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Abstract: Stability with first time or reactivated landslides depends upon the residual shear strength of soil. This paper
describes prediction of the residual strength of soil based on index properties using two machine learning tech-
niques. Different Artificial Neural Network (ANN) models and Support Vector Machine (SVM) techniques have
been used. SVM aims at minimizing a bound on the generalization error of a model rather than at minimizing the
error on the training data only. The ANN models along with their generalizations capabilities are presented here
for comparisons. This study also highlights the capability of SVM model over ANN models for the prediction of
the residual strength of soil. Based on different statistical parameters, the SVM model is found to be better than
the developed ANN models. A model equation has been developed for prediction of the residual strength based
on the SVM for practicing geotechnical engineers. Sensitivity analyses have been also performed to investigate
the effects of different index properties on the residual strength of soil.
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1. Introduction

Stability of natural slopes or landslides depends upon the
shear strength parameters of clay, which varies signifi-
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Fax: 91-416-2243092

cantly between the peak and residual states. This is es-
pecially true in sensitive clays where there is a substan-
tial reduction in shear strength from a peak to a residual
state. At a residual state, the clay has undergone a large
strain and hence remoulded, with previous bonds broken
and prior fabric destroyed. As a result, in a residual state
the clay exhibits no cohesion. Further, the friction angle
(¢r) is substantially less than the friction angle at a peak
state (¢,), resulting in lower shear strength. In geotech-
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nical problems involving large deformations such as land-
slides, it is appropriate that the residual shear strength
parameters (¢, = 0 and ¢,) be used in the analysis.

The residual strength of soils has received consider-
able attention after Skempton suggested that the sta-
bility of reactivated landslides are governed by residual
strength [1]. Meshri and Shahien [2] analysed 99 clay
slopes and observed that the shear strength of a clay is
close to the residual value in most cases and, even for
many of the first-time slope failures, it appears that part
of the slip surface is in the residual condition.

There had been attempts to develop correlations between
the residual friction angle of soils and index properties
such as Atterberg limits, and clay fraction. Skempton [1],
related the ¢, value with the clay fraction (CF). Gener-
ally, ¢, decreases with liquid limit (LL), and for a given
LL and CF, ¢, decreases with increase in normal effective
stress [3]. Mesri and Cepeda-Diaz [4] presented a corre-
lation between ¢, and LL. Colotta et al. [5] have given a
correlation between ¢, and a parameter which is a func-
tion of LL, plasticity index (Pl) and CF. For sedimentary
soil, Stark and Eid [6] observed that the type of minerals
and percent of clay govern the value of ¢,. Using LL as an
indicator of clay mineral, they proposed correlations of ¢,
with LL for various ranges of CF. Wesley [7] found that for
tropical clays ¢, can be better related with API, the devi-
ation from the A-line in Casagrande’s classification chart
given by:

API = Pl — 0.73(LL — 20) (1)

The data points were scattered and the correlation is valid
for highly plastic clays where LL > 50. All the above
correlations are graphical. Sridharan and Rao [8] observed
that while ¢, is related to LL, Pl and CF, it gives the best
correlation with CF.

Using data from soil specimens collected from more than
80 natural disaster areas, Tiwari and Marut [9], proposed
a triangular chart to predict the residual friction angle
¢,, based on the mineralogical composition. The corre-
lation of ¢, is with the liquid limit, the plasticity index,
the clay fraction, the specific surface area, and the pro-
portion of clay mineral smectite. The model gave good
predictions for the samples they had tested, but under-
predicted the 53 samples tested by other researchers.
Kaya and Kwong [10] studied soil properties of some ac-
tive landslides in Hawaii to evaluate correlations between
the residual strength and soil indices. The results showed
that for the colluvial soils, which are rich in an amorphous
phase, there is poor correlation between soil index prop-
erties and residual friction angle. Moreover, it is difficult
to find out the specific surface area of the clay minerals
and the mineral composition of the clay soil samples.

From the above discussions, it was quite clear that ¢, is
a function of several variables that can be represented by
index properties. Nevertheless, most of the relationships
are developed in terms of charts. The correlation given by
Tiwari and Marui [9] is based on the mineralogical content
of the clay but also is presented in graphical form. For a
practicing geotechnical engineer, finding out the specific
surface and mineralogical content is not always handy.
Hence, it is highly desirable to develop a correlation or
method where ¢, can be expressed in terms of all the
relevant variables. Das and Basudhar [11] used artificial
neural network modelling to predict the residual friction
angle of clay with a high degree of accuracy. But the
above study is limited to tropical soil of a specific region
only. Hence, there is an acute need to develop a suitable
and efficient method applicable to soils of different origins.

In the present study three ANN models (BRNN, LMNN
and DENN) and three SVM models (SVM-G, SVM-P,
SVM-S) have been developed to predict the residual fric-
tion angle of clay based on the index properties of soil
(LL, PI, CF and API). The statistical performance criteria,
such as overfitting ratio, maximum absolute error, average
absolute error and root mean square error, are used to
evaluate the quality of predictions that come from the dif-
ferent ANN and SVM models. A model equation based on
the above analysis is also presented to show correlation,
which can be determined using spreadsheet inputs. The
degree of importance of the input parameters are identi-
fied using SVM and ANN models.

2. Methodology

In the present study artificial intelligence techniques ANN
and SVM have been used to examine the effects of the
index properties on the residual friction angle. The salient
features of the ANN and SVM models are presented here
briefly for completeness.

2.1. Atrtificial Neural Network (ANN)

Artificial Neural Network modelling is an artificial in-
telligence system which is an alterative statistical tool
inspired by the behaviour of the human brain and ner-
vous system. It has been applied successfully to a
wide range of geotechnical problems. In the present
study the ANN models are developed using two differ-
ent training algorithms, Bayesian Regqularization Neu-
ral Network (BRNN) and Differential Evolution Neural
Network (DENN), and are compared with the commonly
used Levenberg-Marquardt Neural Network algorithms

(LMNN).
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2.1.1. Bayesian Regularization Method (BRNN)

In the case of using a Back Propagation Neural Network
(BPNN), the error function considered for minimization is
the Mean Square Error (MSE). This may lead to overfit-
ting due to unbound values of weights. In a Bayesian reg-
ularization method, the performance function is changed
by adding a term that consists of the mean square error
of weights and biases as:

MSEREG = yMSE + (1 — y) MSW )

where MSE is the mean square error of the network, y
is the performance ratio and MSW is the mean square of
weights and defined as:

1&
MSW = E;W, 3)
iz

Where w; is the weight.

This performance function will cause the network to have
smaller weights and biases, thereby reducing the likeli-
hood of overfitting. The optimal reqularization parameter
y is determined through a Bayesian framework [12], as the
low value of y will not adequately fit the training data
and a high value of it may result in overfit. The number of
network parameters (weights and biases) effectively used
by the network can be determined by the above algorithm.
The effective number of parameters remains the same irre-
spective of the total number of parameters in the network.
The present study was carried out using the built-in func-
tions in MATLAB [13]. Demuth and Beale [12] suggested
that the above combination works best when the inputs
and targets area are scaled in the range [-1, 1].

2.1.2. Differential Evolution Neural Network (DENN)

The training of the feed-forward neural network using dif-
ferential evolution optimization is known as a Differential
Evolution Neural Network (DENN) [14]. The DE opti-
mization is a population-based heuristic global optimiza-
tion method. Unlike other evolutionary optimization tech-
niques, in DE the vectors in current populations are ran-
domly sampled and combined to create vectors for the next
generation. The real valued crossover factor and mutation
factor govern the convergence of the search process. The
details of DENN are available in the literature [14]. The
results of an ANN model trained with DENN and BRNN
are compared with that from the commonly used LMNN
to discuss the quality of the prediction of the different
networks.

LMNN is the most widely used ANN method and has been
extensively used in geotechnical engineering [11, 15, 16]
and is not elaborated here.

2.2. Support Vector Machine

Support Vector Machine (SVM) originated from the con-
cept of statistical learning theory pioneered by Boser
et al. [17]. Our study uses the SVM as a regression
technique by introducing an error (&) e-insensitive loss
function. In this section, a brief introduction of how to
construct an SVM for regression problems is presented.
Further details can be found in many publications [17—
21]. There are three distinct characteristics when SVM
is used to estimate the regression function: the type of
kernel function, the optimum capacity factor C, and the
optimum error insensitive zone €. Consider a set of train-
ing data{(x,,y;), ..., (x, y)}, x € R", y € r, where x is
the input, y is the output, RN is the N-dimensional vector
space and r is the one-dimensional vector space. The in-
puts considered are LL, Pl, CF and API. The output of the
SVM model is ¢,. In other words, x = [LL, PI, CF,API]
and y = ¢,.

The e-insensitive loss function can be described in the
following way.

Le (y) = 0 for |f (x) — y| < € otherwise L, (y) = |f (x) — y|—¢

(4)
This defines an € tube such that if the predicted value
is within the tube, the loss is zero, while if the predicted
point is outside the tube, the loss is equal to the absolute
value of the deviation minus €. The main aim in SVM is
to find a function f (x) that gives a deviation of € from the
actual output and at the same time is as flat as possible.
Let us assume a linear function

fx)=(w-x)+b, weR", ber (5)

where, w = an adjustable weight vector and b = the scalar
threshold.

Flatness in the case of 5 means a small value of w. One
way of obtaining this is by minimizing the Euclidean
normliwli?. This is equivalent to the following convex op-
timization problem:

Minimize: 1 llwll?

Subjected to: yi — ((wx)+b) < e i=1,2..,1

(wx)+b)—y <egi=12..1 (6)

The above convex optimization problem is feasible. Some-
times, however, this may not be the case, or we also may
want to allow for some errors. This is analogous to the
“soft margin” loss function [22] that was used in SVM by
Cortes and Vapnik [19]. The parameters &, & are slack
variables that determine the degree to which samples with
error more than € be penalized. In other words, any er-
ror smaller than & does not require & or & and hence
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does not enter the objective function because these data
points have a value of zero for the loss function. The slack
variables (&, &) have been introduced to avoid infeasible
constraints in the optimization problem below:

Minimize: 1 llwli> + CZL (& + &)

Subjected to: yi — ((w-x)+b)<e+ & i=1 2.1
(w-x)+b)—y<e+&i=12.l

&>0and & >0,i=1,2,..,1 (7)

The constant C (0 < C < o0) determines the trade-off
between the flatness of f and the amount up to which de-
viations larger than € are tolerated [23]. This optimization
problem 7 is solved by Lagrangian Multipliers [21], and
its solution is given by:

nsv

f) =) (a—a)(x-x)+b (8)

i=1

where b = — (3) w- [x; + x,]

a; and o are the Lagrangian multipliers; and nsv is the
number of support vectors. An important aspect is that
some Lagrangian multipliers (o;, o) will be zero, implying
that these training objects are considered to be irrelevant
for the final solution (cf. matrix sparseness). The training
objects with non-zero Lagrangian multipliers are called
support vectors.

When linear regression is not appropriate, then input
data have to be mapped into a high dimensional feature
space through some nonlinear mapping technique [17].
The two steps in this exercise are, firstly, carrying out
a fixed nonlinear mapping of the data onto the feature
space and, secondly, carrying out a linear regression in
the high dimensional space. The input data are mapped
onto the feature space by a map ®. The dot product
given by ® (x;) - @ (x) is computed as a linear combination
of the training points. The concept of a kernel function
[K (xi,x) = ® (x;) - (x)] has been introduced to reduce the
computational demand [18, 19]. So, equation 8 becomes:

nsv

fx)=) (a—a)K(xi-x)+b )
i=1

Some common kernels, such as homogeneous polyno-
mial expressions, non-homogeneous polynomial expres-
sions, radial basis functions, Gaussian functions and sig-
moid functions, and their combinations, have been used
for non-linear cases. The details about the SVM and
its implementation in geotechnical engineering have been
presented in Das et al. [24].

3. Database and Preprocessing

In the present study, databases obtained from landslide
areas, slope failure areas, debris flow areas, and volcanic
eruption areas, available in the literature [7, 9, 10] have
been considered. The ¢, values in the above studies were
determined using a laboratory ring shear test, and the av-
erage friction angle was considered. The 137 records used
in this study include the index properties of soil (LL, PL,
Pl, CF and API) and output the residual friction angles.
Out of 137 data points, 96 (70%) randomly selected sam-
ples were used for training and 41 (30%) data points were
used for testing and are presented in Table 1. The soils
studied herein have a broad range of geologic and geo-
graphic origins as reflected in the wide range and large
standard deviation values.

4. Results and Discussion

4.1. Artificial Neural Network Results

Different ANN models were tried using different combi-
nations of the above input variables and the developed
models are compared in terms of a correlation coefficient
(R). Two of the successful ANN models and their corre-
sponding R values are presented in Table 2. Model 1
with all four input parameters LL, PI, CF and API as the
inputs has the best correlation with ¢, values. Model 2,
using CF and API as the two inputs as proposed in the
literature [11] gave lower R values in training and testing,
suggesting an inferior fit. The models were also compared
in terms of a coefficient of determination (E) and the trend
in E is similar to the R values. This poor performance of
Model 2 as per the literature [11] may be due to the fact
that the model was developed for the tropical soil only.
This also focuses on the importance of developing ANN
models to consider databases for soils of different origin.
The weights and biases of the final network are presented
in Table 3 for BRNN, LMNN and DENN. The interpreta-
tion of the weights and biases to find out the importance
of the input parameters and their relationships with the
outputs will be discussed later. The above parameters can
also be used for presentations of the model equation [11].
The performance of BRNN, LMNN and DENN for the
training and testing data set is also shown in Figures 1, 2
and 3, respectively. It can be seen that there is substantial
scatter in the data, on both sides of the line of equality,
irrespective of the type of ANN model.

4.1.1.  Sensitivity Analysis

Sensitivity analysis is of utmost concern in selecting im-
portant input variables. Different sensitivity analyses with
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Table 1. The data considered for the present study.

TRAINING DATA

INPUTS ouT INPUTS OUT PUT
PUT

LL PI DPI |CF ¢ LL PI DPI |CF ¢

75.00 3800 [-215 (3020 [15.00 |100.00 |68.30 9.90  [42.80 |10.00

82.00 3910 |-6.16 [32.20 [16.00 |120.00 |65.50 750  |42.00 |10.90

78.00 3800 [-4.34 30.10 16.00 108.00 |66.20 1.96 41.20 14.70
66.70 2190 |-1219 (1750 2200 |[58.00 [29.20 1.46 21.30 19.20

71.00 3500 [-2.23 30.20 14.00 57.00 17.00 -10.01 |10.00 12.70
72.30 3710 |-1.08 31.10 14.00 57.00 23.00 -4.01 2.80 10.40
76.00 36.00 |-4.88 30.80 16.00 61.00 24.00 -5.93 18.00 18.10

68.10 3460 [-0.51 28.80 12.00 55.00 27.00 1.45 6.50 17.60
84.00 52.90 6.18 45.20 11.00 82.00 51.00 574 31.00 15.20

69.20 31.00 [-4.92 2630 [12.00 [84.00 [31.00 -15.72 {22.00 |14.00
81.40 4390 [-0.92 3750 |11.00 [54.00 [19.00 -5.82 10.00 12,90
78.20 2580 [-16.69 (2050 [12.00 [56.00 |28.00 172 5.40 25.70
75.50 2560 |-1492 (2150 (1200 |49.00 |9.00 -12.17 15.00 26.70
77.20 4950 |7.74 3820 [10.00 [41.00 [6.00 -9.33 2.90 28.90

66.00 31.00 |[-2.58 27.70 1250 |83.00 |54.00 8.01 51.00 11.00
55.00 18.00 |-7.55 19.50 18.80 |41.20 |29.90 14.42 10.00 |28.70
86.30 4710 [-1.30 28.20 10.00 |46.80 |30.30 10.74 10.00 |23.10
89.00 41.90 |-8.47 37.50 10.00 |67.70 |27.50 -7.32 17.00 14.40
73.00 3530 [-3.39 2210 1010 |7230 |29.90 -8.28 17.00 17.20
64.00 34.10 1.98 19.20 1270 |55.60 |38.60 12.61 1200 (830

68.00 3820 |3.16 2820 ]9.80 56.80 |34.30 7.44 16.00 |7.80

69.00 4000 (423  [2720 (980  [36.00 [10.00 -168  [10.00 |29.00
51.00 19.00 |-363 [21.80 [1070 [3500 |8.00 2295 (600  |29.00
71.50 3640 [-1.20 {2120 [19.00 [26.00 [8.00 362|500  [31.00
55.80 3260 |647 2050 (1800 [77.20 [20.70 -2106 |1620 |25.60
70.00 3800 [1.50  [2400 (890  [57.00 [17.30 -971  |1520 |25.80
65.00 3400 [115 2200 [1070 |57.30 [12.70 -1453 |1120 |23.40
61.00 1500 |-1493 [2000 [1620 [36.00 |5.00 668 [9.00  [2330
53.00 2600 [191  [1400 [1930 [4500 [19.00 075  |13.00 [2550
91.30 5050 |-155 [32.80 [10.00 [47.00 [9.00 -1071 (650  |28.00
94.60 6240 |794 (3320 [10.00 [3640 [9.60 237 [040  |28.40
69.00 3800 (223 (2750 (980  [31.10 [11.10 300 (100 [24.90
62.00 2900 |-1.66 [19.90 (1280 |54.00 [2350 132 (240  |24.40
59.00 19.00 |-9.47 [2000 |17.60 [4860 |16.60 -428 (430  [30.10
96.20 4800 |-763 3220 [12.00 [4270 [16.10 -047 420  |29.00
94.70 5920 |467  [3350 [12.00 [32.00 [4.50 -426  [1.80  |23.60
63.00 3200 |0.61  [2480 [17.10 [35.00 [6.00 -495 230  [21.10
71.00 3800 [077  [2620 [11.20 {3600 (550 -6.18 (390  [21.40
LL PI DPI |CF o LL PI DPI |CF o

93.00 9.00 -4429 [22.00 [35.00 [94.00 |60.00 5.98 50.00 [12.60
39.00 19.00 |5.13 40.00 [2560 [161.00 [132.00 29.07 |64.00 [6.90
64.00 35.00 |2.88 30.00 |13.00 [41.00 |20.00 4.67 38.00 [28.70
59.00 31.00 |253 43.00 [8.10 129.00 |89.00 9.43 91.00 [8.10
113.00 46.00 |-21.89 (2200 [34.00 [165.00 [46.00 -59.85 [65.00 [39.00
213.00 46.00 |-9489 (77.00 [39.00 [113.00 [91.00 23.11 5200 [5.50
59.00 29.00 |0.53 50.00 [9.20 22.00 |10.00 8.54 1400 |31.20
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TRAINING DATA
INPUTS ouT INPUTS OouT PUT
PUT
LL Pl D PI CF or LL Pl D PI CF or
89.00 60.00 |9.63 4500 1400 |[77.00 |37.00 -4.61 35.00 [19.30
63.00 20.00 |[-11.39 |48.00 |8.00 72.00 |43.00 5.04 57.00 |9.90
151.00 68.00 |-27.63 |28.00 |1810 [24.00 |12.00 9.08 20.00 |30.20
82.00 5400 |8.74 57.00 |8.40 73.00 |49.00 10.31 48.00 |7.10
62.00 38.00 |7.34 64.00 |9.50 82.00 [49.00 3.74 7000 |11.10
63.00 37.00 |5.61 51.00 |7.30 79.00 |58.00 1493 |57.00 |10.80
62.00 36.00 |5.34 46.00 |7.80 71.00 |43.00 577 55.00 |7.10
38.00 10.00 |-3.14 13.00 |25.00 |89.00 |50.00 -0.37 57.00 |13.10
29.00 13.00 [6.43 26.00 2530 (3400 |18.00 7.78 28.00 |23.80
71.00 31.00 |[-6.23 3400 1350 [80.00 |40.00 -3.80 52.00 |20.00
95.00 61.00 |6.25 59.00 |9.40 65.00 |33.00 0.15 52.00 |8.70
57.00 33.00 |5.99 50.00 |9.40 88.00 |45.00 -4.64 52.00 |15.90
59.00 36.00 |7.53 51.00 |7.10 2400 |12.00 9.08 20.00 |30.20
26.00 6.00 1.62 3200 [1010 (4200 |23.00 6.94 14.00 |24.40
31.00 12.00 |3.97 3200 1210 [118.00 |83.00 1146 |76.00 |7.40
66.00 4200 |8.42 53.00 |8.00 41.00 |25.00 9.67 28.00 |22.10
63.00 35.00 |3.61 63.00 |9.20 93.00 |61.00 771 60.00 |7.00
89.00 47.00 |-337 7200 [10.00 [52.00 |19.00 -4.36 20.00 |27.50
97.00 50.00 |-6.21 59.00 [9.90 62.00 |36.00 534 46.00 |8.20
54.00 21.00 |-3.82 39.00 [26.00 [58.00 |32.00 4.26 52.00 |10.70
85.00 58.00 [10.55 |50.00 |6.60
Table 2. Different ANN models and their statistical performance.
Models ANN Correlation coefficient (R)|RMSE MAE AAE
models
Training | Testing Training | Testing Training | Testing Training | Testing
Model 1 BRNN 0.888 0.738 5130 7.000 10.567 14.465 2.886 3.612
(Inputs: LL, P, |LMNN 0.877 0.722 3.81 5.189 10.780 13.231 3.063 3.759
CF, API) DENN 0.865 0.728 4.001 5.005 11.350 13.502 3.182 3.717
Model 2 BRNN 0.770 0.558 5.056 6.238 17.577 19.358 3.740 4270
(Inputs: CF, API)[LMNN 0.694 0.562 5.700 6.437 16.538 16.342 4.385 4.472
DENN 0.787 0.622 4.884 6.552 16.232 21.700 3.681 4.563

a correlation matrix between inputs and output, includ-
ing Garson’s algorithm, and the Connection Weight Ap-
proach [11, 16] are presented in Tables 4, 5, 6.

From Table 4 it can be seen that ¢, is highly correlated to
P1, followed by API and CF, as signified by the cross cor-
relation values of -0.563, -0.481 and -0.458, respectively.
The sensitivity analysis for the BRNN model with Gar-
son’s method and the Connection Weight Approach is also
given in Table 4. The CF is found to be the most impor-
tant input parameter for both Garson's approach (relative
importance 30.26%) and the Connection Weight Approach
(S; = -2.76). The negative S; values imply that PI, API

and CF are inversely related to ¢,. However, the rel-
ative importances of the other three inputs are different
for the two different approaches. The sensitivity analysis
for the DENN model with Garson's method and the Con-
nection Weight Approach is given in Table 5. With the
Connection Weight Approach, Pl should be the most im-
portant input parameter for both (S; = -5.04), followed by
LL (S; = 2.04) and CF (S; = -1.34). It was also observed
that CF, API and Pl are inversely related to ¢,. However,
with Garson'’s algorithm, LL is found to be the most impor-
tant input, followed by PI, CF, and API. Hence, it can be
concluded that inferences drawn from the DENN model
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Table 3. Connection weights and biases for the BRNN model.

ANN Neuron Weights (wix) Biases
method
LL Pl CF API o bk bo
BRNN | Hidden neuron 1 (k=1) |-2.019 -1.298 -0.287 |-0.415 1.698 |-2527 (1417
Hidden neuron 2 (k=2) |[-0.244 -1.318 -1.627 |-0.730 -1.597 |-1.129
Hidden neuron 3 (k=3) |1.365 -0.381 -2.031 |-1.046 2398 |-0.216
LMNN | Hidden neuron 1 (k=1) [-1.009 1.227 -0.732 |0.546 0.826 [1.924 |1.151
Hidden neuron 2 (k=2) |[-1.200 -0.409 1.887 1330 -1.981 [0.118
Hidden neuron 3 (k=3) [-2.175 -0.516 0.836 |0.014 1227 |-2529
DENN |Hidden neuron 1 (k=1) [-2.086 -0.227 1233 |-0.130 1171 -2.613 |0.000
Hidden neuron 2 (k=2) |-2.633 1.219 1.710 |0.876 -1.199 10.000
Hidden neuron 3 (k=3) |1.154 -2.885 -0.638 |-0.037 1149  |3.977

Table 4. Relative Importance of different inputs as per Garson’s algorithm and connection weight approach as per BRNN Model weights.

Parameters Pearson’s correlation Garson’s algorithm Connection
weight approach
Correlation |Ranking |Relative im-|Ranking of|S; value |Ranking of
values portance (%) |inputs inputs
LL -0.254 4 28.26 2 0.24 4
Pl -0.563 1 24.60 3 -1.01 3
CF -0.458 3 30.26 1 -2.76 1
API -0.481 2 16.88 4 -2.05 2

Table 5. Relative Importance of different inputs as per Garson’s algorithm and connection weight approach as per DENN Model weights.

Parameters |Garson's algorithm Connection weight approach
Relative im-|Ranking of |S; value |Ranking of inputs
portance (%) |inputs as as per relative im-
per relative portance
importance
LL 40.71 1 2.04 2
Pl 28.77 2 -5.04 1
CF 24.55 3 -1.34 3
API 5.98 4 -1.25 4

Table 6. Relative Importance of different inputs as per Garson’s algorithm and connection weight approach as per LMNN Model weights.

Parameters Garson'’s algorithm Connection weight approach

Relative im-|Ranking of in- |S; value as|Ranking of in-
portance (%) |puts as per rela- |per connection|puts as per rela-
tive importance  |weight approach |tive importance

LL 38.33 1 -1.12 4
Pl 19.32 3 1.19 3
CF 27.85 2 -3.32 1
API 14.50 4 =217 2
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Figure 1. The predicted and observed values for the Model 1 using
BRNN.
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Figure 2. The predicted and observed values for the Model 1 using
LMNN.

from both of the approaches are not in compliance with
the physical phenomena. The sensitivity analysis for the
LMNN model with Garson's method and the Connection
Weight Approach is given in Table 6. With the Connec-
tion Weight Approach, similar to results from the BRNN
model, CF is found to be the most important input param-
eter for both (S; = -3.32), followed by APl and PI. It was
also observed that CF, DPI and LL are inversely related
to ¢,. However, with Garson’s algorithm, LL is found to
be the most important input, followed by CF, Pl and API.
Hence, it can be concluded that inferences drawn from
the Connection Weight Approach is more similar to phys-
ical phenomena. Similar observations have been made by

®  Training data B
O Testing data g |
— Line of equality A

IS
=)
1

w
o
1

w
o
1

o)
4]
1

T,

204

Predicted ¢_value
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Observed ¢ values

Figure 3. The predicted and observed values for the Model 1 using
DENN.

Das and Basudhar [11, 16] and Olden et al. [25]. This may
be due to the fact that in case of the Connection Weight
Approach, actual weights are considered, whereas in the
case of Garson’s algorithm, absolute values of the weights
are considered.

4.2. Results of SVM Method

The performance of the SVM model depends upon the type
of kernel function, the optimum capacity factor C, and the
optimum error insensitive zone € [24]. With different ker-
nel functions, different combinations of C and & values
were tried in order to arrive at the best performance for
training data, and the final C and ¢ values are presented
in Table 7. Two types of models were developed based on
the combination of input parameters; Model 1, with input
parameters as LL, Pl, APl and CF and Model 2, with API
and CF. Similarly, with kernel functions in the form of a ra-
dial (Gaussian) basis function, a polynomial function and
a spline kernel function, the SVM models discussed herein
are denoted as SVM-G (Gaussian), SVM-P (Polynomial)
and SVM-S (Spline), respectively. A detailed parametric
study was conducted and the final SVM parameters corre-
sponding to different kernel functions and corresponding
R values are shown in Table 7. In order to evaluate the
capabilities of the SVM models, each model was validated
with testing data that were not part of the training data
set. As discussed earlier, although the R values for train-
ing data are better (R = 0.965) for SVM-P, with testing
data Model 1 is found to be more efficient when SVM-G
is used. The training and testing data for Model 1 with
different kernel functions are presented in Figure 4. Simi-
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Figure 4. The predicted and observed values for Model 1 using (a)
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Figure 6. The variation of the data points for (a) training and (b)
testing data using different SVM models for Model 1.

larly Figure 5 shows the data points for Model 2. It can be
seen that, compared to ANN models, there is considerably
less scatter in the data both for Model 1 and Model 2.

The scatter in data points for training and testing data
using the three different SVM models for Model 1 was
examined separately in Figure 6. It can be seen that for
Model 1 the predicted data points are within 80% of the
observed values, both for training and testing data. The
efficacy of the developed model was judged from its per-
formances on testing data, the variation of observed and
predicted values for all three models when the testing
data was used is presented in Figure 7. In comparison
to other SVM models, more data points as per SVM-G
models are closer to the observed values, demonstrating
its slight superiority. Similarly, Figure 8 shows the varia-
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The variation of the observed and predicted values using
different SVM models for Model 1.
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testing data using different SVM models for Model 2.
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Table 7. Performance of different SVM models with SVM parameters.

Model Type of kernel|Correlation coefficient (R) |[Coefficient of determina- |C € Number
function tion (E) of support
vectors
Training Testing Per-| Training Testing Per-
performance |formance performance [formance
Model | (LL, |Gauss, width=0.4 [0.954 0.945 0.910 0.894 100 |0.02 80
Pl, CF and Polynomial (3) 0.965 0.933 0.929 0.871 60 0.03 79
DPI as inputs) | Spline 0.939 0.903 0.881 0.815 50 0.01 78
Model Il (CF |Gauss, width=0.1 |0.930 0.925 0.864 0.851 10 0.001 90
and DPI as Polynomial (2) 0.955 0.902 0.910 0.812 40 0.008 |92
inputs) Spline 0.927 0.911 0.858 0.828 60 0.004 |93
35 T T T T T 20
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Figure 9. The variation of the observed and predicted values using
different SVM models for Model 2.

tion of predicted and observed data points using Model 2.
The variation of observed and predicted ¢, values for the
testing data using Model 2 is shown in Figure 9. It can
be seen that, here the data points are more scattered par-
ticularly in the ¢, values of 100 - 160 in comparison to
Model 1. This may be due to the inadequacy of the model
for the whole range of data. Hence Model 1 is preferred
over Model 2.

Similarly, other statistical parameters like Maximum Ab-
solute Error (MAE), Average Absolute Error (AAE) and
Root Mean Square Error (RMSE) are used to compare
Model 1 and Model 2 using different SVM models. The
error values for Model 1 are shown in Figure 10 and those
for Model 2 in Figure 11. As the statistical performances
of the models are different for the training and testing
datasets, the ‘best’ model is selected based on the perfor-
mances of the model for the new (testing) dataset. Based
on the MAE, AAE and RMSE values of the testing data

(a)

N ]

[BSYM-G 615 187 2.3
BSY-F R 196 262
E 1150 231 3.13

(b)

Figure 10. Comparison of prediction capabilities of SVM for Model 1
using (a) training data and (b) testing data.

(Figure 10b), Model 1 using SVM-G was found to be the
‘best’ model based on AAE. Similarly from the Figure 11,
for Model 2, SVM-G was found to be the ‘best’ model.
Thus, another important aspect of this paper is the pre-
sentation of the results of SVM models in terms of an
equation which can be used by the professional for simple
spread sheet calculations.

Model 1 using SVM-G gives better performance than
Model 2. The following equation can be developed for
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Figure 11. Comparison of prediction capabilities of SVM for Model 2
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Figure 12. Vvalues of (a; — a}) obtained as per SVM analysis for
Model 1.

the prediction of ¢, from Equation 8 by substituting

b=0,K (x;, x) = exp (—M) and s = 0.4.

202

il Ix — x;|”
¢,:Z(a~l—af)exp(— 032 ) (10)

i=1

The values of (o; — «f) are given in Figure 12.
It may be mentioned here that the input data for all other
values (a; — af) are zero, except those for the support vec-

Sensitivity analysis of parameters
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Figure 13. Sensitivity analysis of input parameters as per SYM-G
for the Model 1.

tors. This model equation highlights the importance of the
support vectors, and of their number.

4.2.1. Sensitivity Analysis /Selection of Important Input
Variables

The sensitivity analysis of each input parameter for the
SVM model is carried out as per the following formula:

N

1 % change in output
S =2 (o] x100 (11
(9 N = ( % change in input /.X ()

where, N is the number of data points [25]. The trained
model is fed with a varying input, keeping the other inputs
constant. Analysis was carried out by varying each input
parameter, one at a time, at a constant rate of 20%, and
the result is shown in Figure 13. It can be seen that API
is the important parameters followed by CF, LL and PI
and this matches well with the previous findings, such as
those of Wesley [7].

5. Conclusions

In geotechnical problems involving large deformations
such as landslides, soils get remoulded and it is more
appropriate to analyse them on the basis of their residual
shear strength than on their peak shear strength. Even
in many of the first-time slope failures, soil along parts of
the failure surface is at a residual strength. This study
discusses the correlation of residual friction angle of clay
(¢,) with the index properties of soil, and considers soils
of different origins and a wide range of parameter values
using ANN and SVM analyses.

Based on different ANN models, Model 1, with LL, PI, CF
and API as the inputs, has the best correlation with ¢,
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values. Based on correlation coefficient (R) values, the
performances of developed ANN models (BRNN, LMNN
and DENN) were found to be almost equally efficient.
Based on different sensitivity analyses for the ANN mod-
els, it was observed that the important inputs were found
to vary depending upon the ANN model and the sensitiv-
ity analysis used. But the Connection Weight Approach
is more effective in drawing conclusions regarding corre-
lations of inputs with outputs, corresponding to physical
phenomena.

While using SVM models, based on the training and test-
ing performances of R, MAE, AAE and RMSE values,
Model 1 using SVM-G was found to be more efficient.
It was also observed that for Model 1 using SVM, the
predicted data points are within 80% of the observed val-
ues, both for training and testing data. Hence, it can be
concluded that SVM model is more efficient in predicting
the residual friction angle of clay in comparison to the
ANN models. Using sensitivity analysis it was observed
that API is the most important parameter, followed by CF,
LL and PI. A model equation was presented for the devel-
oped SVM model, which can be used by the professionals
for simple spread sheet calculations.
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