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Abstract

Angiogenic sprouting is a complex, multi-step process involving highly integrated cell behaviours, initial
interaction with the environment and signalling pathways. Endothelial cells (ECs) are central to the angiogenic
process, with recent insights establishing how these cells communicate with each other and with their
microenvironment to form branched vascular networks. Using pancreatic islets as a model for vascularized tissue,
this review will present a general overview of EC behaviour dynamics in sprouting angiogenesis, particularly
focusing on the interplay between VEGF and Notch pathways. A better understanding of molecular mechanisms
associated with intra-islet EC cross-talk and its micro-environment may present exciting new perspectives on islet
graft to host revascularization and in supporting islet graft survival.
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Introduction
Pancreatic islets are highly vascularized and receive 10% of the

pancreatic blood flow despite comprising of only 1-2% of the overall
tissue mass [1]. Islets represent endocrine “island” clusters, embedded
and scattered within large amounts of exocrine acinar tissue [2]. Most
islets are irregularly shaped spheroids with a size distribution ranging
from 50–200 μm, composed of 800–3,000 cells. In the context of islet
studies and transplantation, 1 islet equivalent (IEQ) is often considered
as a size of 150 mm, consisting of an average 2,500 cells. The cellular
components of the islet include β-cells with the remainder of the islet
comprised of other endocrine cells (including glucagon-secreting α-
cells, somatostatin secreting δ-cells, pancreatic polypeptide-secreting
γ-cells, and ghrelin-producing ε-cells), as well as ECs and support cells
such as pericytes [3-12]. Species heterogeneity exists with respect to
cellular composition of islets. Rodent islets are primarily composed of
β-cells located in the center with other cell types in the periphery,
human islets exhibit interconnected α- and β-cells [3-13,14]. β-cell, the
central regulator of glucose homeostasis is the largest cellular
component of islets in most species [12,13]. Vascular endothelial cells
represent a major cell type present in islets and these cells are
organized into a highly regulated and morphologically unique
microcirculation. Studies using vascular corrosion casts have shown
that 1-3 arterioles feed larger islets [15]. The capillary network within
islets is about five times denser in comparison with exocrine tissue
[16]. The capillary wall is composed of a permeable layer of ECs and
contain ten times more fenestrae than ECs present in the exocrine
pancreas [17,18]. Rapid and adequate revascularization is critical for
survival and function of transplanted islets [19-21]. Unlike whole
organ transplantation where revascularization occurs through surgical
anastomosis of vessels, the revascularization of islets requires the

formation of vessel patencies either through inosculation of host and
recipient microvessels or through neo-vessel penetration into the islet.
The return of islet function depends on reestablishment of new vessels
within islet grafts to derive blood flow from the host vascular system
[22,23]. Transplanted islet grafts initially have a significant reduction in
vascular supply and low oxygen tension in comparison to normal islets
[24-26]. The human islet isolation technique completely severs the islet
vasculature [20,27], the enzymatic digestion step contributing towards
partially disrupting intra-islet ECs [22,28,29]. Revascularization is an
important process for adequate engraftment of islets. Prevascularizing
islets prior to transplantation could potentially improve islet
survivability and function by aiding islet-to-host inosculation [30].
Studies involving cell and tissue engineering approaches have
considered factors such as pancreatic islet size-dependency [31], use of
stem cells [32-35], endothelial progenitor cell derived microvesicles
[36], creating engineered vascular beds and hydrogels [37-39] and
repurposed biological scaffolds [40] to improve islet revascularization
potential. The angiogenic capacity of islet ECs has been previously
determined [41]. These cells have been shown to support
revascularization of fresh islets by participating in the early processes
of vessel formation [30,42]. Unpublished data from our lab
demonstrates that fresh islets, immediately after isolation, are capable
of forming peri-islet vessels in a 3D-gel construct (Figure 1 & 2). The
initial molecular events by which intra-islet ECs result in the formation
of such vessels have not yet been explored. This review will focus on
the VEGF-Notch signalling pathways and their associated molecular
regulation which have been well characterized and shown to play key
roles in endothelial crosstalk critical to proper vessel sprouting.
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Figure 1: Islet sprout monitoring in group of human islets in time
lapse microscope (Cytation™ 5 with Augmented Microscopy™)
[BioTek Instruments, Inc.,].

Regulation of angiogenesis

VEGF family: critical regulators of angiogenesis
The family of VEGF (vascular endothelial growth factor) ligands

and their receptors are major regulators of sprouting angiogenesis

[43-46]. VEGFs are critical, as they regulate vessel formation during
embryonic development, play a major role in wound healing and in
maintaining vessel homeostasis in adult organisms. In addition,
impaired vessel function resulting from defects in VEGF ligands or
receptors is the cause of many diseases. VEGF was originally described
as vascular permeability factor (VPF), an activity released by tumor
cells that promotes vascular leakage [43,47-56]. VEGF secretion is
stimulated by tumor, hypoxia, low pH and many other factors. The
VEGF binds to its receptor (VEGFR) located on the blood vessel ECs.
The ECs upon activation produce enzymes and other molecules for EC
growth and proliferation. Other effects include mobilization of
endothelial progenitor cells from bone marrow, increased vascular
permeability and tissue factor induction. The VEGF family comprises
seven secreted glycoproteins that are designated VEGF-A, VEGF-B,
VEGF-C, VEGF-D, VEGF-E, placental growth factor (PlGF) and
VEGF-F [57-59]. VEGF-A, the most well studied factor within the
VEGF family, is expressed in the extra-embryonic endoderm and
mesoderm as blood islands, and within the intra-embryonic endoderm
at E8.5 [60] (Table 1).

 Type of
VEGF

Role in regulating/modulating ECs References

VEGF-A Most potent pro-angiogenic protein described to date, implicated in both vasculogenesis and angiogenesis. It induces
proliferation, sprouting and tube formation of ECs.

Is a potent survival factor for ECs and has been shown to induce the expression of anti-apoptotic proteins in these cells.

Causes vasodilation by inducing the endothelial nitric oxide synthase and so increasing nitric oxide production.

VEGF-A binds many receptors on hematopoietic stem cells (HSCs), monocytes, osteoblasts and neurons; induces HSC
mobilization from the bone marrow, monocyte chemo-attraction and osteoblast-mediated bone formation

Many cytokines including platelet-derived growth factor, basic fibroblast growth factor, the epidermal growth factor and
transforming growth factors induce VEGF-A expression in cells.

[49,57]

[61,62]

[63]

[57,64]

[65]

VEGF-B Several reports suggest that VEGF-B may modulate cell proliferation and vessel growth. Conditioned medium from transfected
cells expressing VEGF-B stimulates DNA synthesis in endothelial cells.

Shown to play a central role in cardiac development.

[66]

[67,68]

VEGF-C The mature form of VEGF-C induces mitogenesis, migration and survival of ECs

VEGF-C mRNA transcription is induced in ECs in response to pro-inflammatory cytokines (IL-β).

Promote lymphatic vessel development and may also contribute to angiogenesis.

[69]

[70]

[71-73]

VEGF-D The mature human VEGF-D is mitogenic, angiogenic and lymphogenic in vivo

Stimulates growth of vascular and lymphatic ECs by signaling through the tyrosine kinase receptors (VEGFR-2, VEGFR-3)

Promote lymphatic vessel development and may also contribute to angiogenesis.

[69]

[74]

[71-73]

VEGF-E Highly specific isoform that acts only on the endocrine gland endothelial cells.

VEGF-E is a potent angiogenic factor and data strongly indicates that the activation of VEGFR-2 alone can stimulate
angiogenesis efficiently.

[75]

[76]

PIGF Originally identified in the placenta; occurs at low levels in the embryo and adult and has primarily been studied in pathological
conditions where it is thought to stimulate angiogenesis in coordination with VEGF-A.

[77,78]

Table 1: Types of vascular endothelial growth factors (VEGFs) with evidence demonstrating their involvement in regulating endothelial cells.

VEGF family members interact with three main receptors,
VEGFR-1 (FLt-1), VEGFR-2 (KDR in humans and Flk-1 in mouse)
and VEGFR-3 (Flt4), all tyrosine kinase receptors and members of the
PGDF receptor family. VEGF receptors possess an extracellular
domain consisting of immunoglobulin repeats responsible for VEGF
binding and intracellular tyrosine kinase domains. VEGF binding to its
receptor leads to receptor dimerization and activation of receptor
tyrosine kinases by autophosphorylation. This leads to several biologic

effects on endothelial cells. The VEGF receptor transmembrane
tyrosine kinases, which upon binding of their ligands to the
extracellular domain of the receptor, activate a cascade of downstream
proteins after the dimerization and autophosphorylation of the
intracellular receptor tyrosine kinases. VEGFR-2 appears to be the
main receptor responsible for mediating the proangiogenic effects of
VEGF-A [57,79,80]. VEGF-A and its receptors VEGFR-1 and
VEGFR-2 are expressed early in embryonic development (Table 2).
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 Type of
VEGFR

Role in regulating/modulating endothelial cells (ECs) References

VEGFR-1 Expressed in ECs as well as osteoblasts, monocytes/macrophages, placental trophoblasts, renal mesangial cells and also in
some hematopoietic stem cells (HSCs).

VEGFR-1 expression is upregulated by hypoxia (HIF1 dependent mechanism).

Has an active functional role and participates in monocyte migration, recruits EC progenitors and increases adhesive
properties of natural killer cells.

[81]

[82]

[83-86]

VEGFR-2 Undergoes dimerization and strong ligand-dependent tyrosine phosphorylation in intact cells and results in a mitogenic,
chemotactic, and pro-survival signal.

Y1175 and Y1214 are the two major VEGF-A-dependent autophosphorylation sites in VEGFR-2. However, only
autophosphorylation of Y1175 is imperative for VEGF dependent EC proliferation.

In addition to the ECs, VEGFR-2 is also expressed on neuronal cells, osteoblasts, megakaryocytes and HSCs.

It is down-regulated in the blood vascular ECs, and is again up-regulated in angiogenic blood vessels. Sequestration of
VEGF-A results in down-regulation of VEGFR-2 and in apoptotic death of some capillary endothelial cells in vivo.

It is an early marker of endothelial and hematopoietic precursor cells in blood islands.

[87]

[88]

[57,87]

[89,90]

[91,92]

VEGFR-3 Recently shown to be strongly modulated by Notch upregulating angiogenesis in absence of VEGF-VEGFR2 signalling.

VEGFR-3 is up-regulated on blood vascular ECs in pathologic conditions such as in vascular tumors and in the periphery of
solid tumors.

Widely distributed in vascular tumors and can be considered as a marker of endothelial cell differentiation of vascular
neoplasms.

is down-regulated in vivo at sites of endothelial cell–pericyte/smooth muscle cell contacts; suggesting that VEGFR-3 signaling
is important in nascent blood vessels, and it becomes redundant as the vessels mature. In humans, VEGFR-3 expression was
upregulated in blood vessel endothelium in chronic inflammatory wounds.

[93]

[89]

[94]

[95]

Table 2: An overview of vascular endothelial growth factor receptors and their roles in regulating endothelial cells.

Notch signaling
In addition to the VEGF receptor tyrosine kinases and their ligands,

several recent studies demonstrate the importance of Notch signalling
components such as ligands Dll4 (Delta-like ligand 4), Jagged-1 and
Notch1 in EC specification during formation of a functional vascular
network [96-99]. In mammals there are 5 DSL (Delta Serrate Lag-2)
ligands: Delta-like 1 (Dll1), Delta-like 3 (Dll3), Delta-like 4 (Dll4),
Jagged-1 (Jag1) and Jagged-2 (Jag2). These ligands are type1 cell-
surface proteins with multiple tandem epidermal growth factor (EGF)
repeats in their extracellular domains (ECDs). DSL ligands bind to
Notch receptors, which are large, single pass, type1 transmembrane
receptors. There are 4 known Notch receptors, Notch1 to Notch4.
Binding of a DSL ligand to the ECD of the Notch receptor (NECD)
triggers a series of proteolytic cleavages of Notch, first by a member of
the disintegrin and metalloproteases (ADAM) family within the juxta-
membrane region, followed by γ-secretase within the transmembrane
domain (Table 3). The Notch receptors, ligands, and several signaling
pathway components have been identified in endothelial cells in vitro
and in vivo, during development and tumor angiogenesis [100-102].

Notch pathway Pathway component expressed by
ECs

References

Receptors Notch1 and Notch4 [101,103-10
5]

Ligands DSL ligands Dll1, Dll4, Jag1 and Jag2 [101,103-10
5]

Key Notch signaling
components

Rbpj, Hey1, Hey2, Maml1, Numb and
Nrarp

[104,106-11
2]

Table 3: Notch pathway components expressed in endothelial cells.

Functional studies using gene targeting in mice, mutagenesis and
knockdown in zebrafish, and biochemical analysis in cultured
endothelial cells have demonstrated that Notch signaling plays a
fundamental role in many aspects of endothelial cell biology during
angiogenesis [113] (Table 4).

Endothelial function  Notch component(s)
involved

References

Tip/stalk cell
specification

Dll4 [97-99,114,115]

Notch1 [97]

Rbpja (zebrafish) [98]

Proliferation Dll4 [99,110,115-117]

Notch1 [110]

Notch4 [118]

Rbpj/Rbpja (zebrafish) [98,106]

Mam1 [110]

Hes1 [110]

Vessel stability Nrarp [112]

Motility Dll4 [114,117]

rbpja (zebrafish) [98]

Filopodia protrusion Dll4 [97,99,114,115]

Notch1b (zebrafish) [114]
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Matrix production/
assembly and cell
adhesion

Dll4 [116,117,119,120]

Notch1 [119]

Notch4 [121]

Table 4: Evidence for the role of Notch components involved in
endothelial cell function.

EC phenotypes: Interplay between VEGF and Notch
signaling in regulating EC sprouting

An exciting breakthrough within angiogenic research in the past
decade has been the identification of different EC phenotypes with
different cellular fate specifications that are key in forming a vessel
branch [122]. Leading the trail are ‘tip cells’ which sense and respond
to guidance cues. ‘Stalk cells’ follow behind the tip cells and elongate
the stalk of the sprout by proliferating, forming junctions, modulating
the extracellular matrix and forming a lumen. ‘Phalynx cells’, the most
quiescent of the ECs, line vessels once new vessel branches have
formed. These cells form a monolayer, are covered by pericytes,
attached via tight junctions, and strongly held by a robust basement
membrane. Phalynx cells are engaged in optimizing blood flow, tissue
perfusion and oxygenation [123-125].

Specification of ECs into tip and stalk cells bearing different
morphologies and functional properties is central to sprouting
initiation [113,126]. Vessel networks, while expanding, require ECs to
undergo frequent cycles of sprouting and branching. This results in
dynamic transitions between the two cell phenotypes [113,126]. Tip
cells express high levels of Dll4, platelet derived growth factor-b
(PDGF-b), unc-5 homolog b (UNC5b), VEGFR 2/3 and has low levels
of Notch signalling activity [98,99,103,127, 128]. Stalk cells produce
fewer filopodia, are more proliferative, form tubes, branches and a
vascular lumen, establish junctions with neighbouring cells and
synthesise basement membrane components [113,129]. Tip cell
migration depends on a VEGF gradient migrating outward from
parent vessel whereas stalk cell proliferation is regulated by VEGF
concentration [127,130]. VEGF stimulates tip cell induction and
filopodia formation via VEGFR2 (abundant on filopodia), whereas
VEGFR2 blockade is associated with sprouting defects [113]. VEGFR1
expression is induced by Notch signalling to reduce VEGF ligand
availability preventing tip cell outward migration. VEGFR1 is
predominantly expressed in stalk cells and is involved in guidance and
limiting tip cell formation. Loss of VEGFR1 results in increased
sprouting and vascularization [131,132].

Figure 2: Islet sprout monitoring in single human islets in time lapse
microscope (Cytation™ 5 with Augmented Microscopy™)[BioTek
Instruments, Inc.,]

Notch appears to act as a negative feedback mechanism to regulate
VEGF signaling. This regulation may explain the observation that
decreased VEGFR-2 allows for local differentiation of endothelial tip
cells prior to sprout initiation with VEGF action on tip cells leading to
increased Dll4 expression and activation of Notch signaling, which in
turn downregulates VEGFR-2 in neighboring stalk cells [46]. Tip cells
with higher VEGFR-2 expression will, therefore, readily respond to
VEGF while stalk cells with fewer receptors will be less responsive.
Interestingly, tip cells do not proliferate in response to VEGF, but
rather form filopodia and migrate in the direction of the VEGF
gradient. It is the stalk endothelial cells of the growing capillary branch
that proliferate [127].

In mouse and zebrafish angiogenesis, VEGFR3 is strongly expressed
in the leading tip cell and is downregulated by Notch signalling in the
stalk cell [98,133]. Notch1 and Notch4 and the three Notch ligands
JAG-1, Dll1 and Dll4 are expressed in ECs for the induction of arterial
cell fate and for the selection of endothelial tip and stalk cells during
sprouting angiogenesis [134]. Activation of Notch signalling reduces
while its loss induces sprouting. Notch-1 deficient ECs adopt tip cell
characteristics [97,98,129] whereas in stalk cells, activation of Notch by
Dll4 leads to downregulation of VEGFR-2 and -3 [101,135]. Cells
dynamically compete for tip position utilizing differential VEGFR
levels, as cells with higher VEGFR signalling produces more Dll4 and
therefore inhibit their neighbouring cells. VEGF has been shown to
induce the expression of Dll4 and Notch signaling [136]. Elevated Dll4
and VEGFR-2 expression was detected in tip cells compared to
neighboring stalk cells [96]. Blockage of VEGF, in animal models,
caused a decrease of Dll4 in vessels and inhibited sprouting [99]
whereas administration of VEGF induced Dll4 expression [115].

Notch signaling also influences VEGF receptor expression, leading
to the downregulation of VEGFR-2, as evidenced by decreased
VEGFR-2 levels after Notch activation in ECs and in Dll4-deficient
mice [99,109]. Endothelial Notch activation regulates the expression of
different VEGFRs (VEGFR1, 2, and 3) as well as the co-receptor Nrp1
[46,93,97,98,103,114,115,137]. Dll4 activates Notch in adjacent cells,
which suppresses the expression of VEGF receptors and thereby
restrains endothelial sprouting and proliferation [98,99,113,138].
Notch activation in HUVECS leads to VEGFR1 mRNA induction
[120,139]. In contrast, VEGFR2 and Nrp1 mRNA is markedly reduced
by Notch activation in HUVECs [137,140,141], indicating that Notch
signaling is able to regulate how the ECs respond to VEGF. The Notch
and VEGF signaling appear to be intimately associated in
angiogenesis. It has been shown that Notch signalling acts downstream
of the VEGF pathway during physiological and pathological
angiogenesis [115,140,142-144], suggesting that VEGF pathway
controls expression of different Notch components (Table 5).

Conclusions and Future Perspectives
Significant progress has been made in our understanding of

importance of angiogenesis in health and disease but our knowledge of
coordinated events that result in vessel branching and inosculation
remains incomplete. We are just beginning to appreciate the interplay
of other signalling pathways such as Wnt and BMP in regulating vessel
sprouting. Angiogenesis is a complex, multi-step process. Key to this
process are ECs, which are pivotal to sprouting angiogenesis and have
been implicated in many diseases [60,161-163].
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Novel regulators/components Recently identified for sprouting angiogenesis

(VEGF/Notch pathways)
References

Deubiquitinases Notch [145]

Cholesterol VEGF [146-148]

MEF2 transcription factors VEGF-Notch [149]

Podosomes VEGF-Notch [150]

Adipogenic proteins VEGF-Notch [151,152]

Glucose regulators VEGF-Notch [152,153]

Foxo1 transcription factor EC metabolism [154]

Lactate Angiogenesis [155]

ROS and redox events VEGF [156-158]

Cilia Angiogenesis [159,160]

Table 5: Novel regulators recently identified to play a role in angiogenesis (ECs/VEGF/Notch pathways).

It has been shown that EC proliferative capacities can be stimulated
by various inducers [41,42,164,165]. A variety of in vivo and in vitro
models for understanding EC behaviour during angiogenesis at the
cellular level have been derived from systems such as rabbit cornea
[166], developing mouse retina [167], intersegmental vessel growth in
zebrafish [168] and using ECs embedded in collagen or fibrin gels
[169,170].

In the last two decades, focus has been paramount on the study of
human pancreatic islets, its isolation techniques and in improving islet
yield and function because of its critical involvement in debilitating
diseases such as Type-1 diabetes and chronic pancreatitis. The dense
vasculature within the pancreas is an important determinant in the
physiology and disease of islets. The pancreatic islets is an ideal model
‘tissue’ to learn more about microvasculature and in this context the
study of ECs within islets has potential benefits. The islet EC model
represents an excellent platform to better understand molecular
mechanisms associated with vessel sprouts, an important but greatly
understudied area within islet research. Crosstalk of ECs with other
islet cells, such as the β-cells has been evaluated [171-175] particularly
in increasing β-cell mass and thereby insulin production. Moreover, a
number of factors which may potentially improve islet transplantation
involve ECs. Vascular ECs of the embryonic aorta have been shown to
induce the development of endocrine cells from pancreatic epithelium
in mouse [176,177] and overexpression of VEGF-A in transplanted
mouse islets was shown to improve insulin secretion and blood glucose
regulation in recipient mice [165,178]. Utilizing intra-islet ECs as a
model to better understand mechanisms associated with sprouting
angiogenesis is likely to generate exciting new hypotheses and offer
new insights of how transplanted islets can reestablish vasculature
more efficiently and successfully.
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