cap S^{\prime}=N\left(a_{3}\right) \cap S^{\prime}=\left\{a_{2}\right\}$. Thus, $b_{3} \notin S^{\prime}$ and $a_{4} \notin S^{\prime}$. Therefore, $\left\{b_{2}, b_{3}, a_{3}, a_{4}\right\} \cap S=\emptyset$. But then $N\left(b_{2}\right) \cap S=N\left(a_{3}\right) \cap S=\left\{a_{2}\right\}$, contradicting the fact that b_{2} and a_{3} are totally dominated by distinct subsets of S. Hence, $X_{1} \cap S=\emptyset$. In order to totally dominate X_{1}, we have that $X_{2} \subset S$.

If $X_{3} \subset S$, then $\left(S \backslash X_{3}\right) \cup X_{4}$ is a LTD-set of G, contradicting the minimality of S. Hence, $\left|X_{3} \cap S\right| \leq 1$. Suppose that $\left|X_{3} \cap S\right|=1$. By symmetry, we may assume that $a_{3} \in S$, and so $b_{3} \notin S$. If $b_{4} \in S$, then $\left(S \backslash\left\{a_{3}\right\}\right) \cup\left\{a_{4}\right\}$ is a LTD-set of G, contradicting our choice of the set S. Hence, $b_{4} \notin S$. By our choice of the set S, the set $D=\left(S \backslash\left\{a_{3}\right\}\right) \cup\left\{b_{4}\right\}$ is not a LTD-set of G. This implies that a_{1} and a_{3} are not totally dominated by distinct subsets of D, and so $N\left(a_{1}\right) \cap D=N\left(a_{3}\right) \cap D=\left\{a_{2}\right\}$. Thus, $b_{3} \notin D$ and $a_{4} \notin D$, implying that $\left\{b_{3}, b_{4}, a_{4}\right\} \cap S=\emptyset$. Therefore, $b_{5} \in S$ in order to totally dominate b_{4}. Suppose that $a_{5} \notin S$. Then, $b_{6} \in S$ in order to totally dominate b_{5}. Further, $a_{6} \in S$ in order for b_{4} and a_{5} to be totally dominated by distinct subsets of S. But then $\left(S \backslash\left\{a_{3}, b_{5}\right\}\right) \cup X_{4}$ is a LTD-set of G, contradicting our choice of the set S. Hence, $a_{5} \in S$. If $X_{6} \cap S \neq \emptyset$, then removing the vertices in $X_{5} \cup\left(X_{6} \cap S\right) \cup\left\{a_{3}\right\}$ from the set S, and replacing them with the four vertices in the set $X_{4} \cup X_{6}$, produces a new LTD-set of G that contradicts our choice of the set S. Hence, $X_{6} \cap S=\emptyset$. Thus, $b_{7} \in S$ in order for b_{4} and b_{6} to be totally dominated by distinct subsets of S. If $a_{7} \in S$, then $\left(S \backslash\left\{a_{3}, a_{5}, b_{5}\right\}\right) \cup\left(X_{4} \cup\left\{a_{6}\right\}\right)$ is a LTD-set of G, contradicting our choice of the set S. Hence, $a_{7} \notin S$, and so $b_{8} \in S$ in order to totally dominate the vertex b_{7}. But then $\left(S \backslash\left\{a_{3}, a_{5}, b_{5}\right\}\right) \cup\left(X_{4} \cup\left\{a_{7}\right\}\right)$ is a LTD-set of G, contradicting our choice of the set S. Hence, $X_{3} \cap S=\emptyset$.

In order for a_{1} and a_{3} to be totally dominated by distinct subsets of S, we have that $a_{4} \in S$. Analogously, $b_{4} \in S$ in order for b_{1} and b_{3} to be totally dominated by distinct subsets of S. Therefore, $X_{4} \subset S$. If $X_{5} \subset S$, then $\left(S \backslash X_{5}\right) \cup X_{6}$ is a LTD-set of G, contradicting the minimality of S. Hence, $\left|X_{5} \cap S\right| \leq 1$. Suppose that $\left|X_{5} \cap S\right|=1$. By symmetry, we may assume that $a_{5} \in S$, and so $b_{5} \notin S$. But then the set $\left(S \backslash\left\{a_{5}\right\}\right) \cup\left\{b_{6}\right\}$ is a LTD-set of G, contradicting our choice of the set S. Hence, $X_{5} \cap S=\emptyset$.

Since $S \cap X_{\leq 5}=X_{2} \cup X_{4}$, the restriction of the set S to F is a LTD-set of F, implying that $\gamma_{t}^{L}(F) \leq|S \cap V(F)|=|S|-4$, or, equivalently, $\gamma_{t}^{L}(G)=|S| \geq \gamma_{t}^{L}(F)+4$. Conversely every $\gamma_{t}^{L}(F)$-set can be extended to a LTD-set of G by adding to it the set $X_{2} \cup X_{4}$, implying that $\gamma_{t}^{L}(G) \leq \gamma_{t}^{L}(F)+4$. Consequently, $\gamma_{t}^{L}(G)=\gamma_{t}^{L}(F)+4$. The desired result now follows by applying the inductive hypothesis to the grid $F=P_{2} \square P_{n-5}$.

For $m \geq 3$, we have yet to determine the locating-total domination number in the grid graph $P_{m} \square P_{n}$. We consider here the special case when $m=3$. For $k \geq 1$, let $G_{k}=P_{3} \square P_{n}$, where $n=11 k$, and let $V\left(G_{k}\right)=\cup_{i=1}^{n}\left\{a_{i}, b_{i}, c_{i}\right\}$, where $a_{1} a_{2} \ldots a_{n}$, $b_{1} b_{2} \ldots b_{n}$ and $c_{1} c_{2} \ldots c_{n}$ are paths P_{n} and where $a_{i} b_{i} c_{i}$ is a path P_{3} for $i=1,2, \ldots, n$. Let

$$
A_{k}=\bigcup_{i=0}^{k-1}\left\{a_{11 i+2}, a_{11 i+6}, a_{11 i+8}\right\} \quad \text { and } \quad C_{k}=\bigcup_{i=0}^{k-1}\left\{c_{11 i+4}, c_{11 i+6}, c_{11 i+10}\right\}
$$

and let

$$
B_{k}=\bigcup_{i=0}^{k-1}\left\{b_{11 i+1}, b_{11 i+2}, b_{11 i+4}, b_{11 i+6}, b_{11 i+8}, b_{11 i+10}, b_{11 i+11}\right\}
$$

Then, $S_{k}=A_{k} \cup B_{k} \cup C_{k}$ is a LTD-set in G_{k}, and so $\gamma_{t}^{L}\left(G_{k}\right) \leq 13 k=13 n / 11$. In the special case when $k=2$, the LTD-set is indicated in Fig. 3, albeit without the vertex labels. Hence we have the following observation.

Observation 18. For $n \equiv 0(\bmod 11)$, we have $\gamma_{t}^{L}\left(P_{3} \square P_{n}\right) \leq \frac{13}{11} n$.
For small values of n, namely $1 \leq n \leq 12$, we can show that $\gamma_{t}^{L}\left(P_{3} \square P_{n}\right)=\left\lceil\frac{13}{11} n\right\rceil$. However we have yet to determine ${ }^{1}$ the locating-total domination number of $P_{3} \square P_{n}$ for $n \geq 13$.

[^1]
Acknowledgments

The first author's research was supported in part by the South African National Research Foundation and the University of Johannesburg. The second author's research was supported in part by a grant from IPM (No. 89050040).

References

[1] M. Blidia, M. Chellali, F. Maffray, J. Moncel, A. Semri, Locating-domination and identifying codes in trees, Australas. J. Combin. 39 (2007) $219-232$.
[2] M. Blidia, W. Dali, A characterization of locating-total domination edge critical graphs, Discuss. Math. Graph Theory 31 (1) (2011) 197-202.
[3] M. Blidia, O. Favaron, R. Lounes, Locating-domination, 2-domination and independence in trees, Australas. J. Combin. 42 (2008) 309-319.
[4] M. Chellali, On locating and differentiating-total domination in trees, Discuss. Math. Graph Theory 28 (3) (2008) 383-392.
[5] M. Chellali, N. Jafari Rad, Locating-total domination critical graphs, Australas. J. Combin. 45 (2009) 227-234.
[6] X.G. Chen, M.Y. Sohn, Bounds on the locating-total domination number of a tree, Discrete Appl. Math. 159 (2011) 769-773.
[7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc, New York, 1998.
[8] T.W. Haynes, M.A. Henning, J. Howard, Locating and total dominating sets in trees, Discrete Appl. Math. 154 (2006) 1293-1300.
[9] M.A. Henning, A survey of selected recent results on total domination in graphs, Discrete Math. 309 (2009) 32-63.
[10] V. Junnila, personal communication.
[11] J. McCoy, M.A. Henning, Locating and paired-dominating sets in graphs, Discrete Appl. Math. 157 (2009) 3268-3280,
[12] P.J. Slater, Dominating and location in acyclic graphs, Networks 17 (1987) 55-64.
[13] P.J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci. 22 (1988) 445-455.

[^0]: * Corresponding author. Tel.: +27 33 2605648; fax: +27 115594670.

 E-mail addresses: mahenning@uj.ac.za (M.A. Henning), n.jafarirad@shahroodut.ac.ir (N. Jafari Rad).

[^1]: ${ }^{1}$ We remark that subsequent to our paper being accepted Ville Junnila [10] informed us that they have determined the optimal density of the infinite grid of height 3 to be 7/18.

