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Abstract:
This paper presents a new control methodology for a class of integrating systems. A PID controller augmented
with a first order lead/lag filter is proposed for improved response. The polynomial approach is employed to
derive the controller parameters. The novelty of the proposed method lies in the selection of pole locations.
Multiple pole locations are considered where one of the poles is placed for cancelling the zero introduced by
controller. The selection of tuning parameter is based on maximum sensitivity (MS). Set point weighting is
employed to reduce the overshoot and settling time in the servo response. Various bench marking examples
are adopted to evaluate the proposed method in terms of various performance indices. The results are superior
to the recently proposed works in terms of both set point tracking and disturbance rejection.
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1 Introduction

PID controller is the most widely used industrial controller strategy because of its well understood structure and
working principle. Effective tracking of set point changes and rejection of disturbance of a control loop depends
on how well the controller is tuned. A poorly tuned controller may result an oscillatory or unstable response.
Following the well-known empirical tuning rules proposed by Ziegler and Nichols [1], many other tuning
methods are reported to enhance the performance of a control loop. The difficulty in design increases when the
process is associated with time delay. It is possible to compensate the delay effect using smith predictor and
improve servo performance. But delay compensation for regulatory response is not possible unless otherwise
the disturbances are measured. Disturbance rejection is more important in many chemical processes to ensure
the product quality.

More attention is to be paid when the control loop is designed for unstable and integrating processes
when compared to inherently stable processes. In the present paper, the authors propose a PID controller
with lead/lag filter for various types of integrating processes. Various researchers proposed different control
schemes for integrating processes. Some of the noteworthy control schemes proposed based on various method-
ologies so far are as follows: Internal model control (IMC) [2–7], equating coefficient [8, 9], direct synthesis [10,
11], optimization [12–19], set point overshoot method [20].

Recently, Ajmeri & Ali [21], have proposed a parallel control structure that decouples servo and regulatory
responses under nominal conditions. A PD controller is employed as set point tracking controller and a PID
controller is employed as disturbance rejection controller. Tuning rules are proposed based on maximum sensi-
tivity (MS).Though this method reported improved performance over the existing methods, a large over shoot
in the servo response is observed. This method is not extended for IFOPTD with zero.

In another recent work, Anil & Padma Sree [22], have reported a simple conventional control structure for a
class of integrating systems. The controller structure which is derived for various types of integrating systems
is as follows: pure PID controller for IPTD; PID with first order lead/lag filter for DIPTD and IFOPTD; PID
controller with second order lead/lag filter for IFOPTD with zero. Set point weighting is employed to reduce
overshoot in the servo response. This method also used MS based tuning. Though this method is effective when
compared to Ajmeri & Ali [21], set point weighting is not effective for IFOPTD with zero and large settling times
are observed in disturbance rejection for DIPTD.

Praveen Kumar Medarametla is the corresponding author.
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The objective of the present work is to design a control strategy for a class of integrating systems with
improved performance. The proposed method describes the design of a PID controller with first order lead/lag
filter for various types of integrating systems. The controller is designed using polynomial method treating the
transfer function of process as well as controller as a ratio of two polynomials. Unlike the similar controller
proposed by Anil & Padma Sree [22], the proposed method is effective for DIPTD and IFOPTD with zero. The
proposed method is simple as it employs only one control loop unlike the method proposed by Ajmeri & Ali
[21], where two control loops are employed with different controllers. The efficiency of the proposed method
is compared in terms of IAE, total variation (TV) and over shoot (OS) with the recently reported methods.

The paper is organized as follows: Section 2 deals with the design aspects of controller for various class of
integrating systems. Stability and robust performance of the controller is described in Section 3. In Section 4,
simulation results are presented and compared with the other reported methods, followed by conclusion in
Section 5.

2 Controller design

2.1 Theoretical background

Consider a generalized transfer function for the class of integrating systems as shown in eq. (1).

𝐺u� (𝑠) = 𝑘 (1 + 𝑠𝑧)𝑠 (𝜏𝑠 + 𝑐)𝑒−u�u� (1)

If 𝑧 = 𝜏 = 0 and 𝑐 = 1, the transfer function becomes IPTD. If 𝑧 = 𝑐 = 0 and 𝜏 = 1, the transfer function
becomes DIPTD . If 𝑧 = 0, 𝑐 = 1 and τ is non zero numeric value, the transfer function becomes IFOPTD, if τ, c,
z are non-zero values, the transfer function becomes IFOPTD with zero.

The proposed method employs conventional feedback control structure as shown in Figure 1.

Figure 1: Conventional feedback structure.

From Figure 1, servo and regulatory responses can be derived as shown in eqs. (2) and (3) respectively𝑦𝑟 = 𝐺u�𝐺u�
1 + 𝐺u�𝐺u� (2)

𝑦𝑑 = 𝐺u�
1 + 𝐺u�𝐺u� (3)

Where, 𝐺u�is controller, 𝐺u� is process, 𝑟 is set point, 𝑑 is disturbance and 𝑦 is process variable.
The controller is assumed to be a PID controller in series with a lead/lag filter. The controller parameters

are derived using polynomial approach in which both the controller and process are represented as a ratio of
two polynomials.

The proposed PID controller structure is given in eq. (a)

𝐺u� (𝑠) = 𝑞𝑝 = (𝑘u� + 𝑘u�𝑠 + 𝑘u�𝑠) 𝑠 + 1𝛽𝑠 + 1
(a)

Where, 𝑞 = (𝑘u�𝑠2 + 𝑘u�𝑠 + 𝑘u�) (𝑠 + 1) (b)

𝑝 = 𝑠 (𝛽𝑠 + 1) (c)
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2.2 Design 𝐺u� for IPTD

With the help of Pade’s approximation the process is represented as a ratio of two polynomials b and a as shown
in eq. (d).

𝐺u� (𝑠) = 𝑏𝑎 (d)

Where,

𝑏 = 𝑘 (1 − 𝑠𝜃
2

) (e)

𝑎 = 𝑠 (1 + 𝑠𝜃
2

) (f)

By substituting eq. (4) and eq. (5) in eq. (2) and eq. (3),

𝑦𝑟 = 𝑏𝑞𝑎𝑝 + 𝑏𝑞 = 𝑘 (1 − u�u�
2 ) (𝑘u�𝑠2 + 𝑘u�𝑠 + 𝑘u�) (𝑠 + 1)𝑠2 (1 + u�u�

2 ) (𝛽𝑠 + 1) + 𝑘 (1 − u�u�
2 ) (𝑘u�𝑠2 + 𝑘u�𝑠 + 𝑘u�) (𝑠 + 1) (4)

𝑦𝑑 = 𝑎𝑝𝑎𝑝 + 𝑏𝑞 = 𝑠 (1 + u�u�
2 ) 𝑠 (𝛽𝑠 + 1)𝑠2 (1 + u�u�

2 ) (𝛽𝑠 + 1) + 𝑘 (1 − u�u�
2 ) (𝑘u�𝑠2 + 𝑘u�𝑠 + 𝑘u�) (𝑠 + 1) (5)

The characteristic equation (CE), which is the denominator polynomial of both servo and regulatory re-
sponses is given in eq. (6).

𝐶𝐸 = 𝑎𝑝 + 𝑏𝑞 = 𝑠2 (1 + 𝑠𝜃
2

) (𝛽𝑠 + 1) + 𝑘 (1 − 𝑠𝜃
2

) (𝑘u�𝑠2 + 𝑘u�𝑠 + 𝑘u�)(𝑠 + 1) = 0 (6)

In eq. (6), (1 − u�u�
2 ) is an approximation of 𝑒 −u�u�

2 , it is in turn written as

(1 − 𝑠𝜃
2

) = 𝑒 −u�u�
2 = 𝑒 −u�u�

4𝑒 u�u�
4

= (1 − u�u�
4 )(1 + u�u�
4 ) (7)

By considering = 𝜃/4 and substituting eq. (7) in eq. (6),

𝐶𝐸 = 𝑠4 + 2𝛽 + 𝜃 − u�u�u�u�
2𝛽𝜃 𝑠3 + 2𝑘𝑘u� − u�u�u�u�

2 + 2𝛽𝜃 𝑠2 + 2𝑘𝑘u� − u�u�u�u�
2𝛽𝜃 𝑠 + 2𝑘𝑘u�𝛽𝜃 = 0 (8)

The desired characteristic equation is selected and given in eq. (9)

(𝑠+)3 (𝑠 + 4𝜃 ) = 0 (9)

From eq. (4), it is clear that the servo response is having a zero at 𝑠 = −4/𝜃 which causes overshoot in the
servo response. One of the poles of desired CE is placed at 𝑠 = −4/𝜃 to mitigate the overshoot in the servo
response. The remaining three poles are located at − which is a tuning parameter. However, due to other zeros
of the servo response, overshoot still exists. To minimize this overshoot, set point weighting is employed. PID
parameters are obtained by comparing eq. (8) and eq. (9). Results are formulated in eq. (g to k).

𝑘u� = 122𝜃 (𝜃 + 6)𝑘 (3𝜃3 + 122𝜃2 + 48𝜃 + 16) (g)

𝑘u� = 243𝜃𝑘 (3𝜃3 + 122𝜃2 + 48𝜃 + 16) (h)

𝑘u� = 2 (3𝜃3 + 122𝜃2 + 12𝜃 − 8)𝑘 (3𝜃3 + 122𝜃2 + 48𝜃 + 16) (i)
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𝛽 = 12𝜃
3𝜃3 + 122𝜃2 + 48𝜃 + 16

(j)

𝛼 = 𝜃
4

(k)

Here, λ is tuned to obtain the desired response. Faster responses can be achieved by selecting the larger
values of λ, but robustness can be ensured by smaller values of λ. So the selection of λ is a trade-off between the
speed of response and robustness of the system.

2.3 Design 𝐺u� for DIPTD and IFOPTD

The delay free process is assumed as a ratio of two polynomials as mentioned in eq. (13).

𝐺u� (𝑠) = 𝑓𝑔 𝑒−u�u� (l)

where 𝑓 = 𝑘 (m)

𝑔 = 𝑠 (𝜏𝑠 + 𝑐) (n)

Using eq. (2), eq. (3), eq. (4) and eq. (13),

𝑦𝑟 = 𝑞𝑓𝑝𝑔 + 𝑞𝑓 𝑒−u�u� 𝑒−u�u� = 𝑘 (𝑘u�𝑠2 + 𝑘u�𝑠 + 𝑘u�) (𝑠 + 1)𝑠2 (𝛽𝑠 + 1) (𝜏𝑠 + 𝑐) + 𝑘 (𝑘u�𝑠2 + 𝑘u�𝑠 + 𝑘u�) (𝑠 + 1) 𝑒−u�u� 𝑒−u�u� (10)

𝑦𝑑 = 𝑓 𝑝𝑝𝑔 + 𝑞𝑓 𝑒−u�u� 𝑒−u�u� = 𝑘𝑠 (𝛽𝑠 + 1)𝑠2 (𝛽𝑠 + 1) (𝜏𝑠 + 𝑐) + 𝑘 (𝑘u�𝑠2 + 𝑘u�𝑠 + 𝑘u�) (𝑠 + 1) 𝑒−u�u� 𝑒−u�u� (11)

𝐶𝐸 = 𝑠2 (𝛽𝑠 + 1) (𝜏𝑠 + 𝑐) + 𝑘(𝑘u�𝑠2 + 𝑘u�𝑠 + 𝑘u�)(𝑠 + 1)𝑒−u�u� = 0 (12)

By considering = 𝜃/2 and using first order Pade’s approximation for the delay term, eq. (12) can be modified
as

𝐶𝐸 = 𝑠4 + 𝜏 + 𝛽𝑐 − u�u�u�u�
2𝛽𝜃 𝑠3 + 𝑘𝑘u� − u�u�u�u�

2 + 𝑐𝛽𝜃 𝑠2 + 𝑘𝑘u� − u�u�u�u�
2𝛽𝜃 𝑠 + 𝑘𝑘u�𝛽𝜃 = 0 (13)

The desired CE is assumed as mentioned in eq. (14).

(𝑠+)3 (𝑠 + 2𝜃 ) = 0 (14)

Similar to the design of controller for IPTD system, the poles are accordingly placed to minimize the over-
shoot in servo response. Comparing eq. (13) and eq. (14), the expressions for PID parameters are derived as

𝑘u� = 43𝜏2𝜃 + 2𝑐3𝜏𝜃2 + 122𝜏2 + 6𝑐2𝜏𝜃𝑘 (𝜏3𝜃3 + 6𝜏2𝜃2 + 12𝜏𝜃 + 4𝜏 − 2𝑐𝜃) (o)

𝑘u� = 43𝜏2 + 2𝑐𝜃3𝜏𝑘 (𝜏3𝜃3 + 6𝜏2𝜃2 + 12𝜏𝜃 + 4𝜏 − 2𝑐𝜃) (p)

𝑘u� = 2 (𝑐2𝜃 − 3𝑐𝜏𝜃 − 2𝑐𝜏+3𝜏2𝜃2 + 62𝜏2𝜃 + 6𝜏2)𝑘 (𝜏3𝜃3 + 6𝜏2𝜃2 + 12𝜏𝜃 + 4𝜏 − 2𝑐𝜃) (q)

𝛼 = 𝜃
2

(r)

𝛽 = 𝜃 (2𝜏 + 𝑐𝜃)𝜏3𝜃3 + 6𝜏2𝜃2 + 12𝜏𝜃 + 4𝜏 − 2𝑐𝜃 (s)

From eq. (o) to eq. (s), it can be understood that every controller parameter except α is a function of λ.
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2.4 Design of 𝐺u� for IFOPTD with zero

Unlike the method followed by Anil & Padma Sree [22], where the zero of the system is omitted in the derivation
of the controller parameters, the proposed method does consider the zero in the derivation. Similar to the
previous case, the delay free process is assumed as a ratio of two polynomials.

𝐺u� (𝑠) = 𝑢𝑣 𝑒−u�u� (t)

where 𝑢 = 𝑘 (1 + 𝑠𝑧) (u)

𝑣 = 𝑠 (𝜏𝑠 + 𝑐) (v)

Substituting eq. (4) and eq. (20) in eq. (2) and eq. (3),

𝑦𝑟 = 𝑞𝑢𝑝𝑣 + 𝑞𝑢𝑒−u�u� 𝑒−u�u� = 𝑘 (1 + 𝑠𝑧) (𝑘u�𝑠2 + 𝑘u�𝑠 + 𝑘u�) (𝑠 + 1)𝑠2 (𝛽𝑠 + 1) (𝜏𝑠 + 1) + 𝑘 (1 + 𝑠𝑧) (𝑘u�𝑠2 + 𝑘u�𝑠 + 𝑘u�) (𝑠 + 1) 𝑒−u�u� 𝑒−u�u� (15)

𝑦𝑑 = 𝑝𝑢𝑝𝑣 + 𝑞𝑢𝑒−u�u� 𝑒−u�u� = 𝑘𝑠 (1 + 𝑠𝑧) (𝛽𝑠 + 1)𝑠2 (𝛽𝑠 + 1) (𝜏𝑠 + 1) + 𝑘 (1 + 𝑠𝑧) (𝑘u�𝑠2 + 𝑘u�𝑠 + 𝑘u�) (𝑠 + 1) 𝑒−u�u� 𝑒−u�u� (16)

𝐶𝐸 = 𝑠2 (𝛽𝑠 + 1) (𝜏𝑠 + 1) + 𝑘 (1 + 𝑠𝑧) (𝑘u�𝑠2 + 𝑘u�𝑠 + 𝑘u�)(𝑠 + 1)𝑒−u�u� = 0 (17)

Approximating the time delay with Pade’s approximation and considering = 𝜃/2,
𝑠4 + 𝜏 + 𝛽 − 𝑘u� ( u�u�

2 − 𝑘𝑧) − u�u�u�u�u�
2𝛽𝜏 − u�u�u�u�u�

2

𝑠3 + +𝑘𝑘u� − 𝑘u� ( u�u�
2 − 𝑘𝑧) − u�u�u�u�u�

2 + 1

𝛽𝜏 − u�u�u�u�u�
2

𝑠2 + 𝑘𝑘u� − 𝑘𝑖 ( u�u�
2 − 𝑘𝑧)

𝛽𝜏 − u�u�u�u�u�
2

𝑠 + 𝑘𝑘u�𝛽𝜏 − u�u�u�u�u�
2

= 0 (18)

The desired CE is assumed to have pole locations as shown in eq. (19).

(𝑠+)3 (𝑠 + 1𝑧) = 0 (19)

From eq. (15), it can be observed that a zero at 𝑠 = −1/𝑧 is resulting in the servo response. So one of the
poles of desired CE is placed at 𝑠 = −1/𝑧 (assuming z is positive) to compensate overshoot and the remaining
poles are placed at –λ. The derived PID parameters by comparing eq. (18) and eq. (19) are,

𝑘u� = 2 (𝜃 + 6) (2𝜏 + 𝜃)𝑘 (3𝜃3 + 62𝜃2 + 12𝜃 + 8) (w)

𝑘u� = 42 (2𝜏 + 𝜃)𝑘 (3𝜃3 + 62𝜃2 + 12𝜃 + 8) (x)

𝑘u� = 2(𝜏3𝜃2 + 6𝜏2𝜃 + 12𝜏 − 4)𝑘(3𝜃3 + 62𝜃2 + 12𝜃 + 8
(y)

𝛼 = 𝜃
2

(z)

𝛽 = 𝑧 (aa)

In this case, filter parameters are function of process parameters and completely independent of λ.To achieve
good robust and nominal performance, λ should be adjusted to a value which gives good compromise between
speed of response and robustness of the system. If z holds a negative value, the desired C.E can be assumed to
follow a trajectory as given in eq. (20) (𝑠+)4 = 0 (20)

PID parameters can be derived by comparing eq. (18) and eq. (20).
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2.5 Selection ofλ

For efficient control of a system, it is always important to derive fine-tuned PID controller. Improperly tuned
PID controller results a sluggish output response and induces unnatural variations in the manipulated vari-
able, which in turn increases the fuel cost. The tuning parameter λ is selected as a function of MS, which is a
measure of stability margin of the control system. The sensitivity function of the feedback control system is
1/ (1 + 𝐺u�𝐺u�) , and its amplitude ratio is given by ∣1/ (1 + 𝐺u�𝐺u�)∣. A value of MS between 1.2 to 2 implies a
satisfactory performance of the control system. However, researchers use MS values greater than 2 in case of
unstable and integrating systems. In the proposed method, a value of λ is selected based on MS . The relation-
ship between MS and λ is graphically shown through Figure 2, Figure 3, Figure 4, Figure 5 for various types of
integrating systems. Using curve fitting, these graphical relations are formulated and presented in Table 1.

Figure 2: Variation of MS with λ for IPTD.
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Figure 3: Variation of MS with λ for DIPTD.

Figure 4: Variation of MS with λ for IFOPTD.
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Figure 5: Variation of MS with λ for IFOPTD with zero.

Table 1: Mathematical relation between λ and MS obtained using curve fitting. (1.5 ≤ u�u� ≤ 3.5).

Process λ SSE u�2

u�u� u�−u�u� 1u� ( 1.153u�u�2−3.183u�u�+2.164u�u�2−2.441u�u�+1.382 ) 0.001709 0.9983u�u�2 u�−u�u� 1u� ( 2.925u�u�2+802.7u�u�−850.9u�u�2+533.9u�u�+1084
) 0.0002858 0.9999u�u�(u�u�+1) u�−u�u� 1u� (u�1 + u�2u�u� + u�3u� + u�4u�u�2 + u�5u�u�u� + u�6u�2) 0.01462 0.9993u�(1+u�u�)u�(u�u�+1) u�−u�u� 1u� (u�1 + u�2u�u� + u�3u� + u�4u�u�2 + u�5u�u�u� + u�6u�2) 0.0003873 0.9999

P1= –0.5421, P2= 0.597, P3 = 0.2543, P4= –0.07363, P5 = 0.1245, P6 = –0.1481.
Q1= –0.3588, Q 2= 0.465, Q 3 = 0.321, Q 4= –0.0605, Q 5 = 0.03874, Q 6 = –0.06552.
X=θ/τ.

For clear understanding of the practitioners, the tuning procedure is elucidated in the flow chat presented
in Figure 6
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Figure 6: Flow chat of tuning criterion for the proposed method.

2.6 Set point weighting

From eq. (2), it can be understood that the controller introduces zeroes in the servo response which cause over-
shoot. Set point weighted PID controller is considered in the present work to reduce overshoot and minimize the
settling time. The difference between conventional and set point weighted controller lies in how proportional
term is considered. In conventional controller proportional gain is multiplied by error (difference between the
set point and the controlled variable), whereas for set point weighted controller difference between scaled set
point and controlled output will be considered.

𝑢 (𝑡) = 𝑘u�𝑒u� (𝑡) + 𝑘u�𝑒 (𝑡) + 𝑘u� 𝑑𝑒 (𝑡)𝑑𝑡
where

𝑒u� (𝑡) = 𝜀𝑦u�u� − 𝑦
and

𝑒 (𝑡) = 𝑦u�u� − 𝑦
𝑦u�u� = set point

𝑢 (𝑡) = controller output or process input𝑦 = controlled variable
Here, Ɛ is the set point weighting parameter that lies between 0 and 1. The values of Ɛ close to 0 reduce the

overshoot significantly at the cost of speed .The values of Ɛ close to 1 offer good speed of response but cause
high overshoot. So the selection of Ɛ is a trade-off between the speed of response and over shoot.
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3 Stability and robust performance

Many researchers [21, 22] used MS as a measure of stability margin.MS indicates the inverse of the minimum
distance between the loop transfer function curve and the critical point in Nyquist plot. The large value of MS
corresponds to a less stable system and smaller one to a more stable system. In general, the MS value between
1.2 and 2 is considered as a good choice. Control loops with the MS value close to 1.2 are conservative and the
MS values close to 2 correspond to more aggressive.

It is always quite common to have uncertainties in the process parameters due to various reasons like ap-
proximation errors, change of operating conditions etc. The robust stability analysis for the proposed method is
carried out using complimentary sensitivity function given either in eq. (2) or eq. (3). According to well-known1
small gain theorem, the closed loop system is robustly stable if and only if

∣∣𝑙u� (𝑗𝑤) 𝑇 (𝑗𝑤)∣∣ < 1∀𝜔 (−∞, ∞) (21)

where T(jω) is the complimentary sensitivity function and 𝑙u� (𝑗𝜔) is the bound on the process multiplicative
uncertainty .The process uncertainty is represented as

𝑙u� (𝑗𝜔) = ∣∣∣∣
𝐺u� (𝑗𝜔) 𝑒−u�u�u� − 𝐺u� (𝑗𝜔) 𝑒−u�u�u�𝐺u� (𝑗𝜔) 𝑒−u�u�u�

∣∣∣∣ (22)

The complimentary sensitivity function consists of controller parameters, 𝑘u�,𝑘u�,𝑘u�, α and β, which are func-
tion of λ.

4 Simulation results and comparison

In this section, extensive simulations are carried out to test the proposed method. The servo performance is
evaluated by forcing a positive unit step change in the set point at 𝑡 = 0𝑠 and the regulatory performance
is evaluated by inducing a positive unit step change in the disturbance at a later time. The performance is
compared with the recently reported methods [21, 22] in terms of IAE, TV and OS. Mathematical description
of various performance indices are given through eq. (23) to eq. (26).

IAE = ∞∫
0

|𝑒| 𝑑𝑡 (23)

Integral square error (ISE) = ∞∫
0

𝑒2𝑑𝑡 (24)

Integral time absolute error (ITAE) = ∞∫
0

𝑡 |𝑒| 𝑑𝑡 (25)

where e is the error. From the mathematical description, it can be understood that IAE criterion treats all
the errors equally, ISE criterion penalizes large errors and as time weighted absolute error is considered, ITAE
criterion promises faster settling times.

TV = ∞∑u�=0
∣𝑢u�+1 − 𝑢u�∣ (26)

Where 𝑢u� and 𝑢u�+1are the process inputs at ith and (i+1)th instants respectively. TV is a measure of smoothness
of the manipulated variable. Smaller value of TV ensures smooth variations in the manipulated variable which
cause less wear and tear of the process equipment. A sample period of 0.1 s is considered in the present analysis.
Simulation results are compared with the methods proposed by Anil & Padma Sree [22], and/or Ajmeri & Ali
[21].

Example1: Many level control problems like a storage tank with pump at the outlet, control of bottom level
of a distillation column are the best examples of an IPTD. The following IPTD is considered for the performance
analysis of proposed control strategy.

𝐺u� (𝑠) = 0.05𝑠 𝑒−5u�
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Comparing with eq. (1), 𝑘 = 0.05, 𝜃 = 5, 𝜏 = 𝑧 = 0, 𝑐 = 1.For this system, λ is derived as 0.163 using the
tuning rules presented in Table 1 to achieve MS=2.The controller parameters are derived using eq. (12). Ɛ is
taken as 0.5. Anil & Padma Sree [22], have considered Ɛ as 0.4. The controller parameters are shown in Table 2.
With these parameter settings, the simulations are carried out. Disturbance is induced at 80𝑠. Figure 7 shows
the graphical comparison under nominal conditions. Comparison in terms of performance indices is presented
in Table 3. To analyze the robust performance, +20 % change is assumed in both the process gain and the time
delay of the system. Disturbance is induced at 100𝑠. Figure 8 shows the response of the system under perturbed
conditions. Performance evaluation is presented in Table 4.

Figure 7: Nominal response of example 1.

Figure 8: Perturbed response of example 1.

Table 2: Controller parameters for various strategies.

Process Method u�u� u�u� u�u� α β MS

0.05 u�−5u�u�
Proposed 3.4147 0.1633 6.4697 1.25 0.9429 2
Anil-Padma Sree 3.727 0.1968 7.0440 – – 2
Ajmeri-Ali 2.9933 0 7.1189 – – 2

3.3209 0.1614 5.8796 – –
u�−u�u�2 Proposed 0.1867 0.0198 0.6469 0.5 0.2207 2

Anil-Padma Sree 0.1378 0.0142 0.5265 1.0761 1.0392 2
Ajmeri-Ali 0.0293 0 0.3129 – – 2

0.0414 0.0018 0.3246 – –
0.2u�−u�u�(4u�+1) Proposed 6.6190 0.9047 13.1965 0.5 0.2111 2
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Anil-Padma Sree 5.7422 0.9724 11.2082 0.6320 0.4915 2
(10u�+1)u�−u�u�(2u�+1) Ajmeri-Ali 3.1949 0 9.6792 – – 2

3.67 0.3521 9.0902 – –
Proposed 1.3166 0.2353 1.6945 0.5 10 2.35
Anil-Padma Sreea 1.1601 0.2251 1.4452 – – 2.35

0.5(1−0.5u�)u�−0.7u�u�(0.4u�+1)(0.1u�+1)(0.5u�+1) Proposed 1.0691 0.1543 1.0343 0.64 0.4104 2.81
Anil-Padma Sree 1.003 0.1572 0.6592 1.1608 0.5490 2.81

u� PID filter: 0.5214u�+1
2.674u�2+10.2674u�+1

Table 3: Performance comparison under nominal conditions.

Process Method Servo Response Regulatory Response
IAE TV OS IAE TV OS

0.05 u�−5u�u� Proposed 10.95 4.3172 0.012 6.130 2.0860 0.3020
Anil-Padma Sree 11.41 3.8120 0.001 5.080 2.1104 0.3040
Ajmeri-Ali 9.069 4.2939 0 6.631 1.7609 0.323u�−u�u�2 Proposed 5.690 0.2300 0.001 50.63 2.2486 4.820
Anil-Padma Sree 5.958 0.1395 0.008 70.58 2.4624 7.033
Ajmeri-Ali 10.67 3.3287 0.300 543.63 1.736 20.45

0.2u�−u�u�(4u�+1) Proposed 4.759 6.6126 0 1.105 1.9645 0.141
Anil-Padma Sree 4.543 5.4487 0.095 1.106 2.2456 0.174
Ajmeri-Ali 4.594 4.1901 0 2.840 1.6735 0.257(10u�+1)u�−u�u�(2u�+1) Proposed 3.368 0.1978 0.001 12.00 2.1600 4.305
Anil-Padma Sree 4.338 0.3987 0.514 17.18 2.1842 5.052

0.5(1−0.5u�)u�−0.7u�u�(0.4u�+1)(0.1u�+1)(0.5u�+1) Proposed 4.393 1.9860 0.016 6.599 2.6989 1.045
Anil-Padma Sree 4.094 2.4489 0.021 6.486 2.6940 1.065

Table 4: Performance comparison under perturbed conditions.

Perturbed process Method Servo Response Regulatory Response
IAE TV OS IAE TV OS

0.06 u�−6u�u� Proposed 11.37 7.6822 0.105 5.880 3.6697 0.399
Anil-Padma Sree 13.05 8.2170 0.118 5.100 4.3778 0.403
Ajmeri-Ali 12.57 7.4016 0.272 6.190 3.3297 0.423

1.2u�−1.2u�u�2 Proposed 5.782 0.3508 0.005 50.768 3.3935 4.974
Anil-Padma Sree 6.074 0.1921 0.010 71.046 3.3141 7.378
Ajmeri-Ali 10.75 0.3715 0.366 545.99 2.3423 19.82

0.24u�−1.2u�u�(4u�+1) Proposed 4.758 10.744 0 1.105 3.3244 0.162
Anil-Padma Sree 4.046 8.0329 0.041 1.055 3.1891 0.200
Ajmeri-Ali 4.600 9.2122 0 2.84 2.5391 0.289

1.2(10u�+1)u�−1.2u�u�(2u�+1) Proposed 3.372 0.3132 0.0034 16.76 5.766 5.785
Anil-Padma Sree 5.041 0.7464 0.821 29.339 5.7438 6.547

0.6(1−0.5u�)u�−0.84u�u�(0.4u�+1)(0.1u�+1)(0.5u�+1) Proposed 4.570 3.6187 0.058 6.769 5.8847 0.293
Anil-Padma Sree 4.513 3.5009 0.086 6.737 5.9102 0.316

The proposed method offers better robust performance when compared to the other methods. This is evi-
dent from the analysis presented in Table 4 and Figure 8 as the method is superior in terms of IAE, TV and OS
compared to the other methods.

Example 2: Fermentation reactors, aero plane dynamics during vertical take-off, DC motors are examples
of DIPTD processes. The following system is considered for analysis.

𝐺u� (𝑠) = 1𝑠2 𝑒−u�
Comparing with eq. (1), 𝑘 = 1, 𝑧 = 𝑐 = 0, 𝜏 = 1, 𝜃 = 1. λ is calculated as 0.355 to achieve MS = 2 using Table

1. The controller parameters are derived using eq. (19) and are presented in Table 2. Ɛ is selected as 0.4. Anil &
Padma Sree [22], have also considered Ɛ as 0.4. Disturbance is considered at 50𝑠.

The servo and regulatory responses for perfect model match are shown in Figure 9 and Figure 10 respec-
tively. From Table 3, Figure 9, the servo response of the proposed method is superior to the other reported
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methods in terms of IAE and OS. Anil & Padma Sree [22], have reported low TV which is comparable to that
of the proposed method. In regulatory response, the proposed method offers superior response compared to
other methods which is evident form Figure 10 and Table 3. So, it can be concluded that the proposed method
is very much effective in rejecting disturbance than the other methods. From Figure 11, Figure 12 and Table 4,
it is also clear that the proposed method is efficient under perturbed conditions in comparison with the other
methods. A +20 % variation in the process gain as well as time delay of the process is considered.

Figure 9: Nominal servo response of example 2.

Figure 10: Nominal regulatory response of example 2.
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Figure 11: Perturbed servo response of example 2.

Figure 12: Perturbed regulatory response of example 2.

Example 3: Jacketed CSTR with exothermic reaction, drying process in paper industry are examples of
IFOPTD.

𝐺u� (𝑠) = 0.2𝑠 (4𝑠 + 1)𝑒−u�
Comparing the system with eq. (1), 𝑘 = 0.2, 𝑧 = 0, 𝜏 = 4, 𝑐 = 1 and θ = 1. λ is taken as 0.475 to achieve MS = 2

with the help of Table 1. Ɛ is taken with a value of 0.35. The controller parameters are derived with the help of
equations eq. (19) and are given in Table 2. Anil & Padma Sree [22], have taken Ɛ as 0.4. Disturbance is induced
at 40𝑠. The simulation study under nominal conditions is shown in Figure 13 and Table 3. It is observed that
all methods are giving comparable performance in set point tracking. In disturbance rejection, the proposed
method performs better than the other methods.
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Figure 13: Nominal response of example 3.

The simulation study under perturbations is analyzed for a perturbation of +20 % in both the time delay and
process gain of the system. The observed results are presented in Figure 14 and Table 4. The proposed method
is less oscillatory and comparable to the strategy of Anil & Padma Sree [22],and performs better than Ajmeri &
Ali [21],in disturbance rejection.

Figure 14: Perturbed response of example 3.

Example 4: An integrating system with both pole and zero is considered in this example

𝐺u� (𝑠) = 10𝑠 + 1𝑠 (2𝑠 + 1)𝑒−u�
Comparing the system with eq. (1), 𝑘 = 1, 𝑧 = 10, 𝜏 = 2, 𝑐 = 1 and 𝜃 = 1. A value of 0.5888 of λ is considered

to achieve MS= 2.35. Ɛ is chosen as 0.4. The controller parameters are presented in Table 2. Disturbance is
considered at 50𝑠.

The simulation analysis of the strategies under nominal conditions is shown in Figure 15. From the graphical
analysis shown in Figure 15 and Table 3, it is clear that the proposed method is superior to the method reported
by Anil & Padma Sree [22],in both the set point tracking and the disturbance rejection. The other method re-
sulted in higher overshoot and undershoots in disturbance rejection when compared to that of the proposed
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method. One more important observation is that the other method is not able to reduce the over shoot in servo
response even after including set point weighting.

Figure 15: Nominal response of example 4.

From Figure 16 and Table 4, it is also revealed that the proposed method is superior to the method reported
by Anil & Padma Sree [22],even in terms of robust performance. A perturbation of +20 % is assumed in the
process gain and the time delay of the system.

Figure 16: Perturbed response of example 4.

Example 5: In this example, the proposed method is applied to a higher order system by approximating it
to an equivalent IFOPTD system.

𝐺u� (𝑠) = 0.5 (1 − 0.5𝑠)𝑠 (0.4𝑠 + 1) (0.1𝑠 + 1) (0.5𝑠 + 1)𝑒−0.7u�
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Using model reduction technique [2] the higher order system is reduced to a delay dominant IFOPTD system
and is given as

𝐺u� (𝑠) = 0.5183𝑠 (1.1609𝑠 + 1)𝑒−1.2799u�
For fair comparison with Anil and Padma Sree [22], λ value of 0.59893 is considered which corresponds to

MS = 2.81. Ɛ is selected as 0.4. In this example, the reduced order system parameters are used for calculating
the controller parameters whereas the actual systems parameters are used for calculating the MS value. Anil &
Padma Sree [22], have taken Ɛ as 0.4. Controller settings are presented in Table 2. Disturbance is induced at 50.
Nominal responses are compared graphically in Figure 17. From Figure 17 and Table 3, it is observed that both
the methods perform almost equally.

Figure 17: Nominal response of example 5.

From Figure 18 and Table 4, it can be concluded that the performance of the proposed method under per-
turbed conditions is superior to the method of Anil & Padma Sree [22]. The process gain and the time delay of
the system are perturbed by +20 % to analyze the robust performance.
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Figure 18: Perturbed response of example 5.

5 Conclusion

A simple control loop is designed for a class of integrating systems. The control loop involves a PID controller
with first order lead/lag filter. The controller parameters are derived as a function of MS to achieve desired
robust performance. Set point weighting is employed to reduce overshoot in the servo response. The proposed
method has shown equal or better performance compared to the other methods. Significantly improved perfor-
mance is observed especially in the case of DIPTD and IFOPTD with zero. The notable feature of the proposed
method is that it offers better performance with single feedback control loop, which eliminates the necessity
of multi control structure with separate controllers for servo and regulatory responses and multiple tuning
parameters.
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