
Cent. Eur. J. Geosci. • 3(4) • 2011 • 449-461
DOI: 10.2478/s13533-011-0043-1

Central European Journal of Geosciences

Machine learning techniques applied to prediction of
residual strength of clay

Research Article

Sarat Kumar Das1∗, Pijush Samui2 † , Shakilu Zama Khan3, Nagarathnam Sivakugan4

1 Associate Professor, Civil Engineering Department,
National Institute of Technology, Rourkela, India

2 Associate Professor, Centre for Disaster Mitigation and Management,
VIT University, Vellore-632014, India

3 Civil Engineering Department, BIET,
B.P. University of Technology, Orissa, India

4 Civil & Environmental Engineering,
James Cook University, Queensland, Australia

Received 11 September 2011; accepted 16 November 2011

Abstract: Stability with first time or reactivated landslides depends upon the residual shear strength of soil. This paper
describes prediction of the residual strength of soil based on index properties using two machine learning tech-
niques. Different Artificial Neural Network (ANN) models and Support Vector Machine (SVM) techniques have
been used. SVM aims at minimizing a bound on the generalization error of a model rather than at minimizing the
error on the training data only. The ANN models along with their generalizations capabilities are presented here
for comparisons. This study also highlights the capability of SVM model over ANN models for the prediction of
the residual strength of soil. Based on different statistical parameters, the SVM model is found to be better than
the developed ANN models. A model equation has been developed for prediction of the residual strength based
on the SVM for practicing geotechnical engineers. Sensitivity analyses have been also performed to investigate
the effects of different index properties on the residual strength of soil.
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1. Introduction

Stability of natural slopes or landslides depends upon theshear strength parameters of clay, which varies signifi-
∗E-mail: saratdas@rediffmail.com
†E-mail: pijush.phd@gmail.com, Tel:91-416-2202283,Fax: 91-416-2243092

cantly between the peak and residual states. This is es-pecially true in sensitive clays where there is a substan-tial reduction in shear strength from a peak to a residualstate. At a residual state, the clay has undergone a largestrain and hence remoulded, with previous bonds brokenand prior fabric destroyed. As a result, in a residual statethe clay exhibits no cohesion. Further, the friction angle(φr) is substantially less than the friction angle at a peakstate (φp), resulting in lower shear strength. In geotech-
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nical problems involving large deformations such as land-slides, it is appropriate that the residual shear strengthparameters (cr = 0 and φr) be used in the analysis.The residual strength of soils has received consider-able attention after Skempton suggested that the sta-bility of reactivated landslides are governed by residualstrength [1]. Meshri and Shahien [2] analysed 99 clayslopes and observed that the shear strength of a clay isclose to the residual value in most cases and, even formany of the first-time slope failures, it appears that partof the slip surface is in the residual condition.There had been attempts to develop correlations betweenthe residual friction angle of soils and index propertiessuch as Atterberg limits, and clay fraction. Skempton [1],related the φr value with the clay fraction (CF). Gener-ally, φr decreases with liquid limit (LL), and for a givenLL and CF, φr decreases with increase in normal effectivestress [3]. Mesri and Cepeda-Diaz [4] presented a corre-lation between φr and LL. Colotta et al. [5] have given acorrelation between φr and a parameter which is a func-tion of LL, plasticity index (PI) and CF. For sedimentarysoil, Stark and Eid [6] observed that the type of mineralsand percent of clay govern the value of φr . Using LL as anindicator of clay mineral, they proposed correlations of φrwith LL for various ranges of CF. Wesley [7] found that fortropical clays φr can be better related with ∆PI, the devi-ation from the A-line in Casagrande’s classification chartgiven by: ∆PI = PI− 0.73(LL− 20) (1)
The data points were scattered and the correlation is validfor highly plastic clays where LL > 50. All the abovecorrelations are graphical. Sridharan and Rao [8] observedthat while φr is related to LL, PI and CF, it gives the bestcorrelation with CF.Using data from soil specimens collected from more than80 natural disaster areas, Tiwari and Marui [9], proposeda triangular chart to predict the residual friction angle
φr , based on the mineralogical composition. The corre-lation of φr is with the liquid limit, the plasticity index,the clay fraction, the specific surface area, and the pro-portion of clay mineral smectite. The model gave goodpredictions for the samples they had tested, but under-predicted the 53 samples tested by other researchers.Kaya and Kwong [10] studied soil properties of some ac-tive landslides in Hawaii to evaluate correlations betweenthe residual strength and soil indices. The results showedthat for the colluvial soils, which are rich in an amorphousphase, there is poor correlation between soil index prop-erties and residual friction angle. Moreover, it is difficultto find out the specific surface area of the clay mineralsand the mineral composition of the clay soil samples.

From the above discussions, it was quite clear that φr isa function of several variables that can be represented byindex properties. Nevertheless, most of the relationshipsare developed in terms of charts. The correlation given byTiwari and Marui [9] is based on the mineralogical contentof the clay but also is presented in graphical form. For apracticing geotechnical engineer, finding out the specificsurface and mineralogical content is not always handy.Hence, it is highly desirable to develop a correlation ormethod where φr can be expressed in terms of all therelevant variables. Das and Basudhar [11] used artificialneural network modelling to predict the residual frictionangle of clay with a high degree of accuracy. But theabove study is limited to tropical soil of a specific regiononly. Hence, there is an acute need to develop a suitableand efficient method applicable to soils of different origins.In the present study three ANN models (BRNN, LMNNand DENN) and three SVM models (SVM-G, SVM-P,SVM-S) have been developed to predict the residual fric-tion angle of clay based on the index properties of soil(LL, PI, CF and ∆PI). The statistical performance criteria,such as overfitting ratio, maximum absolute error, averageabsolute error and root mean square error, are used toevaluate the quality of predictions that come from the dif-ferent ANN and SVM models. A model equation based onthe above analysis is also presented to show correlation,which can be determined using spreadsheet inputs. Thedegree of importance of the input parameters are identi-fied using SVM and ANN models.
2. Methodology
In the present study artificial intelligence techniques ANNand SVM have been used to examine the effects of theindex properties on the residual friction angle. The salientfeatures of the ANN and SVM models are presented herebriefly for completeness.
2.1. Artificial Neural Network (ANN)

Artificial Neural Network modelling is an artificial in-telligence system which is an alterative statistical toolinspired by the behaviour of the human brain and ner-vous system. It has been applied successfully to awide range of geotechnical problems. In the presentstudy the ANN models are developed using two differ-ent training algorithms, Bayesian Regularization Neu-ral Network (BRNN) and Differential Evolution NeuralNetwork (DENN), and are compared with the commonlyused Levenberg-Marquardt Neural Network algorithms(LMNN).
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2.1.1. Bayesian Regularization Method (BRNN)In the case of using a Back Propagation Neural Network(BPNN), the error function considered for minimization isthe Mean Square Error (MSE). This may lead to overfit-ting due to unbound values of weights. In a Bayesian reg-ularization method, the performance function is changedby adding a term that consists of the mean square errorof weights and biases as:
MSEREG = γMSE + (1− γ) MSW (2)

where MSE is the mean square error of the network, γis the performance ratio and MSW is the mean square ofweights and defined as:
MSW = 1

n

n∑
j = 1 w

2
j (3)

Where wj is the weight.This performance function will cause the network to havesmaller weights and biases, thereby reducing the likeli-hood of overfitting. The optimal regularization parameter
γ is determined through a Bayesian framework [12], as thelow value of γ will not adequately fit the training dataand a high value of it may result in overfit. The number ofnetwork parameters (weights and biases) effectively usedby the network can be determined by the above algorithm.The effective number of parameters remains the same irre-spective of the total number of parameters in the network.The present study was carried out using the built-in func-tions in MATLAB [13]. Demuth and Beale [12] suggestedthat the above combination works best when the inputsand targets area are scaled in the range [-1, 1].
2.1.2. Differential Evolution Neural Network (DENN)The training of the feed-forward neural network using dif-ferential evolution optimization is known as a DifferentialEvolution Neural Network (DENN) [14]. The DE opti-mization is a population-based heuristic global optimiza-tion method. Unlike other evolutionary optimization tech-niques, in DE the vectors in current populations are ran-domly sampled and combined to create vectors for the nextgeneration. The real valued crossover factor and mutationfactor govern the convergence of the search process. Thedetails of DENN are available in the literature [14]. Theresults of an ANN model trained with DENN and BRNNare compared with that from the commonly used LMNNto discuss the quality of the prediction of the differentnetworks.LMNN is the most widely used ANN method and has beenextensively used in geotechnical engineering [11, 15, 16]and is not elaborated here.

2.2. Support Vector Machine
Support Vector Machine (SVM) originated from the con-cept of statistical learning theory pioneered by Boser
et al. [17]. Our study uses the SVM as a regressiontechnique by introducing an error (ε) ε-insensitive lossfunction. In this section, a brief introduction of how toconstruct an SVM for regression problems is presented.Further details can be found in many publications [17–21]. There are three distinct characteristics when SVMis used to estimate the regression function: the type ofkernel function, the optimum capacity factor C, and theoptimum error insensitive zone ε. Consider a set of train-ing data{(x1, y1), ...., (xl, yl)}, x ∈ Rn, y ∈ r, where x isthe input, y is the output, RN is the N-dimensional vectorspace and r is the one-dimensional vector space. The in-puts considered are LL, PI, CF and ∆PI. The output of theSVM model is φr . In other words, x = [LL,PI,CF,∆PI]and y = φr .The ε-insensitive loss function can be described in thefollowing way.
Lε (y) = 0 for |f (x)− y| < ε otherwise Lε (y) = |f (x)− y|−ε(4)This defines an ε tube such that if the predicted valueis within the tube, the loss is zero, while if the predictedpoint is outside the tube, the loss is equal to the absolutevalue of the deviation minus ε. The main aim in SVM isto find a function f (x) that gives a deviation of ε from theactual output and at the same time is as flat as possible.Let us assume a linear function

f (x) = (w · x) + b, w ∈ Rn, b ∈ r (5)
where, w = an adjustable weight vector and b = the scalarthreshold.Flatness in the case of 5 means a small value of w. Oneway of obtaining this is by minimizing the Euclideannorm∥w∥2. This is equivalent to the following convex op-timization problem:Minimize: 12 ∥w∥2Subjected to: yi − (〈w.xi〉+ b) ≤ ε, i = 1, 2,..., l

(〈w.xi〉+ b)− yi ≤ ε, i = 1, 2, ..., l (6)
The above convex optimization problem is feasible. Some-times, however, this may not be the case, or we also maywant to allow for some errors. This is analogous to the“soft margin” loss function [22] that was used in SVM byCortes and Vapnik [19]. The parameters ξi, ξ∗i are slackvariables that determine the degree to which samples witherror more than ε be penalized. In other words, any er-ror smaller than ε does not require ξi or ξ∗i and hence
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does not enter the objective function because these datapoints have a value of zero for the loss function. The slackvariables (ξi, ξ∗i ) have been introduced to avoid infeasibleconstraints in the optimization problem below:Minimize: 12 ∥w∥2 + C∑li=1 (ξi + ξ∗i )Subjected to: yi − (〈w · xi〉+ b) ≤ ε + ξi, i = 1, 2,...,l(〈w · xi〉+ b)− yi ≤ ε + ξ∗i , i = 1, 2,...,l
ξi ≥ 0 and ξ∗i ≥ 0, i = 1, 2, ..., l (7)

The constant C (0 < C < ∞) determines the trade-offbetween the flatness of f and the amount up to which de-viations larger than ε are tolerated [23]. This optimizationproblem 7 is solved by Lagrangian Multipliers [21], andits solution is given by:
f (x) = nsv∑

i=1 (αi − α∗i ) (xi · x) + b (8)
where b = − ( 12)w· [xr + xs]
αi and α∗i are the Lagrangian multipliers; and nsv is thenumber of support vectors. An important aspect is thatsome Lagrangian multipliers (αi, α∗i ) will be zero, implyingthat these training objects are considered to be irrelevantfor the final solution (cf. matrix sparseness). The trainingobjects with non-zero Lagrangian multipliers are calledsupport vectors.When linear regression is not appropriate, then inputdata have to be mapped into a high dimensional featurespace through some nonlinear mapping technique [17].The two steps in this exercise are, firstly, carrying outa fixed nonlinear mapping of the data onto the featurespace and, secondly, carrying out a linear regression inthe high dimensional space. The input data are mappedonto the feature space by a map Φ. The dot productgiven by Φ (xi) ·Φ (x) is computed as a linear combinationof the training points. The concept of a kernel function[K (xi, x) = Φ (xi) ·Φ (x)] has been introduced to reduce thecomputational demand [18, 19]. So, equation 8 becomes:

f (x) = nsv∑
i=1 (αi − α∗i )K (xi · x) + b (9)

Some common kernels, such as homogeneous polyno-mial expressions, non-homogeneous polynomial expres-sions, radial basis functions, Gaussian functions and sig-moid functions, and their combinations, have been usedfor non-linear cases. The details about the SVM andits implementation in geotechnical engineering have beenpresented in Das et al. [24].

3. Database and Preprocessing
In the present study, databases obtained from landslideareas, slope failure areas, debris flow areas, and volcaniceruption areas, available in the literature [7, 9, 10] havebeen considered. The φr values in the above studies weredetermined using a laboratory ring shear test, and the av-erage friction angle was considered. The 137 records usedin this study include the index properties of soil (LL, PL,PI, CF and ∆PI) and output the residual friction angles.Out of 137 data points, 96 (70%) randomly selected sam-ples were used for training and 41 (30%) data points wereused for testing and are presented in Table 1. The soilsstudied herein have a broad range of geologic and geo-graphic origins as reflected in the wide range and largestandard deviation values.
4. Results and Discussion
4.1. Artificial Neural Network Results
Different ANN models were tried using different combi-nations of the above input variables and the developedmodels are compared in terms of a correlation coefficient(R). Two of the successful ANN models and their corre-sponding R values are presented in Table 2. Model 1with all four input parameters LL, PI, CF and ∆PI as theinputs has the best correlation with φr values. Model 2,using CF and ∆PI as the two inputs as proposed in theliterature [11] gave lower R values in training and testing,suggesting an inferior fit. The models were also comparedin terms of a coefficient of determination (E) and the trendin E is similar to the R values. This poor performance ofModel 2 as per the literature [11] may be due to the factthat the model was developed for the tropical soil only.This also focuses on the importance of developing ANNmodels to consider databases for soils of different origin.The weights and biases of the final network are presentedin Table 3 for BRNN, LMNN and DENN. The interpreta-tion of the weights and biases to find out the importanceof the input parameters and their relationships with theoutputs will be discussed later. The above parameters canalso be used for presentations of the model equation [11].The performance of BRNN, LMNN and DENN for thetraining and testing data set is also shown in Figures 1, 2and 3, respectively. It can be seen that there is substantialscatter in the data, on both sides of the line of equality,irrespective of the type of ANN model.
4.1.1. Sensitivity AnalysisSensitivity analysis is of utmost concern in selecting im-portant input variables. Different sensitivity analyses with
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Table 1. The data considered for the present study.

TRAINING DATAINPUTS OUTPUT INPUTS OUT PUT
LL PI D PI CF φr LL PI D PI CF φr75.00 38.00 -2.15 30.20 15.00 100.00 68.30 9.90 42.80 10.0082.00 39.10 -6.16 32.20 16.00 120.00 65.50 -7.50 42.00 10.9078.00 38.00 -4.34 30.10 16.00 108.00 66.20 1.96 41.20 14.7066.70 21.90 -12.19 17.50 22.00 58.00 29.20 1.46 21.30 19.2071.00 35.00 -2.23 30.20 14.00 57.00 17.00 -10.01 10.00 12.7072.30 37.10 -1.08 31.10 14.00 57.00 23.00 -4.01 2.80 10.4076.00 36.00 -4.88 30.80 16.00 61.00 24.00 -5.93 18.00 18.1068.10 34.60 -0.51 28.80 12.00 55.00 27.00 1.45 6.50 17.6084.00 52.90 6.18 45.20 11.00 82.00 51.00 5.74 31.00 15.2069.20 31.00 -4.92 26.30 12.00 84.00 31.00 -15.72 22.00 14.0081.40 43.90 -0.92 37.50 11.00 54.00 19.00 -5.82 10.00 12.9078.20 25.80 -16.69 20.50 12.00 56.00 28.00 1.72 5.40 25.7075.50 25.60 -14.92 21.50 12.00 49.00 9.00 -12.17 5.00 26.7077.20 49.50 7.74 38.20 10.00 41.00 6.00 -9.33 2.90 28.9066.00 31.00 -2.58 27.70 12.50 83.00 54.00 8.01 51.00 11.0055.00 18.00 -7.55 19.50 18.80 41.20 29.90 14.42 10.00 28.7086.30 47.10 -1.30 28.20 10.00 46.80 30.30 10.74 10.00 23.1089.00 41.90 -8.47 37.50 10.00 67.70 27.50 -7.32 17.00 14.4073.00 35.30 -3.39 22.10 10.10 72.30 29.90 -8.28 17.00 17.2064.00 34.10 1.98 19.20 12.70 55.60 38.60 12.61 12.00 8.3068.00 38.20 3.16 28.20 9.80 56.80 34.30 7.44 16.00 7.8069.00 40.00 4.23 27.20 9.80 36.00 10.00 -1.68 10.00 29.0051.00 19.00 -3.63 21.80 10.70 35.00 8.00 -2.95 6.00 29.0071.50 36.40 -1.20 21.20 19.00 26.00 8.00 3.62 5.00 31.0055.80 32.60 6.47 20.50 18.00 77.20 20.70 -21.06 16.20 25.6070.00 38.00 1.50 24.00 8.90 57.00 17.30 -9.71 15.20 25.8065.00 34.00 1.15 22.00 10.70 57.30 12.70 -14.53 11.20 23.4061.00 15.00 -14.93 20.00 16.20 36.00 5.00 -6.68 9.00 23.3053.00 26.00 1.91 14.00 19.30 45.00 19.00 0.75 13.00 25.5091.30 50.50 -1.55 32.80 10.00 47.00 9.00 -10.71 6.50 28.0094.60 62.40 7.94 33.20 10.00 36.40 9.60 -2.37 0.40 28.4069.00 38.00 2.23 27.50 9.80 31.10 11.10 3.00 1.00 24.9062.00 29.00 -1.66 19.90 12.80 54.00 23.50 -1.32 2.40 24.4059.00 19.00 -9.47 20.00 17.60 48.60 16.60 -4.28 4.30 30.1096.20 48.00 -7.63 32.20 12.00 42.70 16.10 -0.47 4.20 29.0094.70 59.20 4.67 33.50 12.00 32.00 4.50 -4.26 1.80 23.6063.00 32.00 0.61 24.80 17.10 35.00 6.00 -4.95 2.30 21.1071.00 38.00 0.77 26.20 11.20 36.00 5.50 -6.18 3.90 21.40LL PI D PI CF φr LL PI D PI CF φr93.00 9.00 -44.29 22.00 35.00 94.00 60.00 5.98 50.00 12.6039.00 19.00 5.13 40.00 25.60 161.00 132.00 29.07 64.00 6.9064.00 35.00 2.88 30.00 13.00 41.00 20.00 4.67 38.00 28.7059.00 31.00 2.53 43.00 8.10 129.00 89.00 9.43 91.00 8.10113.00 46.00 -21.89 22.00 34.00 165.00 46.00 -59.85 65.00 39.00213.00 46.00 -94.89 77.00 39.00 113.00 91.00 23.11 52.00 5.5059.00 29.00 0.53 50.00 9.20 22.00 10.00 8.54 14.00 31.20
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TRAINING DATAINPUTS OUTPUT INPUTS OUT PUT
LL PI D PI CF φr LL PI D PI CF φr89.00 60.00 9.63 45.00 14.00 77.00 37.00 -4.61 35.00 19.3063.00 20.00 -11.39 48.00 8.00 72.00 43.00 5.04 57.00 9.90151.00 68.00 -27.63 28.00 18.10 24.00 12.00 9.08 20.00 30.2082.00 54.00 8.74 57.00 8.40 73.00 49.00 10.31 48.00 7.1062.00 38.00 7.34 64.00 9.50 82.00 49.00 3.74 70.00 11.1063.00 37.00 5.61 51.00 7.30 79.00 58.00 14.93 57.00 10.8062.00 36.00 5.34 46.00 7.80 71.00 43.00 5.77 55.00 7.1038.00 10.00 -3.14 13.00 25.00 89.00 50.00 -0.37 57.00 13.1029.00 13.00 6.43 26.00 25.30 34.00 18.00 7.78 28.00 23.8071.00 31.00 -6.23 34.00 13.50 80.00 40.00 -3.80 52.00 20.0095.00 61.00 6.25 59.00 9.40 65.00 33.00 0.15 52.00 8.7057.00 33.00 5.99 50.00 9.40 88.00 45.00 -4.64 52.00 15.9059.00 36.00 7.53 51.00 7.10 24.00 12.00 9.08 20.00 30.2026.00 6.00 1.62 32.00 10.10 42.00 23.00 6.94 14.00 24.4031.00 12.00 3.97 32.00 12.10 118.00 83.00 11.46 76.00 7.4066.00 42.00 8.42 53.00 8.00 41.00 25.00 9.67 28.00 22.1063.00 35.00 3.61 63.00 9.20 93.00 61.00 7.71 60.00 7.0089.00 47.00 -3.37 72.00 10.00 52.00 19.00 -4.36 20.00 27.5097.00 50.00 -6.21 59.00 9.90 62.00 36.00 5.34 46.00 8.2054.00 21.00 -3.82 39.00 26.00 58.00 32.00 4.26 52.00 10.7085.00 58.00 10.55 50.00 6.60

Table 2. Different ANN models and their statistical performance.

Models ANNmodels Correlation coefficient (R) RMSE MAE AAE
Training Testing Training Testing Training Testing Training TestingModel 1 BRNN 0.888 0.738 5.130 7.000 10.567 14.465 2.886 3.612(Inputs: LL, PI, LMNN 0.877 0.722 3.81 5.189 10.780 13.231 3.063 3.759CF, ∆PI) DENN 0.865 0.728 4.001 5.005 11.350 13.502 3.182 3.717Model 2 BRNN 0.770 0.558 5.056 6.238 17.577 19.358 3.740 4.270(Inputs: CF, ∆PI) LMNN 0.694 0.562 5.700 6.437 16.538 16.342 4.385 4.472DENN 0.787 0.622 4.884 6.552 16.232 21.700 3.681 4.563

a correlation matrix between inputs and output, includ-ing Garson’s algorithm, and the Connection Weight Ap-proach [11, 16] are presented in Tables 4, 5, 6.
From Table 4 it can be seen that φr is highly correlated toPI, followed by ∆PI and CF, as signified by the cross cor-relation values of -0.563, -0.481 and -0.458, respectively.The sensitivity analysis for the BRNN model with Gar-son’s method and the Connection Weight Approach is alsogiven in Table 4. The CF is found to be the most impor-tant input parameter for both Garson’s approach (relativeimportance 30.26%) and the Connection Weight Approach(Sj = -2.76). The negative Sj values imply that PI, ∆PI

and CF are inversely related to φr . However, the rel-ative importances of the other three inputs are differentfor the two different approaches. The sensitivity analysisfor the DENN model with Garson’s method and the Con-nection Weight Approach is given in Table 5. With theConnection Weight Approach, PI should be the most im-portant input parameter for both (Sj = -5.04), followed byLL (Sj = 2.04) and CF (Sj = -1.34). It was also observedthat CF, ∆PI and PI are inversely related to φr . However,with Garson’s algorithm, LL is found to be the most impor-tant input, followed by PI, CF, and ∆PI. Hence, it can beconcluded that inferences drawn from the DENN model
454
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Table 3. Connection weights and biases for the BRNN model.

ANNmethod Neuron Weights (wik ) Biases
LL PI CF ∆PI φr bhk b0BRNN Hidden neuron 1 (k=1) -2.019 -1.298 -0.287 -0.415 1.698 -2.527 1.417Hidden neuron 2 (k=2) -0.244 -1.318 -1.627 -0.730 -1.597 -1.129Hidden neuron 3 (k=3) 1.365 -0.381 -2.031 -1.046 2.398 -0.216LMNN Hidden neuron 1 (k=1) -1.009 1.227 -0.732 0.546 0.826 1.924 1.151Hidden neuron 2 (k=2) -1.200 -0.409 1.887 1.330 -1.981 0.118Hidden neuron 3 (k=3) -2.175 -0.516 0.836 0.014 1.227 -2.529DENN Hidden neuron 1 (k=1) -2.086 -0.227 1.233 -0.130 1.171 -2.613 0.000Hidden neuron 2 (k=2) -2.633 1.219 1.710 0.876 -1.199 0.000Hidden neuron 3 (k=3) 1.154 -2.885 -0.638 -0.037 1.149 3.977

Table 4. Relative Importance of different inputs as per Garson’s algorithm and connection weight approach as per BRNN Model weights.

Parameters Pearson’s correlation Garson’s algorithm Connectionweight approachCorrelationvalues Ranking Relative im-portance (%) Ranking ofinputs Si value Ranking ofinputsLL -0.254 4 28.26 2 0.24 4PI -0.563 1 24.60 3 -1.01 3CF -0.458 3 30.26 1 -2.76 1∆PI -0.481 2 16.88 4 -2.05 2

Table 5. Relative Importance of different inputs as per Garson’s algorithm and connection weight approach as per DENN Model weights.

Parameters Garson’s algorithm Connection weight approach
Relative im-portance (%) Ranking ofinputs asper relativeimportance

Si value Ranking of inputsas per relative im-portance
LL 40.71 1 2.04 2PI 28.77 2 -5.04 1CF 24.55 3 -1.34 3∆PI 5.98 4 -1.25 4

Table 6. Relative Importance of different inputs as per Garson’s algorithm and connection weight approach as per LMNN Model weights.

Parameters Garson’s algorithm Connection weight approachRelative im-portance (%) Ranking of in-puts as per rela-tive importance
Si value asper connectionweight approach

Ranking of in-puts as per rela-tive importanceLL 38.33 1 -1.12 4PI 19.32 3 1.19 3CF 27.85 2 -3.32 1∆PI 14.50 4 -2.17 2
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Figure 1. The predicted and observed values for the Model 1 using
BRNN.

Figure 2. The predicted and observed values for the Model 1 using
LMNN.

from both of the approaches are not in compliance withthe physical phenomena. The sensitivity analysis for theLMNN model with Garson’s method and the ConnectionWeight Approach is given in Table 6. With the Connec-tion Weight Approach, similar to results from the BRNNmodel, CF is found to be the most important input param-eter for both (Sj = -3.32), followed by ∆PI and PI. It wasalso observed that CF, DPI and LL are inversely relatedto φr . However, with Garson’s algorithm, LL is found tobe the most important input, followed by CF, PI and ∆PI.Hence, it can be concluded that inferences drawn fromthe Connection Weight Approach is more similar to phys-ical phenomena. Similar observations have been made by

Figure 3. The predicted and observed values for the Model 1 using
DENN.

Das and Basudhar [11, 16] and Olden et al. [25]. This maybe due to the fact that in case of the Connection WeightApproach, actual weights are considered, whereas in thecase of Garson’s algorithm, absolute values of the weightsare considered.
4.2. Results of SVM Method

The performance of the SVM model depends upon the typeof kernel function, the optimum capacity factor C, and theoptimum error insensitive zone ε [24]. With different ker-nel functions, different combinations of C and ε valueswere tried in order to arrive at the best performance fortraining data, and the final C and ε values are presentedin Table 7. Two types of models were developed based onthe combination of input parameters; Model 1, with inputparameters as LL, PI, ∆PI and CF and Model 2, with ∆PIand CF. Similarly, with kernel functions in the form of a ra-dial (Gaussian) basis function, a polynomial function anda spline kernel function, the SVM models discussed hereinare denoted as SVM-G (Gaussian), SVM-P (Polynomial)and SVM-S (Spline), respectively. A detailed parametricstudy was conducted and the final SVM parameters corre-sponding to different kernel functions and correspondingR values are shown in Table 7. In order to evaluate thecapabilities of the SVM models, each model was validatedwith testing data that were not part of the training dataset. As discussed earlier, although the R values for train-ing data are better (R = 0.965) for SVM-P, with testingdata Model 1 is found to be more efficient when SVM-Gis used. The training and testing data for Model 1 withdifferent kernel functions are presented in Figure 4. Simi-
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Figure 4. The predicted and observed values for Model 1 using (a)
SVM-G, (b) SVM-P and (c) SVM-S.

Figure 5. The predicted and observed values for Model 2 using us-
ing (a) SVM-G, (b) SVM-P and (c) SVM-S.
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Figure 6. The variation of the data points for (a) training and (b)
testing data using different SVM models for Model 1.

larly Figure 5 shows the data points for Model 2. It can beseen that, compared to ANN models, there is considerablyless scatter in the data both for Model 1 and Model 2.The scatter in data points for training and testing datausing the three different SVM models for Model 1 wasexamined separately in Figure 6. It can be seen that forModel 1 the predicted data points are within 80% of theobserved values, both for training and testing data. Theefficacy of the developed model was judged from its per-formances on testing data, the variation of observed andpredicted values for all three models when the testingdata was used is presented in Figure 7. In comparisonto other SVM models, more data points as per SVM-Gmodels are closer to the observed values, demonstratingits slight superiority. Similarly, Figure 8 shows the varia-

Figure 7. The variation of the observed and predicted values using
different SVM models for Model 1.

Figure 8. The variation of the data points for (a) training and (b)
testing data using different SVM models for Model 2.
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Table 7. Performance of different SVM models with SVM parameters.

Model Type of kernelfunction Correlation coefficient (R) Coefficient of determina-tion (E) C ε Numberof supportvectorsTrainingperformance Testing Per-formance Trainingperformance Testing Per-formanceModel I (LL, Gauss, width=0.4 0.954 0.945 0.910 0.894 100 0.02 80PI, CF and Polynomial (3) 0.965 0.933 0.929 0.871 60 0.03 79DPI as inputs) Spline 0.939 0.903 0.881 0.815 50 0.01 78Model II (CF Gauss, width=0.1 0.930 0.925 0.864 0.851 10 0.001 90and DPI as Polynomial (2) 0.955 0.902 0.910 0.812 40 0.008 92inputs) Spline 0.927 0.911 0.858 0.828 60 0.004 93

Figure 9. The variation of the observed and predicted values using
different SVM models for Model 2.

tion of predicted and observed data points using Model 2.The variation of observed and predicted φr values for thetesting data using Model 2 is shown in Figure 9. It canbe seen that, here the data points are more scattered par-ticularly in the φr values of 10◦ - 16◦ in comparison toModel 1. This may be due to the inadequacy of the modelfor the whole range of data. Hence Model 1 is preferredover Model 2.Similarly, other statistical parameters like Maximum Ab-solute Error (MAE), Average Absolute Error (AAE) andRoot Mean Square Error (RMSE) are used to compareModel 1 and Model 2 using different SVM models. Theerror values for Model 1 are shown in Figure 10 and thosefor Model 2 in Figure 11. As the statistical performancesof the models are different for the training and testingdatasets, the ‘best’ model is selected based on the perfor-mances of the model for the new (testing) dataset. Basedon the MAE, AAE and RMSE values of the testing data

Figure 10. Comparison of prediction capabilities of SVM for Model 1
using (a) training data and (b) testing data.

(Figure 10b), Model 1 using SVM-G was found to be the‘best’ model based on AAE. Similarly from the Figure 11,for Model 2, SVM-G was found to be the ‘best’ model.Thus, another important aspect of this paper is the pre-sentation of the results of SVM models in terms of anequation which can be used by the professional for simplespread sheet calculations.Model 1 using SVM-G gives better performance thanModel 2. The following equation can be developed for
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Figure 11. Comparison of prediction capabilities of SVM for Model 2
using (a) training data and (b) testing data.

Figure 12. Values of
(
αi − α∗i

)
obtained as per SVM analysis for

Model 1.

the prediction of φr from Equation 8 by substitutingb=0,K (xi, x) = exp (− |x−xi|22σ2
) and s = 0.4.

φr = 80∑
i=1 (αi − α∗i ) exp(−|x − xi|20.32

) (10)
The values of (αi − α∗i ) are given in Figure 12.It may be mentioned here that the input data for all othervalues (αi − α∗i ) are zero, except those for the support vec-

Figure 13. Sensitivity analysis of input parameters as per SVM-G
for the Model 1.

tors. This model equation highlights the importance of thesupport vectors, and of their number.
4.2.1. Sensitivity Analysis /Selection of Important Input
VariablesThe sensitivity analysis of each input parameter for theSVM model is carried out as per the following formula:

S(%) = 1
N

N∑
j=1
(% change in output% change in input

)
j
× 100 (11)

where, N is the number of data points [25]. The trainedmodel is fed with a varying input, keeping the other inputsconstant. Analysis was carried out by varying each inputparameter, one at a time, at a constant rate of 20%, andthe result is shown in Figure 13. It can be seen that ∆PIis the important parameters followed by CF, LL and PIand this matches well with the previous findings, such asthose of Wesley [7].
5. Conclusions
In geotechnical problems involving large deformationssuch as landslides, soils get remoulded and it is moreappropriate to analyse them on the basis of their residualshear strength than on their peak shear strength. Evenin many of the first-time slope failures, soil along parts ofthe failure surface is at a residual strength. This studydiscusses the correlation of residual friction angle of clay(φr) with the index properties of soil, and considers soilsof different origins and a wide range of parameter valuesusing ANN and SVM analyses.Based on different ANN models, Model 1, with LL, PI, CFand ∆PI as the inputs, has the best correlation with φr
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values. Based on correlation coefficient (R) values, theperformances of developed ANN models (BRNN, LMNNand DENN) were found to be almost equally efficient.Based on different sensitivity analyses for the ANN mod-els, it was observed that the important inputs were foundto vary depending upon the ANN model and the sensitiv-ity analysis used. But the Connection Weight Approachis more effective in drawing conclusions regarding corre-lations of inputs with outputs, corresponding to physicalphenomena.While using SVM models, based on the training and test-ing performances of R, MAE, AAE and RMSE values,Model 1 using SVM-G was found to be more efficient.It was also observed that for Model 1 using SVM, thepredicted data points are within 80% of the observed val-ues, both for training and testing data. Hence, it can beconcluded that SVM model is more efficient in predictingthe residual friction angle of clay in comparison to theANN models. Using sensitivity analysis it was observedthat ∆PI is the most important parameter, followed by CF,LL and PI. A model equation was presented for the devel-oped SVM model, which can be used by the professionalsfor simple spread sheet calculations.
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