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Abstract 

In this paper, we consider the stabilization and trajectory tracking of magnetic levitation system using PID controller whose 

controller gains are determined via Linear Quadratic Regulator (LQR) approach. Firstly, the nonlinear mathematical model of 

the system is obtained from the first principle

around the equilibrium point to implement the stabilizing controller. Finally, the gains of the PID controller to achieve the 

desired response are determined using the LQR theory. Based on the natural frequency and damping ratio of the closed loop 

system, a new criterion for selecting the weighting matrices of LQR is proposed in this paper. Experiments are conducted on a 

Quanser magnetic levitation system to evaluate the performance of the proposed methodology and the experimental results 

prove that the proposed control strategy is effective not only in stabilizing the ball but also in rejecting the disturbance present 

in the system. 
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1. Introduction 

Magnetic levitation systems have received wide attention recently because of their practical importance in many 

engineering systems such as high-speed maglev passenger trains, frictionless bearings, levitation of wind tunnel 

models, vibration isolation of sensitive machinery, levitation of molten metal in induction furnaces, and levitation 
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of metal slabs during manufacturing [1]. Magnetic levitation (maglev) technology reduces the physical contact 

between moving and stationary parts and in turn eliminates the friction problem. Maglev systems are inherently 

nonlinear, unstable and are described by highly nonlinear differential equations which present additional 

difficulties in controlling these systems. So the design of feedback controller for regulating the position of the 

levitated object is always a challenging task. In recent years, a lot of works have been reported in the literature for 

controlling magnetic levitation systems. The feedback linearization technique has been used to design control laws 

for magnetic levitation systems [2, 3]. The input-output, input-state, and exact linearization techniques have been 

used to develop nonlinear controllers [4, 5]. Other types of nonlinear controllers based on nonlinear methods have 

been reported in the literature [6]. Control laws based on the gain scheduling approach [7], linear controller design 

[8], and neural network techniques [9] have also been used to control magnetic levitation systems. Classical 

optimal control theory has evolved over decades to formulate the well known Linear Quadratic Regulators which 

minimizes the excursion in state trajectories of a system while requiring minimum controller effort [10]. This 

typical behavior of LQR has motivated control designers to use it for the tuning of PID controllers [11]. PID 

controllers are most common in process industries due to its simplicity, ease of implementation and robustness. 

Equation (ARE) which is solved to calculate the state feedback gains for a chosen set of weighting matrices. These 

weighting matrices regulate the penalties on the deviation in the trajectories of the state variables (x) and control 

signal (u). Indeed, with an arbitrary choice of weighting matrices, the classical state-feedback optimal regulators 

seldom show good set-point tracking performance due to the absence of integral term unlike the PID controllers. 

Thus, combining the tuning philosophy of PID controllers with the concept of LQR allows the designer to enjoy 

both optimal set-point tracking and optimal cost of control within the same design framework. The objective of this 

paper is to present a novel methodology which tunes a PID controller with an LQR based dominant pole placement 

method for trajectory tracking of magnetic levitation system. 

Nomenclature 

Vc coil voltage      damping ratio  

Vs  supply voltage    n  natural frequency of oscillation 

Kp proportional gain    J cost function 

Ki integral gain    Q, R LQR weighting matrices 

Kd derivative gain    A system matrix 

Kff feed forward gain    B  input matrix 

2. System Model 

 
Fig. 1. Magnetic levitation system diagram 

Magnetic levitation system is used to levitate a steel ball in air by the electromagnetic force created by an 

electromagnet. The maglev system consists of an electromagnet, a steel ball, a ball post, and a ball position sensor. 

The schematic diagram of the magnetic levitation system is shown in Fig. 1. The entire system is encased in a 

rectangular enclosure which contains three distinct sections. The upper section contains an electromagnet, made of 

a solenoid coil with a steel core. The middle section consists of a chamber where the ball suspension takes place. 

One of the electro magnet poles faces the top of a black post upon which a one inch steel ball rests. A photo 

sensitive sensor embedded in the post measures the ball elevation from the post. The last section of maglev system 

houses the signal conditioning circuitry needed for light intensity position sensor. The entire system is decomposed 
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into two subsystems, namely, mechanical subsystem and electrical subsystem. The coil current is adjusted to 

control the ball position in the mechanical system, where as the coil voltage is varied to control the coil current in 

an electrical system [12]. Thus, the voltage applied to the electromagnet indirectly controls the ball position. In the 

following section, we obtain the nonlinear mathematical model of the maglev system and linearize it around the 

operating region in order to design a stabilizing controller. 

 
Fig. 2. Schematic of the Maglev plant 

 
Table 1 System parameters 

Symbol Description Value 

Lc Coil inductance  412.5mH  

Rc Coil resistance  

Nc Number of turns in the coil wire 2450 

lc Coil length 0.0825m 

rc Coil steel core radius 0.008m 

Rs Current sense resistance  

Km Electromagnet force constant 6.5308E-005 N.m2/A2 

rb Steel ball radius 1.27E-002 m 

Mb Steel ball mass 0.068kg 

Kb Ball position sensor sensitivity 2.83E-003 m/V 

g Gravitational constant 9.81 m/s2 

 

     ( )
d

V R R I L Ic cc c s
dt

                                                    (1) 

The transfer function of the circuit can be obtained by applying Laplace transform to Eq. (1) 

                                   
( )

( )
( ) 1

I s Kc cG s
c V s sc c

                                                                   (2) 
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Where
1

K
c R Rc s

  and 
Lc

c R Rc s
  

2.1 Equation of motion (EOM) of a ball 

The force applied on the ball due to gravity can be expressed by 

                                                       F M g
g b

                                                                                        (3) 

Force generated by the electromagnet is given by 

     
21

22

K Im cF
c x

b

                                                                   (4) 

The total force experienced by the ball is the sum of 
gF  and 

cF  

     
21

22

K Im cF F M g
c g bx

b

           (5) 

 

     

2 21
22 2

d x K Ib m c g
M xdt b b

                         (6) 

At equilibrium point, all the time derivative terms are set to zero. 

     
21

0
22

K Im c g
M xb b

                    (7) 

From Eq. (7), the coil current at equilibrium position,
0c

I , can be expressed as a function of 
0

x
b

 and K
m

. 

     
2

0 0
M gbI x

c bKm
                    (8) 

The electromagnet force constant, K
m

, as a function of the nominal pair 0 0( , )b cx I , can be obtained from (7) 

     

2
2

0
2
0

M gx
b bKm
I
c

                                 (9) 

The nominal coil current 
0c

I  

The static equilibrium at a nominal operating point 0 0( , )b cx I is characterized by the ball being suspended in air at 

a stationary point 
0

x
b

 due to a constant attractive force created by
0c

I . 

 

2.2 Linearization of EOM 

 

In order to design a linear controller, the system must be linearized around equilibrium point, the point at which the 

system will converge as time tends to infinity. The nonlinear system equations are linearized around the operating 

0 0( , )b cx I  to Eq. (6) 

     

2 2 2
111 0 0 0 1

2 3 22 2
0 0 0

d x K I K I xm m b K I Ib c c m c cg
M x M x M xdt b b bb b b

                    (10) 

Substituting Eq. (9) in Eq. (10) 

     

2
2 21 1 1

2 0 0

d x gx gIb b c
x Ib cdt

                              (11) 

Applying Laplace transform to Eq. (11) 
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2

( )
2 2

Kb bG s
b s

b

           (12) 

Where 0

0

xb

Ic
K

b
 and 

2

0

g
b xb

 

The open loop transfer function of a maglev system is a type zero, second order system. The two open loop poles 

of the system are located at s
b

 which indicates that the open loop system is unstable due to location of poles 

on the right half of the s plane. Thus, the feedback controller is necessary for stabilizing the system. In this work, a 

pole placement controller using PID and Feed forward approach is designed to not only levitate the ball but also to 

make the ball follow the reference trajectory. 

 

3. PID plus Feed forward Controller design using pole placement approach 

The objective of the control strategy is to regulate and track the ball position in mid-air. The ball position controller 

is to be designed such that in response to a desired 1mm square wave position set point, the ball position 

behavior should satisfy the following performance requirements.  

1. Percentage overshoot  15% 

2. Settling time  1s 

The proposed control scheme, as shown in Fig. 3, consists of a PID controller with a feed forward component. The 

controller gains of both PID and feed forward controller are determined by selecting the closed loop poles, which 

satisfy the performance specification, via root locus. Three separate gains are used in PID controller design, which 

introduces two zeros and a pole at origin so that the entire system becomes a Type 1 system, allowing for zero 

steady state error. The objective of the feed forward control action is to compensate for the gravitational bias. 

When the PID controller compensates for dynamic disturbances around the linear operating point 0 0( , )b cx I , the 

feed forward control action eliminates the changes in the force created due to gravitational bias.  

 
Fig. 3. PID plus Feed forward control loop for ball position control 

The open loop transfer function ( )
m

G s  takes the dynamics of the electromagnet current loop into account and it is 

given by 

                                       

2
( ) 0( )

22( )
0

g
x s Ib cG s

m gI sc sdes xb

                          (13) 

The current feed forward action is represented by 

     
_ _

I K x
c ff ff b des

                 (14) 
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and      
1 _c c

I I I
c ff

                              (15) 

At equilibrium point, 0b bx x and 0c cI I . Thus, the feed forward gain is given by 

     
0

0

c
ff

b

I
K

x
           (16) 

The closed loop transfer function of the system is  

  

3 2

0

0 0 0 0

2 (( ) )( )
( )

2( ) 2 22
( )

ff p ib
c

pbdes d i
c

c b c c

g K K s Kx s
G s

gKx s gK gKg
I s s s

I x I I
      

( 17) 

The normalized characteristic equation of electromechanical system is 

     
3 2

0 0 0 0

22 22
0

pd i

c b c c

gKgK gKg
s s s

I x I I
                    (18) 

 

 

3. LQR based Optimal PID tuning 
 

 
Fig. 4 LQR based PID tuning of second order process 

In this section the gain parameters of PID controller determined using the LQR approach. Suman et al. [10] have 

given a formulation for tuning the PID controller gains via LQR approach with guaranteed pole placement. In this 

work, the idea has been extended to a magnetic levitation system which has two control schemes such as PID 

controller and feed forward controller. Here, the points which are important for determining the controller gain 

alone are explained and the further detail can be referred in [10]. In this approach, the error, error rate and integral 

of error are considered as state variables to obtain the optimal controller gains of the PID regulator. 

Let the state variables be 

( ) ( )
1

x t e t dt   ( ) ( )
2

x t e t     ( ) ( )
3

d
x t e t

dt
                      (19) 

From Fig.4, 

( ) ( )

2 2( ) ( )2 ( )

Y s K E s

o o oU s U ss sn n

                                         (20) 

In the state feedback regulator design, the external set point does not affect the controller design, so the reference 

input r(t)=0 in Fig. 4. When there is no change in the set point, the relation y(t)=-e(t) is valid for standard regulator 

problem. Thus, Eq. (20) becomes, 

2 22 ( ) ( ) ( )o o os s E s KU sn n                     (21) 

Applying inverse Laplace transform, 

2
2 ( )

o o o
e e e Kun n                      (22) 

Thus the state space representation of the above system is of the form 
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0 1 0 01 1

0 0 1 0
2 2

2
0 ( ) ( 2 )3 3

o o
n

x x

x x u

o Kx xn

        (23) 

From Eq. (23), the system matrices are 

0 1 0

0 0 1

2
0 ( ) ( 2 )

o o
n

A

o
n

  

0

0B

K

        (24) 

In order to obtain an optimal performance of system (24) through LQR formulation, the following quadratic cost 

function should be minimized. 

( ) ( ) ( ) ( )
0

T T
J x t Qx t u t Ru t dt                   (25) 

The minimization of above cost function gives the optimal control input as 

1
( ) ( ) ( )

T
u t R B Px t Fx t                    (26) 

Where P is the symmetric positive definite solution of the Continuous Algebraic Riccatti equation given by 

1
0

T T
A P PA PBR B P Q                     (27) 

The weighting matrix Q is a symmetric positive definite and the weighting factor R is a positive constant. In 

general, the weighting matrix Q is varied, keeping R fixed, to obtain optimal control signal from the linear 

quadratic regulator. The corresponding state feedback gain matrix is  

1 1 1

13 23 33

11 12 13

12 22 23

13 23 33

0 0T

i p d

P P P

P P P

P P P

F R B P R K R K P P P K K K         (28) 

The corresponding expression for the control signal is  

( )
1

( ) ( ) ( ) ( ) ( ) ( )
2

( )
3

x t
d

u t Fx t K K K x t K e t dt K e t K e tp pi id d dt
x t

      (29) 

The third row of symmetric positive definite matrix P can be obtained in terms of PID controller gains from Eq. 

(36) 

13 1

KiP
R K

 23 1

K p
P

R K
    33 1

dK
P

R K
               (30) 

The closed loop system matrix for the system (24) with state feedback gain matrix (28) is  

 

0 1 0

0 0 1

1 2 2 1 2 1 2
( ) (( ) ) ( 2 )

13 23 33

c
A

o o o
R K P R K P R K Pn n

         (31) 

The corresponding characteristic polynomial for the closed loop system is 

( ) 0s sI Ac  

3 2 1 2 2 1 2 1 2

33 23 13(2 ) (( ) ) 0o o o

n ns s R K P s R K P R K P       (32) 

The characteristic polynomial of closed system in terms of the desired damping ration and natural frequency is 

given by, 

3 2 2 2 2 3
( (2 ) (( ) 2 ( ) ( ) ) ( ) ) 0

c c c c c c c
s s m s m mn n nn

      (33) 

Now, equating the coefficients of Eq. (32) with Eq. (33),  
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1 2

33

2 1 2 2 2 2

23

1 2 2 3

13

(2 ) (2 )

( ) ) ( ) 2 ( ) ( )

( ) ( )

o o c c

n n

o c c c

n n n

c c

n

R K P m

R K P m

R K P m

         (34) 

The elements of the third row of matrix P is solved as in (35) by knowing the open loop process characteristics 

( , , )o o

n K  and desired closed loop dynamics ( , , )c c

n K . 

2 3

13 1 2

2 2 2 2

23 1 2

33 1 2

( ) ( )

( ) 2 ( ) ( ) ( )

(2 ) 2

c c

n

c c c o

n n n

c c o o

n n

m
P

R K

m
P

R K

m
P

R K

         (35) 

Equation. With the known third row elements of P matrix the other elements of P and Q matrices can be obtained 

as follows. 
2 1 2

11 13 13 23

1 2

12 13 13 23

1 2 2

22 23 23 33 33 13

( )

2

2 ( )

o

n

o o

n

o o o

n n

P P R K P P

P P R K P P

P P R K P P P P

        (36) 

1 2 2

13

1 2 2 2

2 23 12 23

1 2 2

3 33 23 33

1

2( ( ) )

2( 2 )

o

n

o o

n

Q

Q

Q

R K P

R K P P P

R K P P P

          (37) 

Design steps 

Step 1: Specify both the open loop characteristics ( , , )o o

n K  and the desired closed loop system dynamics   

           ( , , )c c

n K . 

Step 2: Choose the weighting factor R in LQR and determine the weighting matrix Q using Eq. (37) 

Step 3: Obtain the solution of ARE using Eq. (35) and Eq. (36) 

Step 4: Calculate the system matrices A and B as specified in Eq. (24) 

Step 5: Determine the solution of state feedback control using Eq. (28) and obtain the PID controller gains. 

4. Experimental Results 

The experimental set up, as shown in Fig. 

plant. The proposed control algorithm is realized in the PC using the real time algorithm, QUARC, which is similar 

to C like language. In order to attenuate the high frequency noise current, a simple low pass filter of cut off 

frequency 80Hz is added to the ball position sensor output. Furthermore, by differentiating the ball position, the 

ball vertical  velocity is estimated.The open loop parameters of magnetic levitation system are K=7, 1.8
o
n , and 

the desired parameters of the closed loop system which satisfy the controller specification given in section 3 are 

0.8
c

, 1.4
c

n , and m=9 .  
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Fig.5. Snap shot of Experimental set up 

The corresponding system matrices are 

0 1 0

0 0 1

0 3.24 0

A  

0

0

7

B  

The resultant state feedback gain matrix is 

65.8 28.14 5.03F K K Kpi d
 

4.1 Trajectory tracking 

In order to test 

signals with a frequency of 1 Hz is chosen. Fig. 6, 7, and 8 show the results for trajectory following.   Fig. 9 shows 

the response of coil current, which tracks the specified command to make the ball follow the reference trajectory. 

The response of coil voltage is shown in Fig. 10 and it is worth to note that the coil voltage does not reach a 

saturation value during the trajectory following and it is well below 9V. Fig.11 shows the tracking error, which is 

the difference between actual trajectory and reference trajectory. The performance indices IAE, IATE, ISE and 

ITSE are considered for the performance evaluation of the controller, and they are given in Table2. 
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Fig. 6 Square wave trajectory      Fig.7 Sine wave trajectory 
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Fig. 8 Saw tooth trajectory      Fig. 9 Coil current response 
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Fig. 10 Coil voltage response                Fig. 11 Trajectory tracking error 

 

Table 2. Performance Indices of LQR based PID tuning method 

IAE IATE ISE ITSE 

0.0041 0.1252 0.000017 0.000015 

 

5. Conclusion 

The modeling and control of 1DOF magnetic levitation system has been investigated in this paper. The 

conventional PID controller is combined with the feed forward controller in order to nullify the effect of 

gravitational bias existing in the magnetic levitation system. The non linear mathematical model of the plant from 

fundamental physical laws has been obtained and the non linear equation has been linearized around the 

equilibrium point using Taylor's series. Combining the tuning philosophy of PID controllers with the concept of 

LQR theory, the simple mathematical gain formulae to obtain the satisfactory response has been obtained. The 

experimental results demonstrated the effectiveness of the proposed approach not only in stabilizing the ball but 

also in tracking the various reference trajectories given as an input. 

References 

[1] N. F. AL-Muthairi , M. Zribi, 2004. Sliding Mode Control of a Magnetic Levitation system, Mathematical Problems in Engineering, pp. 

93-107. 

[2] Walter Barie, John Chaisson, 1996. Linear and nonlinear state space controllers for magnetic levitation, International Journal of Systems 
science, Vol. 27, pp. 1153-1163. 

[3] A. El Hajjaji and M. Ouladsine, 2001. Modeling and nonlinear control of magnetic levitation systems, IEEE Transactions on Industrial 

Electronics 48, no. 4, pp. 831 838. 
[4] A. Charara, J. DeMiras, and B.Caron, 1996. Nonlinear control of a magnetic levitation system without premagnetization, IEEE 

Transactions on Control Systems Technology 4 , no. 5, pp. 513 523. 



264   E. Vinodh Kumar and Jovitha Jerome  /  Procedia Engineering   64  ( 2013 )  254 – 264 

[5] M. R. Filho and C. J.Munaro, A design methodology of tracking controllers for magnetic levitation systems, 2001. Proc. 2001 IEEE 

International Conference on Control Applications, (Mexico City), pp. 47 51. 
[6] S. A. Green and K. C. Craig, Robust, design, 1998. Nonlinear control of magnetic-levitation systems, Journal of Dynamics, Measurement, 

and Control 120 , no. 4, pp. 488 495.  

[7] Y. C. Kimand H. K. Kim, 1994. Gain scheduled control of magnetic suspension systems, Proc. American Control Conference, 
(Maryland), vol. 3, pp. 3127 3131. 

[8] O. El Rifai and K. Youcef-Toumi, 1998. Achievable performance and design trade-offs in magnetic levitation control, Proc. 5th 

InternationalWorkshop o 591. 
[9] M. Lairi and G. Bloch, 1999. A neural network with minimal structure for maglev system modeling and control, Proc. 1999 IEEE 

International Symposium on Intelligent Control/Intelligent Systems and Semiotics, (Massachusetts), pp. 40 45. 

[10] Saptarshi Das, Indranil Pan, Kaushik Halder, Shantanu Das, Amitava Gupta, 2013, LQR based improved discrete PID controller design 
via optimum selection of weighting matrices using fractional order integral performance index, Applied Mathematical Modelling, Vol. 37, 

pp.4253-4268. 

[11] Suman Saha, Saptarshi Das, Shantanu Das, Amitava Gupta, 2012, A conformal mapping based fractional order approach for sub-optimal 
tuning of PID controllers with guaranteed dominant pole placement, Commun. Nonlinear Sci. Numer. Simul. 17 (9) , pp. 3628 3642. 

[12]  

 


