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Abstract In this paper a non-linear mathematical model of
tuberculosis with case detection and treatment is proposed
and analyzed. The whole population under consideration is
divided into four compartments e.g. susceptible, exposed,
infected and Recovered to study the transmission dynamics
of the tuberculosis. Based on the immunity level, susceptible
individuals move to exposed class or directly to infected class
once they come into contact with an infective. This has been
incorporated through progression rate which could be fast
or slow. The equilibria of the model and the basic reproduc-
tion number R0 are computed. It is observed that the disease
free equilibrium of the model is locally asymptotically sta-
ble when R0 < 1. The model exhibits backward bifurcation
under certain restriction on parameters, which gives rise to
existence of multiple endemic equilibria for R0 < 1. This
suggests that an accurate estimation of parameters and the
level of control measures are required to reduce the infec-
tion prevalence of TB in endemic region and just R0 < 1 is
not enough to eliminate the disease from the population. R0

needs to be lowered much below one to confirm the global
stability of the disease free equilibrium. Numerical simula-
tion is performed to demonstrate the analytical results. It is
found that the increase in the rate of case detection shifts the
bacward bifurcation diagram towards right which leads to
increase in the threshold value of R0. It is also shown that
the treatment is reducing the equilibrium level of infective
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population. Numerical simulations have been carried out to
support the analytic results.
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1 Introduction

Tuberculosis is the second most common cause of death from
infectious diseases in developing countries (after those due to
HIV/AIDS). Even though this disease is treatable and curable
but still it causes nearly one and a half million deaths each
year [1]. Even-though total elimination of the disease is not
possible due to the difficulty of developing an effective vac-
cine, the expensive and time-consuming diagnostic process,
the necessity of many months of treatment, but we can con-
trol the transmission level of the disease. The main task is to
provide proper treatment to people infected with TB. And for
this first step is case detection. In country like India, lots of
TB infected individuals are not aware of their infection and
they transmit this disease to others. Sometimes infected indi-
viduals give up treatment and go back to work and this also
causes new TB infection to people surrounding them. So case
detection and proper treatment are very important in control-
ling the transmission of TB. TB deaths occur mostly in low
and middle income countries. Mycobacterium tuberculosis is
the bacterial agent which makes the growth of Tuberculosis
(TB) in humans. The usual target of this agent is lungs, but
can strikes any part of the body such as the kidney, spine, and
brain. TB disease can bring to death if not treated properly. If
the diagnosis of TB (especially respiratory TB) is postponed
or inadequate treatment of cases with latent TB lead to the
high infection prevalence of this disease in endemic areas [2].
Mathematical modelling is one of the best tools for the better
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understanding of the transmission dynamics of TB. Many
authors have proposed and analyzed simple compartment
models for TB. The control and prevention of Tuberculosis
using drug chemotherapy in infected individuals had been
exhibited in [3]. The efficacy of each drug was explored
and observations show that low drug efficacy values result in
extension of treatment period. The drug model simulations
and analysis show that administration of the recommended
first line three-drug regimen normally cures the TB infec-
tion. Using the model [3], the authors established that only
Isoniazid monotherapy drug treatment, and any combination
therapy of two drugs including Isoniazid are potent enough
to resolve the TB infection. TB is not only spread by direct
contacts with infectives in the population but also indirectly
by bacteria which are emitted by infectives in the habitat.

Based on this in [4], authors formulated a model where
variable human and bacteria populations are taken into
account and it is concluded that due to bacteria in the environ-
ment, equilibrium level of the infective population increases.
The global properties of a very general tuberculosis model
with two differential infectivity is discussed in [5]. The case
detection and its effectiveness had been discussed in [6].
Here authors have considered a compartment model, where
whole population is divided into subclasses S, E, I1, I2 and
R where R is the latent class arises due to treatment failure.
They considered standard incidence and showed that system
exhibit backward bifurcation which makes eradication of TB
very tough. In this paper, we formulated similar model as in
[6] by considering simple mass action type incidence. But
here we divide whole population into only four subclasses,
i.e. susceptible, exposed, infected and recovered classes. Our
model is much simpler than the model presented in [6] but it
exhibits all the complexities discussed in the paper [6]. This
paper is organized as follows: Sect. 2 describes the basic
model, Sect. 3 describes the existence of equilibria and sta-
bility analysis. In Sect. 4, we conduct some numerical com-
putations to support our analytical findings and finally we
summarize our results in Sect. 5.

2 The model

Here an SEIR model is presented to study the transmis-
sion dynamics of TB by dividing the whole population into
four different classes e.g. susceptible class, exposed class,
TB infected class and the class of recovered individuals
(Susceptible–Exposed–Infected–Recovered). Here we dis-
cuss both treatment and case detection. Let S(t), E(t), I (t)
and R(t) be the fractions of the susceptible individuals,
the exposed (latent) individuals, the TB infectious individu-
als and the treated/recovered individuals in the population,
respectively, at time t. Hence, N = S + E + I + R is the total
population. It is assumed that the total population is varying

Fig. 1 Transfer diagram of the model (1)

and homogeneously mixed i.e., all people are equally likely to
be infected by the infectious individuals in a case of contact.
Also it is assumed that a fraction η of infected individuals
is identified with TB so they are under treatment. So trans-
mission of TB due to these detected TB patients will be less
compared to those infected individuals who are not identi-
fied with TB. Also immunity level of individuals vary, so it
is assumed that a fraction 0 < p < 1 of the individuals with
new infection develops TB fast and directly joins infected
class where as (1− p) fraction of individuals with new infec-
tion moves to exposed class first and then gradually moves to
infected class. Again if exposed individuals come into con-
tact with infected individuals, they become infectious. Also
there is disease progression and exposed individuals become
infected after some time if not treated. The transfer diagram
of the model is described in Fig. 1. Keeping the above in
mind and by considering simple mass action interaction, a
mathematical model is proposed as follows:

S′ = A − d S − [α1η + α2(1 − η)]I S,

E ′ = (1 − p)[α1η + α2(1 − η)]I S

− βE I − (d + ν1 + θ)E,

I ′ = p[α1η + α2(1 − η)]I S + βE I

− (d + d1 + ν2η)I + θ E,

R′ = ν1 E + ν2ηI − d R.

(1)

The parameters used in the model (1) are described in Table 1.
The model (1) can be further simplified as follows:

S′ = A − d S − k1 I S

E ′ = (1 − p)k1 I S − βE I − k2 E

I ′ = pk1 I S + βE I − k3 I + θ E

R′ = ν1 E + ν2ηI − d R

(2)
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Table 1 Description of parameters

Parameter Description Values

A Recruitment rate

d Natural death rate

η Case detection rate

α1 Rate of transmission(det.)

α2 Rate of transmission(undet.)

p Rate of fast progression to infection

β Contact rate b/w E and I

θ Rate of progression to I from E

ν1, ν2 Recovery rates due to treatment

d1 Death rate due to infection

where k1 = [α1η + α2(1 − η)], k2 = (d + ν1 + θ), k3 =
(d + d1 + ν2η).

The suitable domain for the model is given by

D = {(S, E, I, R) ∈ R4≥0; S + E + I + R < A/d}
and it can be shown that the set D is a positively invariant
set and a global attractor of this system. That is, any phase
trajectory initiated anywhere in the non-negative region R4≥0
of the phase space eventually enters the region D and remains
in D thereafter.

Here

N ′ = A − d N − d(E + I + R) − d E − (d + d1)I − d R

is the rate of change of the total population N . It is observed
that the right hand side of the above equality is bounded by
A
d , a standard comparison theorem can be used to show that

N (t) ≤ N (0)e−dt + A

d
(1 − e−dt ).

If N (0) ≤ A
d , then N (t) ≤ A

d . Thus, D is a positively invari-
ant set under the system described in (2). Hence no solution
path leave through any boundary of D. The right hand side
of (2) is smooth, hence the initial value problem has a unique
solution that exists on maximal intervals [7]. Since paths can-
not leave D, solutions remain non-negative for non-negative
initial conditions; solutions exist for all positive time. Thus,
the model (1) is mathematically and epidemiologically well
posed [7].

3 Equilibria and stability analysis

3.1 Basic reproduction number and local stability
of disease-free equilibrium(DFE)

The model (1) has a DFE given by

E0 = (S0, E0, I 0, R0) =
(

A

d
, 0, 0, 0

)
.

The stability of E0 can be established using the next genera-
tion operator method on the system (1). Using the notations
in [8], the matrices F and V, for the new infection terms and
the remaining transfer terms respectively, are given by

F =
(

0 (1 − p)k1S0

0 pk1S0

)
and V =

(
k2 0
−θ k3

)

FV −1 =
⎛
⎝ θ(1−p)k1 S0

k2k3

(1−p)k1 S0

k3

θpk1 S0

k2k3

pk1 S0

k3

⎞
⎠

=
(

θ(1−p)k1 A
dk2k3

(1−p)k1 A
dk3

θpk1 A
dk2k3

pk1 A
dk3

)

Thus the basic reproduction number R0 which is the spec-
tral radius of the matrix FV −1 is given by

R0 = [(1 − p)θ + pk2]k1 A

dk2k3
(3)

The following result follows from Theorem 2 of Ref. [8].

Theorem 1 The DFE, E0 of the model (1) is locally asymp-
totically stable if R0 < 1 and unstable if R0 > 1.

The threshold quantity R0 is the basic reproduction num-
ber for the TB model. Biologically speaking, Theorem 1
implies that TB can be eliminated from the community (when
R0 < 1) if the initial sizes of the sub-populations of the
model are in the basin of attraction of E0.

From Theorem 1, it was established that if the disease
free equilibrium exists, it is locally asymptotically stable if
and only if R0 < 1. However, the disease free equilibrium
may not be globally asymptotically stable even if R0 < 1.
It is possible for R0 < 1 and there could be the possibility
of backward bifurcation (bi-stability) when a stable endemic
equilibrium may co-exist with the DFE. To find the condi-
tions for the existence of the endemic equilibrium for the
model (1), denoted by E1 = (S∗, E∗, I ∗, R∗), the equations
in (2) are solved in terms of the infection at steady state (I ∗),
which must satisfy the following polynomial,

f (I ∗) = A1(I ∗)2 + B1 I ∗ + C1 = 0 (4)

where A1 = βk1k3,
B1 = βdk3 + k1k2k3 − βk1 A and
C1 = dk2k3 − θ(1 − p)k1 A − pk1k2 A = dk2k3(1 − R0).

The endemic equilibrium in terms of I ∗ is given by

S∗ = A

d+k1 I ∗ , E∗ = (1− p)k1 I ∗S∗

β I ∗+k2
, R∗ = ν1 E∗+ν2ηI ∗

d

The following cases to be considered (depending on the signs
of B1 and C1, since A1 is positive) to study the number of
positive roots of f (I ∗) = 0.
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Case 1 Suppose that β = 0 so that we do not have exoge-
nous re-infection, then A1 = 0, B1 > 0 and the quadratic

equation in (3.2) becomes linear in I ∗ = C1

B1
. Hence, there

will be a unique positive root if C1 < 0. In this case, the sys-
tem has a unique (stable) endemic equilibrium if and only if
C1 < 0 which occurs only when R0 > 1; hence backward
bifurcation is not possible in this case.
Case 2 If B1 < 0 and C1 = 0 orB2

1 − 4A1C1 = 0, then
f (I ∗) = 0 has one positive root which means that the system
has a unique endemic equilibrium.
Case 3 I f C1 > 0, B1 < 0 and B2

1 − 4A1C1 > 0, then
f (I ∗) = 0 has two positive roots which implies that the
system has two endemic equilibria.

The results are summarized in the following lemma.

Lemma 1 The number of positive endemic equilibria of
model 2.1 is summarized as follows:

1. If C1 < 0 which occurs only when R0 > 1, the system
has a unique endemic equilibrium.

2. If B1 < 0 and C1 = 0 or B2
1 −4A1C1 = 0, then f (I ∗) =

0, the system has exactly one endemic equilibrium.
3. If C1 > 0, B1 < 0 and B2

1 − 4A1C1 > 0 ,R0 < 1, the
system has exactly two endemic equilibria (say E1 and
E2).

4. Otherwise there is no endemic equilibria, i.e. when
A1C1 > 0, B1 > 0.

If R0 < 1, we can derive

Rc
0 = 1 − B2

1

4A1dk2k3
(5)

such that B2
1 − 4A1C1 > (= or <)0 if R0 > (= or <)Rc

0,
where Rc

0 is the backward bifurcation point and it can be
shown that backward bifurcation occurs for values of R0 in
the range Rc

0 < R0 < 1( see point 3 in Lemma.1).

3.2 Bifurcation analysis

Let S = x1, E = x2, I = x3, R = x4, so that N = x1 + x2 +
x3 + x4; hence the model (2) is re-written in the form

x ′
1 = f1 = A − dx1 − k1x3x1

x ′
2 = f2 = (1 − p)k1x3x1 − βx2x3 − k2x2

x ′
3 = f3 = pk1x3x1 + βx2x3 − k3x3 + θx2

x ′
4 = f4 = ν1x2 + ν2ηx3 − dx4 (6)

The Jacobian of the system (6) at DFE is given by

J (E0) =

⎛
⎜⎜⎜⎜⎝

−d 0 −k1 A
d 0

0 −k2
(1−p)k1 A

d 0

0 θ
pk1 A

d − k3 0

0 ν1 ν2η −d

⎞
⎟⎟⎟⎟⎠

Consider the case when R0 = 1. Suppose that p = p∗
is chosen as a bifurcation parameter. Solving for p from
R0 = 1 gives

p = p∗ = θ Ak1 + dk2k3

Ak1(k2 − θ)
.

Using the following theorem from Refs. [8,9] and fol-
lowed in [6] reproduced below for convenience, one will
be able to determine whether or not the system (6) exhibits
backward bifurcation at R0 = 1.

Theorem 2 Consider the following general system
of ordinary differential equations with a parameter φ

dx

dt
= f (x, φ),

f : R
n × R → R

and

f ∈ C
2(Rn × R),

where 0 is an equilibrium point of the system (i.e. f (0, φ) ≡
0 f or all φ) and

1. A = Dx f (0, 0) = (
∂ fi
∂x j

(0, 0)) is the linearization matrix

of the system around the equilibrium 0 with φ evaluated
at 0;

2. Zero is a simple eigenvalue of A and other eigenvalues
of A have negative real parts;

3. Matrix A has a right eigenvector w and a left eigenvector
v corresponding to the zero eigenvalue.

Let fk be the kth component of f and

a =
n∑

k,i, j=1

vkwiw j
∂2 fk

∂xi∂x j
(0, 0),

b =
n∑

k,i=1

vkwi
∂2 fk

∂xi∂φ
(0, 0),

then the local dynamics of the system around the equilibrium
point 0 is totally determined by the signs of a and b. Par-
ticularly, if a > 0 and b > 0, then a backward bifurcation
occurs at φ = 0.

3.2.1 Eigenvalues of Jp∗

For the case R0 = 1, it can be shown that the Jacobian of
system (6) at p = p∗, denoted by Jp∗ has a right eigenvector
given by w = [w1, w2, w3, w4]T , where
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w1 = −k1 A

d2 w3,

w2 = (1 − p∗)k1 A

dk2
w3 < 0,

w3 = w3 < 0,

w4 = ν1w2 + ν2ηw3

d
< 0

Further, Jp∗ has a left eigenvector given by v = [v1, v2,

v3, v4], where

v1 = 0,

v2 = θv3 + ν1v4

k2
= θv3

k2
> 0,

v3 = v3 > 0,

v4 = 0.

Computations of a and b:
For the system (6), the associated non-zero partial derivatives
are given by

∂2 f2

∂x1∂x3
= (1 − p∗)k1,

∂2 f2

∂x2∂x3
= −β,

∂2 f3

∂x1∂x3
= p∗k1,

∂2 f3

∂x2∂x3
= β

It follows from the above expressions that

a = v2

4∑
i, j=1

wiw j
∂2 f2

∂xi∂x j
+ v3

4∑
i, j=1

wiw j
∂2 f3

∂xi∂x j

= 2v2w3{w1[(1 − p∗)k1] − w2β}
+2v3w3{w1 pk1 + w2β} > 0

if β >
w1k1[(1−p∗)v2+p∗v3]

w2(v3−v2)
with w2(v3 − v2) > 0.

For the sign of b, it is shown that the associated non-zero
partial derivatives are

∂2 f2

∂x3∂p∗ = −k1 A

d
,

∂2 f3

∂x3∂p∗ = k1 A

d
,

so that,

b = v2

4∑
i=1

wi
∂2 f2

∂xi∂p∗ + v3

4∑
i=1

wi
∂2 f3

∂xi∂p∗

= v2

[
w3

(−k1 A

d

)]
+ v3

[
w3

(
k1 A

d

)]

= w3

(
k1 A

d

)
[v3 − v2]

From these we get b > 0 only if v2 > v3.
Thus we established the following result.

Theorem 3 If

β >
w1k1[(1 − p∗)v2 + p∗v3]

w2(v3 − v2)
= β0 (7)

with w2(v3 − v2) > 0 and v3 > v2, then the model (6)
undergoes a backward bifurcation which occurs at R0 = 1.

3.3 Global stability of DFE

It is important to see that from the inequality (7), the model
cannot undergo backward bifurcation if β = 0. More pre-
cisely, this study reveals that exogenous reinfection is essen-
tial for the occurrence of backward bifurcation, as seen from
[10]. Thus backward bifurcation will occur if Rc

0 < R0 < 1
and β > β0 (as shown in Sec. 3.1 and as stated in Theorem 3).

Now we can prove the global stability of the DFE.

Theorem 4 The disease-free equilibrium E0 of model (2)
without exogenous reinfection ( i.e. when β = 0) is globally
asymptotically stable if R0 < 1.

Proof We can prove the global stability of the DFE using
the comparison theorem(see Ref. [11], p. 31). Re-writing the
equations for the infected compartments in (2), we have
(

E ′
I ′

)
= (F − V )

(
E
I

)
−

(
(1 − p)k1 I [S0 − S]

pk1 I [S0 − S]

)

where F and V are as defined in Sec. 3.1. Since S ≤ S0 = A
d

for all t > 0, it follows that(
E ′
I ′

)
≤ (F − V )

(
E
I

)
.

Since all the eigenvalues of the matrix F − V have nega-
tive real parts (this comes from the local stability results in
Lemma 1 in [8]), then system (2) is stable whenever R0 < 1.
So, (E, I ) →(0, 0) as t → ∞. By the comparison theorem,

it follows that (E, I ) → (0, 0) and S → A

d
t → ∞. Then

(S, E, I, R) → E0 as t → ∞. So, E0 is globally asymptot-
ically stable for R0 < 1 when β = 0. 
�

3.4 Local stability of endemic equilibrium (EE)

Theorem 5 The endemic equilibrium of model (2) is locally
asymptotically stable when a2a1 − a0 > 0, where a2, a1 and
a0 are given in the proof of the theorem.

Proof The variational matrix, M∗ corresponding to the
endemic equilibrium point is given by

M∗ =
⎛
⎝ n11 0 n13

n21 n22 n23

n31 n32 n33

⎞
⎠

123



S. Athithan, M. Ghosh

where, n11 = −(d + k1 I ∗), n13 = −k1S∗,

n21 = (1 − p)k1 I ∗, n22 = −(β I ∗ + k2), n23 = (1 −
p)k1S∗ − βE∗,
n31 = pk1 I ∗, n32 = β I ∗ + θ, n33 = pk1S∗ + βE∗ − k3,

We will get three eigen values from the variational matrix,
which are the solutions of the polynomial λ3 + a2λ

2 + a1λ+
a0 = 0,

where,

a2 = −(n11 + n22 + n33),

a1 = [(n22n33 − n23n32) + (n11n33 − n31n13)

+ (n11n22 − 0)],
a0 = −[n11(n22n33 − n23n32) − 0

+ n13(n21n32 − n31n22)].
By using Routh-Hurwitz criteria, the EE will be locally
asymptotically stable if the following conditions are satis-
fied.

a2 > 0 and

∣∣∣∣ a2 a0

1 a1

∣∣∣∣ > 0.

Here obviously a2 > 0, so EE is locally asymptotically stable
if other inequality is satisfied. 
�

4 Numerical simulation

The system (2) is simulated for various set of parameters.
First we consider following set of parameters for which R0

is greater than Rc
0 and less than 1.

A = 18, d = 0.075, α1 = 0.001, α2 = 0.003,

p = 0.235, η = 0.57, β = 0.005,

ν1 = 0.08, ν2 = 0.08, d1 = 0.032, θ = 0.0001.

For this set of parameter we get two endemic equilibria

E1(188.94783, 30.46408, 10.89483, 39.11907)

and

E2(127.266, 30.502, 35.718, 54.253)

and the disease free equilibrium point E0(240, 0, 0, 0). This
fact is demonstrated by S-I phase plane in Fig. 2, where E0

and E2 are locally asymptotically stable and the equilibrium
point E1 is unstable. It is more clear from the bifurcation
diagrams (see Fig. 3). Figure 3 is obtained by considering
the fast progression rate of disease p as the bifurcation para-
meter. The horizontal axis is labelled with the appropriate
value of the reproduction number R0 corresponding to this
bifurcation parameter p. It is observed that when the repro-
duction number R0 is between 0 to Rc

0, the infection free
equilibrium alone is stable, for Rc

0 < R0 < 1 we have

Fig. 2 S-I phase plane showing the bistability

Fig. 3 Backward bifurcation plot of I

bi-stability where either the infection free equilibrium is sta-
ble (or) the endemic equilibrium is stable. To see the effect of
case detection rate η bifurcation diagram is drawn for differ-
ent values of η. Figure 3 shows that the case detection plays a
vital role in the transmission dynamics of TB. It can be seen
that with the increase in the case detection rate the bifurca-
tion diagram shifts towards right implying the increase in

Rc
0 value, which means that if case detection rate is large

enough then we will not get backward bifurcation. And in this
situation R0 < 1 will be sufficient to eliminate the disease
from the population. And for this case, increasing the prob-
ability of detection reduces the reproduction number, and
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hence the number of new infections; the critical detection
level corresponds to R0 = 1. Figure 4, is showing the vari-
ation of , E, I, R with time for a different set of parameters
for which R0 = 2.63. Figure 5 is demonstrating the stability
of disease free equilibrium point E0 for the following set of
parameters:

A = 18, d = 0.075, α1 = 0.001, α2 = 0.003,

p = 0.4, η = 0.8, β = 0.005,

ν1 = 0.08, ν2 = 0.08, d1 = 0.032, θ = 0.0001.

For this set of parameters R0 = 0.786 and disease free
equilibrium is stable. Here we do not have backward bifur-

Fig. 4 Variation of S, E, I, R with time for R0 > 1

Fig. 5 Variation of S, E, I, R with time for R0 < 1
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Fig. 6 Variation of infective population with time for different rates of
treatment

cation as the case detection rate η is quite high. Effect of rate
of treatment is demonstrated in Fig. 6, where it is observed
that by increasing the rate of treatment, disease can be elim-
inated from the population, i.e., with the increase in the rates
of treatment, R0 decreases and the disease free equilibrium
becomes stable.

5 Conclusion

Here a deterministic model for the transmission dynamics of
TB in a population is designed and analyzed. It is shown that
the model undergoes the phenomenon of backward bifurca-
tion, when the associated reproduction number is less than
unity. These results are very important as they govern the
elimination and/or persistence of the TB disease in a commu-
nity. The proposed model gives a clear picture of the impact
of treatment and its relationship with case detection on the
dynamics of tuberculosis. Overall, this study shows that the
prospects of controlling the spread of TB is bright if only
the treatment strategy can be sustained and case detection
significantly improved upon.
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