Contents lists available at SciVerse ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Locating-total domination in graphs

Michael A. Henning^{a,*}, Nader Jafari Rad^{b,c}

^a Department of Mathematics, University of Johannesburg, Auckland Park, 2006, South Africa

^b Department of Mathematics, Shahrood University of Technology, Shahrood, Iran

^c Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

ARTICLE INFO

Article history: Received 24 August 2011 Received in revised form 4 April 2012 Accepted 9 April 2012 Available online 9 May 2012

Keywords: Total domination Locating-total domination

ABSTRACT

In this paper, we continue the study of locating-total domination in graphs. A set *S* of vertices in a graph *G* is a total dominating set in *G* if every vertex of *G* is adjacent to a vertex in *S*. We consider total dominating sets *S* which have the additional property that distinct vertices in $V(G) \setminus S$ are totally dominated by distinct subsets of the total dominating set. Such a set *S* is called a locating-total dominating set in *G*, and the locating-total domination number of *G* is the minimum cardinality of a locating-total domination set in *G*. We obtain new lower and upper bounds on the locating-total domination number of a graph. Interpolation results are established, and the locating-total domination number in special families of graphs, including cubic graphs and grid graphs, is investigated.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The problem of placing monitoring devices, such as surveillance cameras or fire alarms, in a system such that every site in the system (including the monitoring devices themselves) is adjacent to a monitor can be modeled by total domination in graphs. Applications where it is also important that if there is a problem in the system its location can be uniquely identified by the set of monitors, can be modeled by a combination of total domination and locating sets.

Let G = (V, E) be a graph with vertex set V, edge set E and no isolated vertex. A *total dominating set*, abbreviated TD-set, of G is a set S of vertices of G such that every vertex is adjacent to a vertex in S. The *total domination number* of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a TD-set. The literature on this subject has been surveyed and detailed in the domination book by Haynes et al. [7]. A recent survey of total domination in graphs can be found in [9].

The study of locating-dominating sets in graphs was pioneered by Slater [12,13] and this concept was later extended to total domination in graphs. A *locating-total dominating set*, abbreviated LTD-set, in *G* is a TD-set *S* with the property that distinct vertices in $V \setminus S$ are totally dominated by distinct subsets of *S*. Every graph *G* with no isolated vertex has a LTD-set, since *V* is such a set. The *locating-total domination number*, denoted $\gamma_t^L(G)$, of *G* is the minimum cardinality of a LTD-set of *G*. A LTD-set of cardinality $\gamma_t^L(G)$ is called a $\gamma_t^L(G)$ -set. This concept of locating-total domination in graphs was first studied by Haynes et al. [8] and has been studied, for example, in [1–5] and elsewhere.

1.1. Notation

For notation and graph theory terminology, we in general follow [7]. Specifically, let *G* be a graph with vertex set V(G) = Vof order |V| = n and size |E(G)| = m, and let *v* be a vertex in *V*. The open neighborhood of *v* is $N_G(v) = \{u \in V \mid uv \in E(G)\}$ and the closed neighborhood of *v* is $N_G[v] = \{v\} \cup N(v)$. The degree of *v* is $d_G(v) = |N_G(v)|$. If the graph *G* is clear from the

* Corresponding author. Tel.: +27 33 2605648; fax: +27 11 5594670.

E-mail addresses: mahenning@uj.ac.za (M.A. Henning), n.jafarirad@shahroodut.ac.ir (N. Jafari Rad).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter 0 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.dam.2012.04.004

context, we simply write N(v) and d(v) rather than $N_G(v)$ and $d_G(v)$, respectively. For a set $S \subseteq V$, its open neighborhood is the set $N(S) = \bigcup_{v \in S} N(v)$, and its closed neighborhood is the set $N[S] = N(S) \cup S$. Thus a set $S \subseteq V$ is a TD-set in G if N(S) = V, while *S* is a LTD-set if it is a TD-set and for every pair of distinct vertices *u* and *v* in $V \setminus S$, we have $N(u) \cap S \neq N(v) \cap S$. For sets A, $B \subseteq V$, we say that A dominates B if $B \subseteq N[A]$, while A totally dominates B if $B \subseteq N(A)$. The maximum distance among all pairs of vertices of *G* is the *diameter* of *G*, which is denoted by diam(*G*).

A cycle on n vertices is denoted by C_n , while a path on n vertices is denoted by P_n . We denote by K_n the complete graph on *n* vertices and by $K_{m,n}$ the complete bipartite graph with one partite set of cardinality *m* and the other of cardinality *n*. A star is a complete bipartite graph of the form $K_{1,n}$. A vertex of degree one is called a *leaf*, and its neighbor is called a *support vertex.* We denote the set of leaves of G by L(G). An edge incident with a leaf is called a *pendant edge*. The corona, cor(G), of a graph G is that graph obtained from G by adding a pendant edge to each vertex of G. For a subset $S \subset V$, the subgraph induced by S is denoted by G[S]. The girth of G is the length of a shortest cycle in G, which we denote by g(G).

If X and Y are two vertex disjoint subsets of V, then we denote the set of all edges of G that join a vertex of X and a vertex of Y by [X, Y]. Further, if all edges are present between the vertices in X and the vertices in Y, we say that [X, Y] is *full*, while if there are no edges between the vertices in X and the vertices in Y, we say that [X, Y] is *empty*.

For graphs G and H, the Cartesian product $G \Box H$ is the graph with vertex set $V(G) \times V(H)$ where two vertices (u_1, v_1) and (u_2, v_2) are adjacent if and only if either $u_1 = u_2$ and $v_1v_2 \in E(H)$ or $v_1 = v_2$ and $u_1u_2 \in E(G)$.

1.2. Known results and observations

Every LTD-set of a graph is also a TD-set of the graph, implying the following observation.

Observation 1 ([8]). $\gamma_t^L(G) \ge \gamma_t(G)$ for every graph G.

In the special case when G is a path, every TD-set of G is also a LTD-set of G. Thus the locating-total domination number of a path is precisely its total domination number.

Observation 2 ([8]). For $n \ge 2$, $\gamma_t^L(P_n) = \gamma_t(P_n) = \lfloor n/2 \rfloor + \lceil n/4 \rceil - \lfloor n/4 \rfloor$.

It is also a simple exercise to determine the locating-total domination number of certain well-studied families of graphs.

Observation 3. The following hold.

- (a) For $n \ge 3$, $\gamma_t^L(C_n) = \gamma_t(C_n) = \lfloor n/2 \rfloor + \lceil n/4 \rceil \lfloor n/4 \rfloor$. (b) For $n \ge 2$, $\gamma_t^L(K_{1,n}) = n$.
- (c) For $m \ge n \ge 2$, $\gamma_t^L(K_{m,n}) = m + n 2$.
- (d) For $n \ge 3$, $\gamma_t^L(K_n) = n 1$.

A lower bound on the locating-total domination number of a tree in terms of its order is given in [8] and the extremal trees achieving equality in the bound are also characterized.

Theorem 4 ([8]). If T is a tree of order $n \ge 2$, then $\gamma_t^L(T) \ge 2(n+1)/5$.

Chen and Sohn [6] established the following lower and upper bounds on the locating-total domination number of a tree in terms of its order and number of leaves and support vertices. Furthermore they constructively characterize the extremal trees achieving the bounds.

Theorem 5 ([6]). If T is a tree of order $n \ge 3$ with ℓ leaves and s support vertices, then $(n + \ell + 1)/2 - s \le \gamma_r^L(T) \le (n + \ell)/2$.

We remark that the concept of a locating-paired dominating set, where we require that the paired-dominating set (a dominating set that contains a perfect matching) is also a locating set, has been studied in [11]. Although every graph with no isolated vertex has a LTD-set, not every graph with no isolated vertex has a locating-paired dominating set. However using an identical proof as in Proposition 6 in [11], we have the following result.

Theorem 6 ([11]). If G is a graph of order $n \ge 3$ and maximum degree $\Delta \ge 2$ with no isolated vertex, then $\gamma_t^L(G) \ge 2n/(\Delta+2)$, and this bound is sharp.

The following observation follows readily from the definition of a LTD-set in a graph.

Observation 7. Let S be a LTD-set in a graph G and let X be a subset of vertices of G.

- (a) If N[u] = N[v] for every pair $u, v \in X$, then $|S \cap X| > |X| 1$.
- (b) If N(u) = N(v) for every pair $u, v \in X$, then $|S \cap X| > |X| 1$.

2. Results

2.1. Lower bounds and interpolation results

We first establish a lower bound on the locating-total domination number of a graph in terms of its order.

Lemma 8. If G is a connected graph of order $n \ge 2$ with $\gamma_t^L(G) = a$, then $n \le 2^a + a - 1$.

Proof. Let *S* be a $\gamma_t^L(G)$ -set. Then, $|S| = a \ge 2$. For each $v \in V \setminus S$, let $N_v = N(v) \cap S$. Then, N_v is a non-empty subset of the set *S*. Since there are $2^a - 1$ distinct non-empty subsets of an *a*-element set, and since $N_u \neq N_v$ for every pair of distinct vertices *u* and *v* in $V \setminus S$, we have that $n - a = |V \setminus S| \le 2^a - 1$, or, equivalently, $n \le 2^a + a - 1$. \Box

Corollary 9. If G is a connected graph of order $n \ge 2$, then $\gamma_t^L(G) \ge \lfloor \log_2 n \rfloor$.

Proof. Let $\gamma_t^L(G) = a$, where $a \ge 2$. By Lemma 8, $n \le 2^a + a - 1$. For $a \ge 2$, we have that $a - 1 < 2^a$, and so $n < 2 \cdot 2^a = 2^{a+1}$. Thus, $a > (\log_2 n) - 1$, implying that $\gamma_t^L(G) = a \ge |\log_2 n|$. \Box

By Lemma 8, if *G* is a graph with $\gamma_t^L(G) = a$ for some integer $a \ge 1$, then the order of *G* is at most $2^a + a - 1$. We prove next the following interpolation result for the locating-total domination number of a graph.

Theorem 10. For every two integers a, b with $2 < a + 1 \le b \le 2^a + a - 1$, there exists a connected graph G of order b with $\gamma_t^L(G) = a$.

Proof. Let *a* and *b* be integers with $a \ge 2$ and $a + 1 \le b \le 2^a + a - 1$. If b = a + 1, then we simply take $G = K_{1,a}$. In this case, *G* has order *b* and, by Observation 3, $\gamma_t^L(G) = a$. Suppose that $a + 2 \le b \le 2a - 1$. Then, $1 \le b - (a + 1) \le a - 2$ and we let *G* be the graph obtained from a star $K_{1,a}$ by subdividing b - (a + 1) edges exactly once. Note that *G* has 2a - b + 1 leaves that have a common neighbor. Every $\gamma_t^L(G)$ -set contains the b - a support vertices of *G* as well as 2a - b leaves that have a common neighbor. Thus, *G* has order *b* and $\gamma_t^L(G) = (b - a) + (2a - b) = a$.

Finally suppose that $2a \le b \le 2^a + a - 1$. Let G_a be the corona $\operatorname{cor}(K_a)$ of a complete graph K_a and let S be the set of a vertices of the complete graph. We note that the set S has $2^a - a - 1$ distinct subsets of cardinality 2 or more. Select b - 2a such distinct non-empty subsets of S, and let G be the graph obtained from G_a by adding b - 2a new vertices corresponding to these b - 2a distinct subsets of S and joining each element of S to those new vertices corresponding to subsets it is a member of. Then, G has order b. By construction, distinct vertices not in the set S have distinct intersections with the set S, implying that the set S is a LDT-set of G, and so $\gamma_t^L(G) \le |S|$. However, every LTD-set in G contains the set S, and so $\gamma_t^L(G) \ge |S|$. Consequently, $\gamma_t^L(G) = |S| = a$. \Box

As a special case of Theorem 10, we note that, for every integer $a \ge 2$, there exists a connected graph *G* of order $n = 2^a + a - 1$ with $\gamma_t^L(G) = a = \lfloor \log_2 n \rfloor$. Hence the lower bound in Corollary 9 is sharp. Next, we obtain lower bound for the locating-total domination number in terms of the diameter diam(*G*) of a graph *G*.

Theorem 11. If G is a connected graph of order at least 2, then $\gamma_t^L(G) \ge (\operatorname{diam}(G) + 1)/2$.

Proof. Let d = diam(G), and let x and y be two vertices of G with d(x, y) = d. For i = 0, 1, 2, ..., d, let V_i be the set of all vertices of G at distance i from x. Let S be an LTD-set. Let $X_0 = V_0 \cup V_1 \cup V_2$, and for $i = 1, ..., \lfloor (d-2)/4 \rfloor$, let $X_i = V_{4i-1} \cup V_{4i} \cup V_{4i+1} \cup V_{4i+2}$. If $d \neq 2 \pmod{4}$, let

$$X_{\left\lceil \frac{d-2}{4}\right\rceil} = \bigcup_{i=4}^{d} \bigcup_{j=3}^{d} V_{i}.$$

In order to totally dominate the vertices in $V_0 \cup V_1$ we have that $|S \cap X_0| \ge 2$. For $i = 1, ..., \lfloor (d-2)/4 \rfloor$, in order to totally dominate the vertices in $V_{4i} \cup V_{4i+1}$ we have that $|S \cap X_i| \ge 2$. If $d \equiv 0 \pmod{4}$, then in order to totally dominate the vertices in V_d we have that $|S \cap X_{\lceil (d-2)/4 \rceil}| \ge 1$. If $d \equiv 1 \pmod{4}$, then in order to totally dominate the vertices in $V_{d-1} \cup V_d$ we have that $|S \cap X_{\lceil (d-2)/4 \rceil}| \ge 2$. Therefore the following holds. If $d \equiv 0 \pmod{4}$, then $|S| \ge 2 + 2\lfloor (d-2)/4 \rfloor + 1 = (d+2)/2$. If $d \equiv 1 \pmod{4}$, then $|S| \ge 2 + 2\lfloor (d-2)/4 \rfloor + 1 = (d+2)/2$. If $d \equiv 1 \pmod{4}$, then $|S| \ge 2 + 2\lfloor (d-2)/4 \rfloor = (d+2)/2$. If $d \equiv 3 \pmod{4}$, then $|S| \ge 2 + 2\lfloor (d-2)/4 \rfloor = (d+2)/2$. If $d \equiv 3 \pmod{4}$, then $|S| \ge 2 + 2\lfloor (d-2)/4 \rfloor = (d+2)/2$. If $d \equiv 3 \pmod{4}$, then $|S| \ge 2 + 2\lfloor (d-2)/4 \rfloor = (d+1)/2$. In all four cases, we have that $|S| \ge (d+1)/2$. Since *S* is an arbitrary LTD-set in *G*, the desired lower bound follows. \Box

That the bound of Theorem 11 is sharp may be seen as follows. Let $G = P_n$, where $n \ge 4$ and $n \equiv 0 \pmod{4}$. Then, diam(G) = n - 1 and by Observation 2, $\gamma_t^L(G) = n/2$. Consequently, $\gamma_t^L(G) = (\text{diam}(G) + 1)/2$.

2.2. Upper bounds

In this section, we present upper bounds in the locating-total domination number of a graph. Our first result characterizes graphs with large locating-total domination numbers.

Theorem 12. Let G be a connected graph of order $n \ge 3$. Then, $\gamma_t^L(G) \le n - 1$, with equality if and only if G is a star or a complete graph.

Proof. Let G = (V, E) be a connected graph of order $n \ge 3$ and let v be a vertex of minimum degree in G. Then, $V \setminus \{v\}$ is a LTD-set in G, and so $\gamma_t^L(G) \le n - 1$. By Observation 3, if G is a star or a complete graph of order $n \ge 3$, then $\gamma_t^L(G) = n - 1$. This establishes the sufficiency.

To prove the necessity, let G = (V, E) be a connected graph of order $n \ge 3$ satisfying $\gamma_t^L(G) = n - 1$. For the sake of contradiction, assume that G is neither a star nor a complete graph. Let u and v be two vertices at maximum distance apart in G, and so $d(u, v) = \operatorname{diam}(G)$. Since G is not a complete graph, $\operatorname{diam}(G) \ge 2$. If $\operatorname{diam}(G) \ge 3$, then $V \setminus \{u, v\}$ is a LTD-set in G, and so $\gamma_t^L(G) \le n - 2$, a contradiction. Hence, $\operatorname{diam}(G) = 2$. Let w be a common neighbor of u and v. Suppose d(u) = 1. Then, w is adjacent to every vertex in G. Since G is not a star, there are two neighbors of w, say x and y, that are adjacent. But then $V \setminus \{u, x\}$ is a LTD-set in G, and so $\gamma_t^L(G) \le n - 2$, a contradiction. Hence, $\delta(G) \ge 2$. If there is a vertex $x \in V$ such that $N(x) = \{u, w\}$, then the set $S = V \setminus \{v, x\}$ is a TD-set in G. In this case, we note that $u \in N(x) \cap S$ but $u \notin N(v) \cap S$, and so $N(x) \cap S \ne N(v) \cap S \ne \emptyset$. Thus, S is a LTD-set in G, a contradiction. Hence there is no vertex $x \in V$ such that $N(x) = \{u, w\}$. Since $\delta(G) \ge 2$, the set $S = V \setminus \{u, w\}$ is therefore a TD-set in G. However, $v \in N(w) \cap S$ but $v \notin N(u) \cap S$, and so $N(u) \cap S \ne N(w) \cap S \ne \emptyset$. Thus, S is a LTD-set in G, once again a contradiction. Therefore, G is either a star or a complete graph.

We show next that even if we impose a minimum degree condition and structural requirements in the statement of Theorem 12, then the upper bound of Theorem 12 can only be improved slightly.

Theorem 13. Let G be a connected bipartite graph of order n with minimum degree $\delta(G) = \delta \ge 2$. Then, $\gamma_t^L(G) \le n - 2$, with equality if and only if $G = C_6$ or $G = K_{\delta,n-\delta}$.

Proof. Let *G* be a connected bipartite graph of order *n* with minimum degree $\delta(G) = \delta \ge 2$. By Theorem 12, $\gamma_t^L(G) \le n-2$. If $G = C_6$, then $\gamma_t^L(G) = 4 = |V(G)| - 2$, while if $G = K_{\delta,n-\delta}$, then by Observation 3(c), $\gamma_t^L(G) = (n-\delta) + \delta - 2 = |V(G)| - 2$. This establishes the sufficiency.

To prove the necessity, suppose that G = (V, E) is a connected bipartite graph of order n with minimum degree $\delta(G) = \delta \ge 2$ satisfying $\gamma_t^L(G) = n-2$. Let u and v be two vertices at maximum distance apart in G, and so d(u, v) = diam(G). Let $P: u = v_0, v_1, \ldots, v_k = v$ be a u-v path of length diam(G), and so k = diam(G). For $i = 0, 1, 2, \ldots, k$, let $V_i = \{x \mid d(u, x) = i\}$. Then, $V_0 = \{u\}$, $V_1 = N(u)$ and for $i = 2, \ldots, k$, we note that $v_i \in V_i$. Further for $0 \le i < j \le k$, if $j - i \ge 2$, then $[V_i, V_i]$ is empty. Since G is a bipartite graph, each set $V_i, 0 \le i \le k$, is an independent set in G.

If $k \ge 4$, then since each set V_i is an independent set in G and since $\delta \ge 2$, the set $S = V \setminus \{v_0, v_1, v_k\}$ is a LTD-set in G, and so $\gamma_t^L(G) \le |S| = n - 3$, a contradiction. Hence, $k \le 3$. Further since G is a bipartite graph and $\delta \ge 2$, the graph G is not a complete graph, and so $k \in \{2, 3\}$.

Suppose that k = 3. We consider the sets N(u) and N(v). As observed earlier, $N(u) = V_1$. Since V_1 is an independent set, we note that $N(x) \setminus \{u\} \subseteq V_2$ for each vertex $x \in V_1$ and since V_3 is an independent set, we note that $N(x) \subseteq V_2$ for each vertex $x \in V_3$. In particular, $N(v) \subseteq V_2$. Further since $\delta \ge 2$, each vertex in V_1 has at least one neighbor in V_2 , while each vertex in V_3 has at least two neighbors in V_2 .

Suppose that [N(u), N(v)] is full. Then the set $S = V \setminus \{u, v_1, v_2\}$ is a TD-set in *G*. Further, $N(u) \cap S = V_1 \setminus \{v_1\}$, $N(v_1) \cap S = V_2 \setminus \{v_2\}$, while $N(v_2) \cap S \subseteq (V_1 \setminus \{v_1\}) \cup \{v\}$. Thus, *S* is a LTD-set of *G*, and so $\gamma_t^L(G) \leq |S| = n - 3$, a contradiction. Hence, [N(u), N(v)] is not full. Let *x* and *y* be two nonadjacent vertices, where $x \in N(u)$ and $y \in N(v)$.

If $S_u = V \setminus \{u, x, y\}$ is a TD-set in *G*, then S_u is a LTD-set of *G*, and so $\gamma_t^L(G) \le |S| = n - 3$, a contradiction. Hence, S_u is not a TD-set in *G*, implying that there is a vertex $y' \in V_1$ of degree 2 such that $N(y') = \{u, y\}$ (and so the vertex y' is not totally dominated by S_u). Analogously, considering the set $S_v = V \setminus \{v, x, y\}$, there is a vertex $x' \in V_2$ of degree 2 such that $N(x') = \{v, x\}$. Hence, $F = G[\{u, v, x, x', y, y'\}]$ is an induced 6-cycle in *G*.

If $d(x) \ge 3$, then let $D = V \setminus \{u, x, x'\}$. If $d(y) \ge 3$, then let $D = V \setminus \{v, y, y'\}$. If $d(u) \ge 3$, then let $D = V \setminus \{u, x, y'\}$. If $d(v) \ge 3$, then let $D = V \setminus \{v, x', y\}$. In all four cases, the set D is a LTD-set of G, and so $\gamma_t^L(G) \le n-3$, a contradiction. Hence, d(u) = d(v) = d(x) = d(y) = 2. Thus every vertex of the induced 6-cycle F has degree 2 in G, implying by the connectivity of G that $G = F = C_6$.

Suppose that k = 2. Let x be an arbitrary vertex in V_1 and let y be an arbitrary vertex in V_2 . Since both V_1 and V_2 are independent sets, the vertices x and y have no common neighbor. However diam(G) = 2, implying that x and y are adjacent. Hence, $[V_1, V_2]$ is full. Therefore, G is a complete bipartite graph with partite sets $V_0 \cup V_2$ and V_1 . Thus, $G = K_{a,b}$ for some integers a, b, where $a \ge b \ge 2$. Equivalently since n = a + b and $\delta = b$, we have that $G = K_{\delta,n-\delta}$. \Box

Let *G* be a connected graph of large order $n \ge 3$. By Theorem 12, if diam(*G*) = 1, then $\gamma_t^L(G) = n - 1$. By Theorem 13, if diam(*G*) = 2, then it is possible that $\gamma_t^L(G) = n - 2$. For large minimum degree and large diameter, we have the following upper bound on the locating-total domination number.

Fig. 1. A graph in the family \mathcal{F}_{11} .

Theorem 14. Let *G* be a connected graph of order *n* with minimum degree at least 3 and diameter diam(*G*) = $d \ge 3$. Then, $\gamma_t^L(G) \le n - \lfloor d/2 \rfloor - 1$.

Proof. Let G = (V, E) and let u and v be two vertices at maximum distance apart in G, and so d(u, v) = diam(G). Let $P: u = v_0, v_1, \ldots, v_d = v$ be a u-v path of length diam(G), and so d = diam(G). We now consider the induced path $P = P_{d+1}$ on d + 1 vertices. Let

$$S = \bigcup_{i=0}^{\lfloor d/2 \rfloor} \{v_{2i}\}.$$

Then, $|S| = \lfloor d/2 \rfloor + 1$. We now consider the set $D = V \setminus S$. Let $X = V \setminus V(P)$. Then, $D = X \cup (V(P) \setminus S)$, and so $X \subset D$. Since $\delta(G) \geq 3$, every vertex on the path *P* has at least one neighbor in *X*, and so the set *D* dominates *V*. In particular every vertex of *D* on the path *P* has at least one neighbor in *X* and is therefore totally dominated by *D*. Every vertex in *X* that has a neighbor in *X* is totally dominated by *D*. Further, if *v* is an isolated vertex in *G*[*X*], then by our choice of the path *P* and the minimum degree requirement we must have that $d_G(v) = 3$ and that the three neighbors of *v* are consecutive vertices on *P*. However, since *D* contains one vertex from every two consecutive vertices on *P*, the vertex *v* is totally dominated by *D*. Therefore the set *D* is a TD-set in *G*. Let *x* and *y* be two arbitrary vertices in $V \setminus D$. If *x* and *y* are consecutive vertices on *P*, then either *x* or *y* belongs to the set *D*, a contradiction. Hence, renaming *x* and *y*, if necessary, we may assume that $x = v_i$ and $y = v_j$, where $0 \le i \le j - 2 \le d$. If i < j - 2, then either $i \ge 1$, in which case $v_{i-1} \in N(x) \cap D$ but $v_{i-1} \notin N(y) \cap D$, or i = 0, in which case $v_3 \in N(y) \cap D$ but $v_3 \notin N(x) \cap D$. Once again, *x* and *y* are totally dominated by distinct subsets of *D*. Hence, *D* is a LTD-set of *G*, implying that $\gamma_L^L(G) \le |D| = n - |S| = n - \lfloor d/2 \rfloor - 1$.

The bound in Theorem 14 is asymptotically best possible, as may be seen as follows. Let $k \ge 3$ and $\delta \ge 3$ be a fixed integers and let d = 3k - 1. Let \mathcal{F}_d denote the family of graphs that can be obtained from a path $v_0v_1v_2...v_d$ of length d by replacing each vertex v_i , $0 \le i \le d$, with a clique A_i , where $|A_i| = 1$ if $i \ne 1 \pmod{3}$ and $|A_i| = \delta$ if $i \equiv 1 \pmod{3}$, and adding all edges between A_i and A_{i+1} . In particular, we note that $A_i = \{v_i\}$ for $i \ne 1 \pmod{3}$. (A graph in the family \mathcal{F}_{11} with $\delta = 3$, for example, is illustrated in Fig. 1.)

Let $F \in \mathcal{F}_d$ have order n and let S be a LTD-set in F. Let $Q: v_0 = u_0, u_1, u_2, \ldots, u_d = v_d$ be a $v_0 \cdot v_d$ path in F. Necessarily, $u_i \in A_i$ for $i = 0, 1, \ldots, d$. By Observation 7(a), $|S \cap A_i| \ge |A_i| - 1$ for every i with $|A_i| = \delta$. Renaming vertices if necessary, we may assume that $A_i \setminus \{u_i\} \subseteq S \cap A_i$ for every i with $|A_i| = \delta$. Hence the only possible vertices of F not in the LTD-set S are the 3k vertices on the path Q. For $i = 0, 1, \ldots, k - 1$, let $X_i = \{u_{3i}, u_{3i+1}, u_{3i+2}\}$. Thus, $(X_0, X_1, \ldots, X_{k-1})$ is a partition of V(Q). In order for u_0 and u_1 (respectively, u_{3k-2} and u_{3k-1}) to be totally dominated by distinct subsets of S we must have $|S \cap X_0| \ge 1$ and $|S \cap X_{k-1}| \ge 1$. Let $i \in \{1, 2, \ldots, k-2\}$. If $S \cap X_i = \emptyset$, then in order for u_{3i} and u_{3i+1} to be totally dominated by distinct subsets of S we must have $u_{3i-1} \in S$ and in order for u_{3i+1} and u_{3i+2} to be totally dominated by distinct subsets of S we must have $u_{3i-1} \in S$ and in order for u_{3i+1} and u_{3i+2} to be totally dominated by distinct subsets of S we must have $u_{3i-1} \in S$ and in order for u_{3i+1} and u_{3i+2} to be totally dominated by distinct subsets of S we must have $u_{3i-3} \in S$. Hence, if $|S \cap X_i| = 0$, then $\{u_{3i-1}, u_{3i+3}\} \subset S$. Let $R \subset V(Q)$ consist of four consecutive vertices on the path Q. Suppose that $R \cap S = \emptyset$. If $X_i \subset R$ for some $i, 0 \le i \le k - 1$, we get a contradiction. Hence, $R = \{v_{3i+1}, v_{3i+2}, v_{3i+3}, v_{3i+4}\}$ for some $i, 0 \le i \le k - 2$. In order for u_{3i+1} and u_{3i+2} (respectively, u_{3i+3} and u_{3i+4}) to be totally dominated by distinct subsets of S we must have $u_{3i} \in S$ (respectively, $u_{3i+5} \in S$). Hence at most four consecutive vertices on the path Q are not in S. Further, $|S \cap X_0| \ge 1$ and $|S \cap X_{k-1}| \ge 1$. Therefore, $|S \cap V(Q)| \ge d/5$, implying that $|S| = |V(F)| - |V(Q) \setminus S| \ge |V(F)| - 4d/5 = n - 4d/5$. This is true for every L

2.3. Cubic graphs

We show next that the locating-total domination number and the total domination number of a connected cubic graph can differ significantly. The complete graph on four vertices minus one edge is called a diamond, sometimes written as $K_4 - e$.

Lemma 15. For every integer $k \ge 1$, there exists a connected cubic graph G satisfying $\gamma_t^{L}(G) - \gamma_t(G) \ge 2k$.

Proof. Let $k \ge 1$ be a given fixed integer. Let G_k be the connected cubic graph constructed as follows. Take 4k disjoint copies F_1, F_2, \ldots, F_{4k} of a diamond, where $V(F_i) = \{a_i, b_i, c_i, d_i\}$ and where a_ib_i is the missing edge in F_i . Let G_k be obtained from the disjoint union of these 4k diamonds by adding the edges $\{a_ib_{i+1} \mid i = 1, 2, \ldots, 4k - 1\}$ and adding the edge $a_{4k}b_1$. The graph G_1 , for example, is illustrated in Fig. 2.

Fig. 2. The graph *G*₁.

For i = 0, 1, ..., k-1, let $Y_i = V(F_{4i+1}) \cup V(F_{4i+2}) \cup V(F_{4i+3}) \cup V(F_{4i+4})$ and let $X_i = \{a_{4i+1}, a_{4i+2}, b_{4i+3}, b_{4i+4}, c_{4i+1}, c_{4i+4}\}$. Then, $(Y_0, Y_1, ..., Y_{k-1})$ is a partition of $V(G_k)$. Since X_i totally dominates the set Y_i for each $i, 0 \le i \le k - 1$, we have that $X = \bigcup_{i=0}^{k-1} X_i$ is a TD-set in G_k , implying that $\gamma_t(G_k) \le |X| = 6k$.

Let *S* be a LTD-set in G_k . For each j, $1 \le j \le 4k$, we note that in the graph G_k we have $N[c_j] = N[d_j]$. Hence by Observation 7(a), we have that $|S \cap \{c_j, d_j\}| \ge 1$ for all j = 1, 2, ..., 4k. Renaming vertices if necessary, we may assume that $C \subseteq S$, where $C = \bigcup_{j=1}^{4k} \{c_j\}$. For each vertex c_j , $1 \le j \le 4k$, let c'_j be a vertex in *S* that totally dominates c_j , and so $c_jc'_j$ is an edge in G_k . Since the vertices in the set *C* are pairwise at distance at least 3 apart in G_k , we note that $c'_i \ne c'_j$ for $1 \le i < j \le 4k$. Hence, $|S| \ge 2|C| = 8k$. This is true for every LTD-set *S* in G_k , implying that $\gamma_t^L(G_k) \ge 8k$. Hence, $\gamma_t^L(G_k) - \gamma_t(G_k) \ge 8k - 6k = 2k$.

Let g_n denote the family of all connected cubic graphs of order *n*. We define

$$\xi(n) = \max\left\{\frac{\gamma_t^L(G)}{\gamma_t(G)}\right\},\$$

where the maximum is taken over all graphs $G \in \mathcal{G}_n$. If $G \in \mathcal{G}_4$, then $G = K_4$ and $\gamma_t^L(G) = 3$ and $\gamma_t(G) = 2$, and so $\xi(4) = 3/2$. If $G \in \mathcal{G}_6$, then either $G = K_{3,3}$, in which case $\gamma_t^L(G) = 4$ and $\gamma_t(G) = 2$, or G is the prism $C_3 \Box K_2$, in which case $\gamma_t^L(G) = 3$ and $\gamma_t(G) = 2$. Thus, $\xi(6) = 2$. For $n \ge 16$, the family G_k of connected cubic graphs constructed in the proof of Lemma 15 yields the following result.

Lemma 16. For $n \equiv 0 \pmod{16}$, we have $\xi(n) \ge \frac{4}{3}$.

We pose the following two open questions that we have yet to settle.

Question 1. *Is it true that for n sufficiently large, we have* $\xi(n) \leq \frac{4}{3}$ *?*

Question 2. Is it true that if G is a connected cubic graph of order $n \ge 8$, then $\gamma_t^L(G) \le n/2$?

2.4. Grid graphs

In this section we investigate the locating-total domination number in a grid graph $P_m \Box P_n$ for small *m*.

Theorem 17. If $n \equiv r \pmod{5}$, where $0 \leq r < 5$, then

$$\gamma_t^L(P_2 \Box P_n) = \begin{cases} 4 \left\lfloor \frac{n}{5} \right\rfloor + r & \text{if } r \neq 1 \\ 4 \left\lfloor \frac{n}{5} \right\rfloor + 2 & \text{if } r = 1. \end{cases}$$

Proof. We proceed by induction on $n \ge 1$. It is a routine exercise to verify that $\gamma_t^L(P_2 \Box P_1) = \gamma_t^L(P_2 \Box P_2) = 2$, $\gamma_t^L(P_2 \Box P_3) = 3$, and $\gamma_t^L(P_2 \Box P_4) = \gamma_t^L(P_2 \Box P_5) = 4$. This establishes the base cases. Suppose then that $n \ge 6$ and that the result holds for all grids $P_2 \Box P_{n'}$, where $1 \le n' < n$. Let $G = P_2 \Box P_n$ and let $V(G) = \bigcup_{i=1}^n \{a_i, b_i\}$, where $a_1a_2 \ldots a_n$ and $b_1b_2 \ldots b_n$ are paths P_n and a_ib_i is an edge for $i = 1, 2, \ldots, n$. For $i = 1, 2, \ldots, n$, let $X_i = \{a_i, b_i\}$. Further let $X_{\ge i} = \bigcup_{j=i}^n X_j$ and let $X_{\le i} = \bigcup_{j=1}^i X_j$. Let $F = G[X_{\ge 6}]$, and so $F = P_2 \Box P_{n-5}$.

Among all $\gamma_t^L(G)$ -set, let *S* be chosen so that

- (1) $|S \cap X_{\leq 5}|$ is a minimum.
- (2) Subject to (1), $|S \cap X_1|$ is a minimum.
- (3) Subject to (2), $|S \cap X_2|$ is a minimum.
- (4) Subject to (3), $|S \cap X_3|$ is a minimum.
- (5) Subject to (4), $|S \cap X_4|$ is a minimum.

Fig. 3. A LTD-set for the grid $P_3 \Box P_{22}$.

Suppose $X_1 \subset S$. If $X_2 \subset S$, then $(S \setminus X_1) \cup X_3$ is a LTD-set of *G*, contradicting our choice of the set *S*. Hence, $|X_2 \cap S| \leq 1$. Suppose that $|X_2 \cap S| = 1$. By symmetry, we may assume that $a_2 \in S$, and so $b_2 \notin S$. But then $(S \setminus \{b_1\}) \cup \{b_3\}$ is a LTD-set of *G*, contradicting our choice of the set *S*. Hence, $X_2 \cap S = \emptyset$. But then $(S \setminus X_1) \cup X_2$ is a LTD-set of *G*, contradicting our choice of the set *S*. Therefore, $|X_1 \cap S| \leq 1$.

Suppose $|X_1 \cap S| = 1$. By symmetry, we may assume that $a_1 \in S$, and so $b_1 \notin S$. Therefore, $a_2 \in S$ in order to totally dominate a_1 . If $b_2 \in S$, then $(S \setminus \{a_1\}) \cup \{a_3\}$ is a LTD-set of G, contradicting our choice of the set S. Hence, $b_2 \notin S$. By our choice of the set S, the set $S' = (S \setminus \{a_1\}) \cup \{b_2\}$ is not a LTD-set of G. This implies that $a_3 \notin S$ and that a_1 and a_3 are not totally dominated by distinct subsets of S', and so $N(a_1) \cap S' = N(a_3) \cap S' = \{a_2\}$. Thus, $b_3 \notin S'$ and $a_4 \notin S'$. Therefore, $\{b_2, b_3, a_3, a_4\} \cap S = \emptyset$. But then $N(b_2) \cap S = N(a_3) \cap S = \{a_2\}$, contradicting the fact that b_2 and a_3 are totally dominated by distinct subsets of S. Hence, $X_1 \cap S = \emptyset$. In order to totally dominate X_1 , we have that $X_2 \subset S$.

If $X_3 \,\subset S$, then $(S \setminus X_3) \cup X_4$ is a LTD-set of *G*, contradicting the minimality of *S*. Hence, $|X_3 \cap S| \leq 1$. Suppose that $|X_3 \cap S| = 1$. By symmetry, we may assume that $a_3 \in S$, and so $b_3 \notin S$. If $b_4 \in S$, then $(S \setminus \{a_3\}) \cup \{a_4\}$ is a LTD-set of *G*, contradicting our choice of the set *S*. Hence, $b_4 \notin S$. By our choice of the set *S*, the set $D = (S \setminus \{a_3\}) \cup \{b_4\}$ is not a LTD-set of *G*. This implies that a_1 and a_3 are not totally dominated by distinct subsets of *D*, and so $N(a_1) \cap D = N(a_3) \cap D = \{a_2\}$. Thus, $b_3 \notin D$ and $a_4 \notin D$, implying that $\{b_3, b_4, a_4\} \cap S = \emptyset$. Therefore, $b_5 \in S$ in order to totally dominate b_4 . Suppose that $a_5 \notin S$. Then, $b_6 \in S$ in order to totally dominate b_5 . Further, $a_6 \in S$ in order for b_4 and a_5 to be totally dominated by distinct subsets of *S*. But then $(S \setminus \{a_3, b_5\}) \cup X_4$ is a LTD-set of *G*, contradicting our choice of the set *S*. Hence, $a_5 \in S$. If $X_6 \cap S \neq \emptyset$, then removing the vertices in $X_5 \cup (X_6 \cap S) \cup \{a_3\}$ from the set *S*, and replacing them with the four vertices in the set $X_4 \cup X_6$, produces a new LTD-set of *G* that contradicts our choice of the set *S*. Hence, $X_6 \cap S = \emptyset$. Thus, $b_7 \in S$ in order for b_4 and b_6 to be totally dominated by distinct subsets of *S*. If $a_7 \in S$, then $(S \setminus \{a_3, a_5, b_5\}) \cup (X_4 \cup \{a_6\})$ is a LTD-set of *G*, contradicting our choice of the set *S*. Hence, $x_3 \cap S = \emptyset$. But then $(S \setminus \{a_3, a_5, b_5\}) \cup (X_4 \cup \{a_7\})$ is a LTD-set of *G*, contradicting our choice of the set *S*. Hence, $x_3 \cap S = \emptyset$.

In order for a_1 and a_3 to be totally dominated by distinct subsets of S, we have that $a_4 \in S$. Analogously, $b_4 \in S$ in order for b_1 and b_3 to be totally dominated by distinct subsets of S. Therefore, $X_4 \subset S$. If $X_5 \subset S$, then $(S \setminus X_5) \cup X_6$ is a LTD-set of G, contradicting the minimality of S. Hence, $|X_5 \cap S| \leq 1$. Suppose that $|X_5 \cap S| = 1$. By symmetry, we may assume that $a_5 \in S$, and so $b_5 \notin S$. But then the set $(S \setminus \{a_5\}) \cup \{b_6\}$ is a LTD-set of G, contradicting our choice of the set S. Hence, $X_5 \cap S = \emptyset$.

Since $S \cap X_{\leq 5} = X_2 \cup X_4$, the restriction of the set *S* to *F* is a LTD-set of *F*, implying that $\gamma_t^L(F) \leq |S \cap V(F)| = |S| - 4$, or, equivalently, $\gamma_t^L(G) = |S| \geq \gamma_t^L(F) + 4$. Conversely every $\gamma_t^L(F)$ -set can be extended to a LTD-set of *G* by adding to it the set $X_2 \cup X_4$, implying that $\gamma_t^L(G) \leq \gamma_t^L(F) + 4$. Consequently, $\gamma_t^L(G) = \gamma_t^L(F) + 4$. The desired result now follows by applying the inductive hypothesis to the grid $F = P_2 \Box P_{n-5}$. \Box

For $m \ge 3$, we have yet to determine the locating-total domination number in the grid graph $P_m \square P_n$. We consider here the special case when m = 3. For $k \ge 1$, let $G_k = P_3 \square P_n$, where n = 11k, and let $V(G_k) = \bigcup_{i=1}^n \{a_i, b_i, c_i\}$, where $a_1a_2 \dots a_n$, $b_1b_2 \dots b_n$ and $c_1c_2 \dots c_n$ are paths P_n and where $a_ib_ic_i$ is a path P_3 for $i = 1, 2, \dots, n$. Let

$$A_k = \bigcup_{i=0}^{k-1} \{a_{11i+2}, a_{11i+6}, a_{11i+8}\} \text{ and } C_k = \bigcup_{i=0}^{k-1} \{c_{11i+4}, c_{11i+6}, c_{11i+10}\}$$

and let

L 1

$$B_k = \bigcup_{i=0}^{k-1} \{b_{11i+1}, b_{11i+2}, b_{11i+4}, b_{11i+6}, b_{11i+8}, b_{11i+10}, b_{11i+11}\}$$

Then, $S_k = A_k \cup B_k \cup C_k$ is a LTD-set in G_k , and so $\gamma_t^L(G_k) \le 13k = 13n/11$. In the special case when k = 2, the LTD-set is indicated in Fig. 3, albeit without the vertex labels. Hence we have the following observation.

Observation 18. For $n \equiv 0 \pmod{11}$, we have $\gamma_t^L(P_3 \Box P_n) \leq \frac{13}{11}n$.

For small values of *n*, namely $1 \le n \le 12$, we can show that $\gamma_t^L(P_3 \Box P_n) = \lceil \frac{13}{11}n \rceil$. However we have yet to determine¹ the locating-total domination number of $P_3 \Box P_n$ for $n \ge 13$.

¹ We remark that subsequent to our paper being accepted Ville Junnila [10] informed us that they have determined the optimal density of the infinite grid of height 3 to be 7/18.

Acknowledgments

The first author's research was supported in part by the South African National Research Foundation and the University of Johannesburg. The second author's research was supported in part by a grant from IPM (No. 89050040).

References

- [1] M. Blidia, M. Chellali, F. Maffray, J. Moncel, A. Semri, Locating-domination and identifying codes in trees, Australas. J. Combin. 39 (2007) 219–232.
- [2] M. Blidia, W. Dali, A characterization of locating-total domination edge critical graphs, Discuss. Math. Graph Theory 31 (1) (2011) 197–202.
- [3] M. Blidia, O. Favaron, R. Lounes, Locating-domination, 2-domination and independence in trees, Australas. J. Combin. 42 (2008) 309–319.
- [4] M. Chellali, On locating and differentiating-total domination in trees, Discuss. Math. Graph Theory 28 (3) (2008) 383-392.
- [5] M. Chellali, N. Jafari Rad, Locating-total domination critical graphs, Australas. J. Combin. 45 (2009) 227–234.
- [6] X.G. Chen, M.Y. Sohn, Bounds on the locating-total domination number of a tree, Discrete Appl. Math. 159 (2011) 769–773.
- [7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc, New York, 1998.
- [8] T.W. Haynes, M.A. Henning, J. Howard, Locating and total dominating sets in trees, Discrete Appl. Math. 154 (2006) 1293–1300.
 [9] M.A. Henning, A survey of selected recent results on total domination in graphs, Discrete Math. 309 (2009) 32–63.
- [9] M.A. Heining, A survey of selected fecent fesuits on total domination in gi
- [10] V. Junnila, personal communication.
- [11] J. McCoy, M.A. Henning, Locating and paired-dominating sets in graphs, Discrete Appl. Math. 157 (2009) 3268–3280.
- [12] P.J. Slater, Dominating and location in acyclic graphs, Networks 17 (1987) 55-64.
- [13] P.J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci. 22 (1988) 445–455.