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We introduce a new class of meromorphic parabolic starlike functions with a fixed point defined in the punctured unit disk
Δ
∗

:= {𝑧 ∈ C : 0 < |𝑧| < 1} involving the 𝑞-hypergeometric functions. We obtained coefficient inequalities, growth and distortion
inequalities, and closure results for functions 𝑓 ∈ M𝑙

𝑚
(𝜆, 𝛽, 𝛾). We further established some results concerning convolution and

the partial sums.

1. Introduction

Let 𝜉 be a fixed point in the unit disc Δ := {𝑧 ∈ C : |𝑧| < 1}.
Denote byH(Δ) the class of functions which are regular and

A (𝜉) = {𝑓 ∈ 𝐻 (Δ) : 𝑓 (𝜉) = 𝑓


(𝜉) − 1 = 0} . (1)

Also denote by S
𝜉
= {𝑓 ∈ A(𝜉) : 𝑓 is univalent inΔ}, the

subclass ofA(𝜉) consisting of the functions of the form

𝑓 (𝑧) = (𝑧 − 𝜉) +

∞

∑

𝑛=2

𝑎
𝑛
(𝑧 − 𝜉)

𝑛 (2)

which are analytic in Δ. Note that S
0
= S is subclasses ofA

consisting of univalent functions in Δ. ByS∗
𝑤
(𝛽) andK

𝑤
(𝛽),

respectively, we mean the classes of analytic functions that
satisfy the analytic conditionsR{(𝑧 − 𝜉)𝑓(𝑧)/𝑓(𝑧)} > 𝛽, and
R{1 + ((𝑧 − 𝜉)𝑓(𝑧)/𝑓(𝑧))} > 𝛽, (𝑧 − 𝑤) ∈ Δ for 0 ≦ 𝛽 < 1
introduced and studied by Kanas and Ronning [1]. The class
S∗
𝜉
(0) is defined by geometric property that the image of any

circular arc centered at 𝜉 is starlike with respect to 𝑓(𝜉) and
the corresponding classK∗

𝜉
(0) is defined by the property that

the image of any circular arc centered at 𝜉 is convex. We
observe that the definitions are somewhat similar to the ones
introduced by Goodman in [2, 3] for uniformly starlike and
convex functions, except that in this case the point 𝜉 is fixed.

In particular, K = K
0
(0) and S∗

0
= S∗(0), respectively,

are the well-known standard classes of convex and starlike
functions.

Let Σ denote the class of meromorphic functions 𝑓 of the
form

𝑓 (𝑧) =
1

𝑧
+

∞

∑

𝑛=1

𝑎
𝑛
𝑧
𝑛

, (3)

defined on the punctured unit disk Δ∗ := {𝑧 ∈ C : 0 < |𝑧| <

1}.
Denote by Σ

𝜉
the subclass of Σ consisting of the functions

of the form

𝑓 (𝑧) =
1

𝑧 − 𝜉
+

∞

∑

𝑛=1

𝑎
𝑛
(𝑧 − 𝜉)

𝑛

, 𝑎
𝑛
≥ 0; 𝑧 ̸= 𝜉. (4)

A function𝑓 of the form (4) is in the class ofmeromorphic
starlike of order 𝛾 (0 ≤ 𝛾 < 1) denoted by Σ∗

𝜉
(𝛾), if

−R(
(𝑧 − 𝜉) 𝑓



(𝑧)

𝑓 (𝑧)
) > 𝛾, 𝑧 − 𝜉 ∈ Δ := Δ

∗

∪ {0} , (5)
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and is in the class of meromorphic convex of order 𝛾 (0 ≤ 𝛾 <
1) denoted by Σ𝐾

𝜉
(𝛾), if

−R(1 +
(𝑧 − 𝜉) 𝑓



(𝑧)

𝑓 (𝑧)
) > 𝛾, 𝑧 − 𝜉 ∈ Δ := Δ

∗

∪ {0} .

(6)

For functions 𝑓(𝑧) given by (4) and 𝑔(𝑧) = (1/(𝑧 − 𝜉)) +
∑
∞

𝑛=1
𝑏
𝑛
(𝑧 − 𝜉)

𝑛, (𝑏
𝑛
≥ 0) we define the Hadamard product or

convolution of 𝑓 and 𝑔 by

(𝑓 ∗ 𝑔) (𝑧) :=
1

𝑧 − 𝜉
+

∞

∑

𝑛=1

𝑎
𝑛
𝑏
𝑛
(𝑧 − 𝜉)

𝑛

. (7)

More recently, Purohit and Raina [4] introduced a
generalized 𝑞-Taylor’s formula in fractional 𝑞-calculus and
derived certain 𝑞-generating functions for 𝑞-hypergeometric
functions. In this work we proceed to derive a generalized
differential operator on meromorphic functions in Δ∗ = {𝑧 ∈
C : 0 < |𝑧| < 1} involving these functions and discuss some
of their properties.

For complex parameters 𝑎
1
, . . . , 𝑎

𝑙
and 𝑏
1
, . . . , 𝑏

𝑚
(𝑏
𝑗
̸= 0,

−1, . . . ; 𝑗 = 1, 2, . . . , 𝑚) the 𝑞-hypergeometric function
𝑙
Ψ
𝑚
(𝑧) is defined by

𝑙
Ψ
𝑚
(𝑎
1
, . . . 𝑎
𝑙
; 𝑏
1
, . . . , 𝑏

𝑚
; 𝑞, 𝑧)

:=

∞

∑

𝑛=0

(𝑎
1
, 𝑞)
𝑛
⋅ ⋅ ⋅ (𝑎
𝑙
, 𝑞)
𝑛

(𝑞, 𝑞)
𝑛
(𝑏
1
, 𝑞)
𝑛
⋅ ⋅ ⋅ (𝑏
𝑚
, 𝑞)
𝑛

× [(−1)
𝑛

𝑞
(
𝑛

2
)
]

1+𝑚−𝑙

𝑧
𝑛

,

(8)

with ( 𝑛
2
) = 𝑛(𝑛 − 1)/2 where 𝑞 ̸= 0 when 𝑙 > 𝑚 + 1 (𝑙, 𝑚 ∈

N
0
= N ∪ {0}; 𝑧 ∈ U).
The 𝑞-shifted factorial is defined for 𝑎, 𝑞 ∈ C as a product

of 𝑛 factors by

(𝑎; 𝑞)
𝑛
= {
1 𝑛 = 0

(1 − 𝑎) (1 − 𝑎𝑞) ⋅ ⋅ ⋅ (1 − 𝑎𝑞
𝑛−1

) 𝑛 ∈ N,
(9)

and in terms of basic analogue of the gamma function

(𝑞
𝑎

; 𝑞)
𝑛
=

Γ
𝑞
(𝑎 + 𝑛) (1 − 𝑞)

𝑛

Γ
𝑞
(𝑎)

, 𝑛 > 0. (10)

It is of interest to note that lim
𝑞→1

−((𝑞
𝑎

; 𝑞)
𝑛
/(1−𝑞)

𝑛

) = (𝑎)
𝑛
=

𝑎(𝑎+1) ⋅ ⋅ ⋅ (𝑎+𝑛−1) is the familiar Pochhammer symbol and

𝑙
Ψ
𝑚
(𝑎
1
, . . . , 𝑎

𝑙
; 𝑏
1
, . . . , 𝑏

𝑚
; 𝑧) =

∞

∑

𝑛=0

(𝑎
1
)
𝑛
⋅ ⋅ ⋅ (𝑎
𝑙
)
𝑛

(𝑏
1
)
𝑛
⋅ ⋅ ⋅ (𝑏
𝑚
)
𝑛

𝑧
𝑛

𝑛!
. (11)

Now for 𝑧 ∈ U, 0 < |𝑞| < 1, and 𝑙 = 𝑚 + 1, the basic
hypergeometric function defined in (8) takes the form

𝑙
Ψ
𝑚
(𝑎
1
; . . . 𝑎
𝑙
; 𝑏
1
, . . . , 𝑏

𝑚
; 𝑞, 𝑧)

=

∞

∑

𝑛=0

(𝑎
1
, 𝑞)
𝑛
⋅ ⋅ ⋅ (𝑎
𝑙
, 𝑞)
𝑛

(𝑞, 𝑞)
𝑛
(𝑏
1
, 𝑞)
𝑛
⋅ ⋅ ⋅ (𝑏
𝑚
, 𝑞)
𝑛

𝑧
𝑛

,

(12)

which converges absolutely in the open unitdisk U.

Corresponding to the function
𝑙
Ψ
𝑚
(𝑎
1
; . . . 𝑎
𝑙
; 𝑏
1
, . . . , 𝑏

𝑚
;

𝑞, 𝑧) recently for meromorphic functions 𝑓 ∈ Σ
0
consisting

functions of the form (3), Huda and Darus [5] introduce 𝑞-
analogue of Liu-Srivastava operator as below:

𝑙
Ψ
𝑚
(𝑎
1
; . . . 𝑎
𝑙
; 𝑏
1
, . . . , 𝑏

𝑚
; 𝑞, 𝑧) ∗ 𝑓 (𝑧)

=
1

𝑧
𝑙
Ψ
𝑚
(𝑎
1
; . . . 𝑎
𝑙
; 𝑏
1
, . . . , 𝑏

𝑚
; 𝑞, 𝑧) ∗ 𝑓 (𝑧)

=
1

𝑧
+

∞

∑

𝑛=1

(𝑎
1
; 𝑞)
𝑛+1
⋅ ⋅ ⋅ (𝑎
𝑙
; 𝑞)
𝑛+1

(𝑞; 𝑞)
𝑛+1
(𝑏
1
; 𝑞)
𝑛+1
⋅ ⋅ ⋅ (𝑏
𝑚
, 𝑞)
𝑛+1

𝑎
𝑛
𝑧
𝑛

,

(13)

where 𝑧 ∈ Δ∗ := {𝑧 ∈ C : 0 < |𝑧| < 1}.
In this paper for functions𝑓 ∈ Σ

𝜉
and for real parameters

𝑎
1
, . . . , 𝑎

𝑙
and 𝑏

1
, . . . , 𝑏

𝑚
(𝑏
𝑗
̸= 0, −1, . . . ; 𝑗 = 1, 2, . . . , 𝑚) we

define the following new linear operator:

I
𝑙

𝑚
(𝑎
1
; . . . 𝑎
𝑙
; 𝑏
1
, . . . , 𝑏

𝑚
; 𝑞, 𝑧 − 𝜉) : Σ

𝜉
→ Σ

𝜉
, (14)

as

I
𝑙

𝑚
(𝑎
1
; . . . 𝑎
𝑙
; 𝑏
1
, . . . , 𝑏

𝑚
; 𝑞, 𝑧 − 𝜉)

=
1

𝑧 − 𝜉
𝑙
Ψ
𝑚
(𝑎
1
; . . . 𝑎
𝑙
; 𝑏
1
, . . . , 𝑏

𝑚
; 𝑞, 𝑧 − 𝜉)

I
𝑙

𝑚
[𝑎
𝑙
, 𝑞] =

1

𝑧 − 𝜉
+

∞

∑

𝑛=1

Υ
𝑙,𝑚

𝑛
[𝑎
1
, 𝑞] (𝑧 − 𝜉)

𝑛

,

(15)

where

Υ
𝑙,𝑚

𝑛
[𝑎
1
, 𝑞]

=
(𝑎
1
; 𝑞)
𝑛+1
⋅ ⋅ ⋅ (𝑎
𝑙
; 𝑞)
𝑛+1

(𝑞; 𝑞)
𝑛+1
(𝑏
1
; 𝑞)
𝑛+1
⋅ ⋅ ⋅ (𝑏
𝑚
, 𝑞)
𝑛+1

.

(16)

Throughout our study for 𝑓 ∈ Σ
𝜉
, we let

I
𝑙

𝑚
𝑓 (𝑧) = I

𝑙

𝑚
[𝑎
𝑙
, 𝑞] ∗ 𝑓 (𝑧)

=
1

𝑧 − 𝜉
+

∞

∑

𝑛=1

Υ
𝑙

𝑚
(𝑛) 𝑎
𝑛
(𝑧 − 𝜉)

𝑛

,

(17)

Υ
𝑙

𝑚
(𝑛) = Υ

𝑙,𝑚

𝑛
[𝑎
1
, 𝑞]

=
(𝑎
1
; 𝑞)
𝑛+1
⋅ ⋅ ⋅ (𝑎
𝑙
; 𝑞)
𝑛+1

(𝑞; 𝑞)
𝑛+1
(𝑏
1
; 𝑞)
𝑛+1
⋅ ⋅ ⋅ (𝑏
𝑚
, 𝑞)
𝑛+1

,

(18)

unless otherwise stated.
Motivated by earlier works onmeromorphic functions by

function theorists (see [6–14]), we define the following new
subclass of functions in Σ

𝜉
by making use of the generalized

operatorI𝑙
𝑚
.
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For 0 ≤ 𝛾 < 1 and 0 ≤ 𝜆 < 1/2, we letM𝑙
𝑚
(𝜆, 𝛽, 𝛾) denote

a subclass of Σ
𝜉
consisting functions of the form (4) satisfying

the condition that

−R(
(𝑧 − 𝜉) (I𝑙

𝑚
𝑓 (𝑧))



+ 𝜆(𝑧 − 𝜉)
2

(I𝑙
𝑚
𝑓 (𝑧))



(1 − 𝜆)I𝑙
𝑚
𝑓 (𝑧) + 𝜆 (𝑧 − 𝜉) (I𝑙

𝑚
𝑓 (𝑧))


)

> 𝛽



(𝑧 − 𝜉) (I𝑙
𝑚
𝑓 (𝑧))



+ 𝜆(𝑧 − 𝜉)
2

(I𝑙
𝑚
𝑓 (𝑧))



(1 − 𝜆)I𝑙
𝑚
𝑓 (𝑧) + 𝜆 (𝑧 − 𝜉) (I𝑙

𝑚
𝑓 (𝑧))


+ 1



+ 𝛾,

(19)

whereI𝑙
𝑚
𝑓 is given by (17).

Further, shortly we can state this condition by

−R(
(𝑧 − 𝜉) 𝐺



(𝑧)

𝐺 (𝑧)
) > 𝛽



(𝑧 − 𝜉) 𝐺


(𝑧)

𝐺 (𝑧)
+ 1



+ 𝛾, (20)

where

𝐺 (𝑧) = (1 − 𝜆)I
𝑙

𝑚
𝑓 (𝑧) + 𝜆 (𝑧 − 𝜉) (I

𝑙

𝑚
𝑓 (𝑧))



=
1 − 2𝜆

𝑧 − 𝜉
+

∞

∑

𝑛=1

(𝑛𝜆 − 𝜆 + 1) Υ
𝑙

𝑚
(𝑛) 𝑎
𝑛
(𝑧 − 𝜉)

𝑛

,

𝑎
𝑛
≥ 0.

(21)

It is of interest to note that, on specializing the parameters
𝜆, 𝛽 and 𝑙,𝑚, we can define various new subclasses of Σ

𝜉
. We

illustrate two important subclasses in the following examples.

Example 1. For 𝜆 = 0, we letM𝑙
𝑚
(0, 𝛽, 𝛾) =M𝑙

𝑚
(𝛽, 𝛾) denote

a subclass of Σ
𝜉
consisting functions of the form (4) satisfying

the condition that

−R(
(𝑧 − 𝜉) (I𝑙

𝑚
𝑓 (𝑧))



I𝑙
𝑚
𝑓 (𝑧)

)

> 𝛽



(𝑧 − 𝜉) (I𝑙
𝑚
𝑓 (𝑧))



I𝑙
𝑚
𝑓 (𝑧)

+ 1



+ 𝛾,

(22)

whereI𝑙
𝑚
𝑓(𝑧) is given by (17).

Example 2. For 𝜆 = 0, 𝛽 = 0 we let M𝑙
𝑚
(0, 0, 𝛾) = M𝑙

𝑚
(𝛾)

denote a subclass of Σ
𝜉
consisting functions of the form (4)

satisfying the condition that

−R(
(𝑧 − 𝜉) (I𝑙

𝑚
𝑓 (𝑧))



I𝑙
𝑚
𝑓 (𝑧)

) > 𝛾, (23)

whereI𝑙
𝑚
𝑓(𝑧) is given by (17).

In this paper, we obtain the coefficient inequalities,
growth and distortion inequalities, and closure results for
the function class M𝑙

𝑚
(𝜆, 𝛽, 𝛾). Properties of certain inte-

gral operator and convolution properties of the new class
M𝑙
𝑚
(𝜆, 𝛽, 𝛾) are also discussed.

2. Coefficients Inequalities

In order to obtain the necessary and sufficient condition for
a function, 𝑓 ∈M𝑙

𝑚
(𝜆, 𝛽, 𝛾), we recall the following lemmas.

Lemma 3. If 𝛾 is a real number and 𝑤 is a complex number,
thenR(𝑤) ≥ 𝛾 ⇔ |𝑤 + (1 − 𝛾)| − |𝑤 − (1 + 𝛾)| ≥ 0.

Lemma4. If𝑤 is a complex number and 𝛾, 𝑘 are real numbers,
then

R (𝑤) ≥ 𝑘 |𝑤 − 1| + 𝛾 ⇐⇒ R {𝑤 (1 + 𝑘𝑒
𝑖𝜃

) − 𝑘𝑒
𝑖𝜃

} ≥ 𝛾,

− 𝜋 ≤ 𝜃 ≤ 𝜋.

(24)

Analogous to the lemma proved by Dziok et al. [8], we
state the following lemma without proof.

Lemma 5. Suppose that 𝛾 ∈ [0, 1), 𝑟 ∈ (0, 1], and the function
𝐻 ∈ Σ

𝜉
(𝛾) is of the form𝐻(𝑧) = (1/(𝑧 − 𝜉)) + ∑∞

𝑛=1
𝑏
𝑛
(𝑧 − 𝜉)

𝑛,
0 < |𝑧 − 𝜉| < 𝑟 < 1, with 𝑏

𝑛
≥ 0, then

∞

∑

𝑛=1

(𝑛 + 𝛾) 𝑏
𝑛
𝑟
𝑛+1

≤ 1 − 𝛾. (25)

Theorem6. Let𝑓 ∈ Σ
𝜉
be given by (4).Then𝑓 ∈M𝑙

𝑚
(𝜆, 𝛽, 𝛾)

if and only if

∞

∑

𝑛=1

[𝑛 (1 + 𝛽) + (𝛾 + 𝛽)] (1 + 𝑛𝜆 − 𝜆) Υ
𝑙

𝑚
(𝑛) 𝑎
𝑛

≤ (1 − 2𝜆) (1 − 𝛾) .

(26)

Proof. If 𝑓 ∈M𝑙
𝑚
(𝜆, 𝛽, 𝛾), then by (20) we have

−R(
(𝑧 − 𝜉) 𝐺



(𝑧)

𝐺 (𝑧)
) > 𝛽



(𝑧 − 𝜉) 𝐺


(𝑧)

𝐺 (𝑧)
+ 1



+ 𝛾. (27)

Making use of Lemma 4,

−R(
(𝑧 − 𝜉) (1 + 𝛽𝑒

𝑖𝜃

)𝐺


(𝑧) + 𝛽𝑒
𝑖𝜃

𝐺 (𝑧)

𝐺 (𝑧)
) > 𝛾, (28)

where 𝐺(𝑧) is given by (21). Substituting 𝐺(𝑧), 𝐺(𝑧) and
letting |𝑧 − 𝜉| < 𝑟 → 1

−, we have

{((1 − 2𝜆) (1 − 𝛾) −

∞

∑

𝑛=1

[𝑛 (1 + 𝛽) + (𝛾 + 𝛽)]

× (1 + 𝑛𝜆 − 𝜆) Υ
𝑙

𝑚
(𝑛) 𝑎
𝑛
)

× ((1 − 2𝜆) −

∞

∑

𝑛=1

(1 + 𝑛𝜆 − 𝜆) Υ
𝑙

𝑚
(𝑛) 𝑎
𝑛
)

−1

} > 0.

(29)

This shows that (26) holds.
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Conversely, assume that (26) holds. Since −R(𝑤) > 𝛾, if
and only if |𝑤+ 1| < |𝑤− (1− 2𝛾)|, it is sufficient to show that



𝑤 + 1

𝑤 − (1 − 2𝛾)



< 1,
𝑤 − (1 − 2𝛾)

 ̸= 0

for 𝑧 − 𝜉
 < 𝑟 ≤ 1, (𝑧 − 𝜉) ∈ Δ.

(30)

Using (26) and taking 𝑤(𝑧) = ((𝑧 − 𝜉)(1 + 𝛽𝑒
𝑖𝜃

)𝐺


(𝑧) +

𝛽𝑒
𝑖𝜃

𝐺(𝑧))/𝐺(𝑧), we get


𝑤 + 1

𝑤 − (1 − 2𝛾)



≤ ((

∞

∑

𝑛=1

(1 + 𝑛𝜆 − 𝜆) [(𝑛 + 1) (1 + 𝛽)] Υ
𝑙

𝑚
(𝑛) 𝑎
𝑛
)

× (2 (1 − 𝛾) (1 − 2𝜆) −

∞

∑

𝑛=1

(1 + 𝑛𝜆 − 𝜆)

×[𝑛 (1 + 𝛽) + (𝛽 + 2𝛾 − 1)] Υ
𝑙

𝑚
(𝑛) 𝑎
𝑛
)

−1

)

≤ 1.

(31)

Thus we have 𝑓 ∈M𝑙
𝑚
(𝜆, 𝛽, 𝛾).

For the sake of brevity throughout this paper we let

𝑑
𝑛
(𝜆, 𝛽, 𝛾) = [𝑛 (1 + 𝛽) + (𝛾 + 𝛽)] (1 + 𝑛𝜆 − 𝜆) ,

𝑑
1
(𝜆, 𝛽, 𝛾) = (1 + 𝛾 + 2𝛽) ,

(32)

unless otherwise stated.
Our next result gives the coefficient estimates for func-

tions inM𝑙
𝑚
(𝜆, 𝛽, 𝛾).

Theorem 7. If 𝑓 ∈M𝑙
𝑚
(𝜆, 𝛽, 𝛾), then

𝑎
𝑛
≤
(1 − 𝛾) (1 − 2𝜆)

𝑑
𝑛
(𝜆, 𝛽, 𝛾) Υ𝑙

𝑚
(𝑛)
, 𝑛 = 1, 2, 3, . . . . (33)

The result is sharp for the functions 𝑓
𝑛
(𝑧) given by

𝑓
𝑛
(𝑧) =

1

𝑧 − 𝜉
+

1 − 𝛾

𝑑
𝑛
(𝜆, 𝛽, 𝛾) Υ𝑙

𝑚
(𝑛)
(𝑧 − 𝜉)

𝑛

,

𝑛 = 1, 2, 3, . . . .

(34)

Proof. If 𝑓 ∈M𝑙
𝑚
(𝜆, 𝛽, 𝛾), then we have, for each 𝑛,

𝑑
𝑛
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑛) 𝑎
𝑛
≤

∞

∑

𝑛=1

𝑑
𝑛
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑛) 𝑎
𝑛

≤ (1 − 𝛾) (1 − 2𝜆) .

(35)

Therefore we have

𝑎
𝑛
≤
(1 − 𝛾) (1 − 2𝜆)

𝑑
𝑛
(𝜆, 𝛽, 𝛾) Υ𝑙

𝑚
(𝑛)
. (36)

Since

𝑓
𝑛
(𝑧) =

1

𝑧 − 𝜉
+
(1 − 𝛾) (1 − 2𝜆)

𝑑
𝑛
(𝜆, 𝛽, 𝛾) Υ𝑙

𝑚
(𝑛)
(𝑧 − 𝜉)

𝑛 (37)

satisfies the conditions of Theorem 6, 𝑓
𝑛
(𝑧) ∈ M𝑙

𝑚
(𝜆, 𝛽, 𝛾)

and the equality is attained for this function.

Theorem 8. Suppose that there exists a positive number ]:

] = inf
𝑛∈N
{𝑑
𝑛
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑛)} . (38)

If 𝑓 ∈M𝑙
𝑚
(𝜆, 𝛽, 𝛾), then


1

𝑟
−
(1 − 𝛾) (1 − 2𝜆)

]
𝑟



≤
𝑓 (𝑧)

 ≤
1

𝑟

+
(1 − 𝛾) (1 − 2𝜆)

]
𝑟, (

𝑧 − 𝜉
 = 𝑟) ,



1

𝑟2
−
(1 − 𝛾) (1 − 2𝜆)

]



≤

𝑓


(𝑧)

≤
1

𝑟2

+
(1 − 𝛾) (1 − 2𝜆)

]
(
𝑧 − 𝜉

 = 𝑟) .

(39)

If ] = 𝑑
1
(𝜆, 𝛽, 𝛾)Υ

𝑙

𝑚
(1) = (1 + 𝛾 + 2𝛽)Υ

𝑙

𝑚
(1), then the result is

sharp for

𝑓 (𝑧) =
1

𝑧 − 𝜉
+

(1 − 𝛾) (1 − 2𝜆)

(1 + 𝛾 + 2𝛽) 𝑟2Υ𝑙
𝑚
(1)
(𝑧 − 𝜉) . (40)

Proof. Let 𝑓 ∈ ∑
𝜉
and be given by (4)

𝑓 (𝑧)
 ≤
1

𝑟
+

∞

∑

𝑛=1

𝑎
𝑛
𝑟
𝑛

≤
1

𝑟
+ 𝑟

∞

∑

𝑛=1

𝑎
𝑛
. (41)

Since 𝑓 ∈M𝑙
𝑚
(𝜆, 𝛽, 𝛾), and byTheorem 6,
∞

∑

𝑛=1

𝑎
𝑛
≤
(1 − 𝛾) (1 − 2𝜆)

]
. (42)

Using this, we have

𝑓 (𝑧)
 ≤
1

𝑟
+
(1 − 𝛾) (1 − 2𝜆)

]
𝑟. (43)

Similarly

𝑓 (𝑧)
 ≥



1

𝑟
−
(1 − 𝛾) (1 − 2𝜆)

]
𝑟



. (44)

The result is sharp for function (40) with

] = 𝑑
1
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(1) = (1 + 𝛾 + 2𝛽)Υ

𝑙

𝑚
(1) . (45)

Similarly we can prove the otherinequality |𝑓(𝑧)|.
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3. Order of Starlikeness

In the following theorem we obtain the order of starlikeness
for the class M𝑙

𝑚
(𝜆, 𝛽, 𝛾). We say that 𝑓 given by (4) is

meromorphically starlike of order 𝜌, (0 ≤ 𝜌 < 1), in |𝑧−𝜉| < 𝑟
when it satisfies condition (5) in |𝑧 − 𝜉| < 𝑟.

Theorem 9. Let the function 𝑓 given by (4) be in the class
M𝑙
𝑚
(𝜆, 𝛽, 𝛾). Then, if there exists

𝑟 = 𝑟
1
(𝜆, 𝛾, 𝜌) = inf

𝑛≥1

[
(1 − 𝜌)𝑑

𝑛
(𝜆, 𝛽, 𝛾)Υ

𝑙

𝑚
(𝑛)

(𝑛 + 𝜌)(1 − 𝛾)(1 − 2𝜆)
]

1/(𝑛+1)

(46)

and it is positive, then 𝑓 is meromorphically starlike of order 𝜌
in |𝑧 − 𝜉| < 𝑟 ≤ 𝑟

1
(𝜆, 𝛾, 𝜌).

Proof. Let the function 𝑓 ∈M𝑙
𝑚
(𝜆, 𝛽, 𝛾) be of the form (4). If

0 < 𝑟 ≤ 𝑟
1
(𝜆, 𝛾, 𝜌), then by (46)

𝑟
𝑛+1

≤
(1 − 𝜌) 𝑑

𝑛
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑛)

(𝑛 + 𝜌) (1 − 𝛾) (1 − 2𝜆)
, (47)

for all 𝑛 ∈ N. From (47) we get

𝑛 + 𝜌

1 − 𝜌
𝑟
𝑛+1

≤
𝑑
𝑛
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑛)

(1 − 𝛾) (1 − 2𝜆)
, (48)

for all 𝑛 ∈ N, and thus
∞

∑

𝑛=1

𝑛 + 𝜌

1 − 𝜌
𝑎
𝑛
𝑟
𝑛+1

≤

∞

∑

𝑛=1

𝑑
𝑛
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑛)

(1 − 𝛾) (1 − 2𝜆)
𝑎
𝑛
≤ 1, (49)

because of (26). Hence, from (49) and (25), 𝑓 is meromor-
phically starlike of order 𝜌 in |𝑧 − 𝜉| < 𝑟 ≤ 𝑟

1
(𝜆, 𝛾, 𝜌) = 𝑟.

Suppose that there exists a number 𝑟, 𝑟 > 𝑟
1
(𝜆, 𝛾, 𝜌), such

that each 𝑓 ∈ M𝑙
𝑚
(𝜆, 𝛽, 𝛾) is meromorphically starlike of

order 𝜌 in |𝑧 − 𝜉| < 𝑟 ≤ 1. The function

𝑓 (𝑧) =
1

𝑧 − 𝜉
+
(1 − 𝛾) (1 − 2𝜆)

𝑑
𝑛
(𝜆, 𝛽, 𝛾) Υ𝑙

𝑚
(𝑛)
(𝑧 − 𝜉)

𝑛 (50)

is in the classM𝑙
𝑚
(𝜆, 𝛽, 𝛾); thus it should satisfy (25) with 𝑟 :
∞

∑

𝑛=1

(𝑛 + 𝜌) 𝑎
𝑛
𝑟
𝑛+1

≤ 1 − 𝜌, (51)

while the left–hand side of (51) becomes

(𝑛 + 𝜌)
(1 − 𝛾) (1 − 2𝜆)

𝑑
𝑛
(𝜆, 𝛽, 𝛾) Υ𝑙

𝑚
(𝑛)
𝑟
𝑛+1

> (𝑛 + 𝜌)
(1 − 𝛾) (1 − 2𝜆)

𝑑
𝑛
(𝜆, 𝛽, 𝛾) Υ𝑙

𝑚
(𝑛)

(1 − 𝜌) 𝑑
𝑛
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑛)

(𝑛 + 𝜌) (1 − 𝛾) (1 − 2𝜆)

= 1 − 𝜌,

(52)

which contradicts (51). Therefore the number 𝑟
1
(𝜆, 𝛾, 𝜌) in

Theorem 9 cannot be replaced with a greater number. This
means that 𝑟

1
(𝜆, 𝛾, 𝜌) is called radius of meromorphically

starlikeness of order 𝜌 for the classM𝑙
𝑚
(𝜆, 𝛽, 𝛾).

4. Results Involving Modified
Hadamard Products

For functions

𝑓
𝑗
(𝑧) =

1

𝑧 − 𝜉
+

∞

∑

𝑛=1

𝑎
𝑛,𝑗
(𝑧 − 𝜉)

𝑛

, 𝑎
𝑛,𝑗
≥ 0, (53)

we define the Hadamard product or convolution of 𝑓
1
and 𝑓
2

by

(𝑓
1
∗ 𝑓
2
) (𝑧) :=

1

𝑧 − 𝜉
+

∞

∑

𝑛=1

𝑎
𝑛,1
𝑎
𝑛,2
(𝑧 − 𝜉)

𝑛

. (54)

Let

Ψ (𝑛, 𝜆) =
(𝑛𝜆 − 𝜆 + 1)

(1 − 2𝜆)
Υ
𝑙

𝑚
(𝑛) . (55)

Theorem 10. For functions 𝑓
𝑗
(𝑗 = 1, 2) defined by (53), let

𝑓
1
∈ M𝑙
𝑚
(𝜆, 𝛽, 𝛾) and 𝑓

2
∈ M𝑙
𝑚
(𝜆, 𝛽, 𝛿). Then 𝑓

1
∗ 𝑓
2
∈

M𝑙
𝑚
(𝜆, 𝛽, 𝜂) where

𝜂

= 1 −
(1 − 𝛾) (1 − 𝛿) (3 + 𝛽)

(1 + 𝛾 + 2𝛽) (1 + 𝛿 + 2𝛽)Ψ (1, 𝜆) − 2 (1 − 𝛾) (1 − 𝛿)
,

(56)

and Ψ(1, 𝜆) = Υ𝑙
𝑚
(1)/(1 − 2𝜆). The results are the best possible

for

𝑓
1
(𝑧) =

1

𝑧 − 𝜉
+

1 − 𝛾

(1 + 𝛾 + 2𝛽)Ψ (1, 𝜆)
(𝑧 − 𝜉) ,

𝑓
2
(𝑧) =

1

𝑧 − 𝜉
+

1 − 𝛿

(1 + 𝛿 + 2𝛽)Ψ (1, 𝜆)
(𝑧 − 𝜉) ,

(57)

where Ψ(1, 𝜆) = Υ𝑙
𝑚
(1)/(1 − 2𝜆).

Proof. In view of Theorem 6, it suffices to prove that

∞

∑

𝑛=1

[𝑛 (1 + 𝛽) + (𝜂 + 𝛽)]

(1 − 𝜂)
Ψ (𝑛, 𝜆) 𝑎

𝑛,1
𝑎
𝑛,2
≤ 1, (58)

where 𝜂 is defined by (56) under the hypothesis. It follows
from (26) and the Cauchy-Schwarz inequality that

∞

∑

𝑛=1

[𝑛 (1 + 𝛽) + (𝛾 + 𝛽)]
1/2

[𝑛 (1 + 𝛽) + (𝛿 + 𝛽)]
1/2

√(1 − 𝛾) (1 − 𝛿)

× Ψ (𝑛, 𝜆)√𝑎
𝑛,1
𝑎
𝑛,2
≤ 1.

(59)
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Thus we need to find the largest 𝜂 such that

∞

∑

𝑛=1

[𝑛 (1 + 𝛽) + (𝜂 + 𝛽)]

(1 − 𝜂)
Ψ (𝑛, 𝜆) 𝑎

𝑛,1
𝑎
𝑛,2

≤

∞

∑

𝑛=1

[𝑛 (1 + 𝛽) + (𝛾 + 𝛽)]
1/2

[𝑛 (1 + 𝛽) + (𝛿 + 𝛽)]
1/2

√(1 − 𝛾) (1 − 𝛿)

× Ψ (𝑛, 𝜆)√𝑎
𝑛,1
𝑎
𝑛,2

≤ 1.

(60)

By virtue of (59) it is sufficient to find the largest 𝜂, such
that

√(1 − 𝛾) (1 − 𝛿)

[𝑛 (1 + 𝛽) + (𝛾 + 𝛽)]
1/2

[𝑛 (1 + 𝛽) + (𝛿 + 𝛽)]
1/2

Ψ (𝑛, 𝜆)

≤
[𝑛 (1 + 𝛽) + (𝛾 + 𝛽)]

1/2

[𝑛 (1 + 𝛽) + (𝛿 + 𝛽)]
1/2

√(1 − 𝛾) (1 − 𝛿)

×
1 − 𝜂

[𝑛 (1 + 𝛽) + (𝜂 + 𝛽)]
,

(61)

which yields

𝜂 ≤ 1 − ( ((1 − 𝛾) (1 − 𝛿) (2𝑛 + 1 + 𝛽))

× ([𝑛 (1 + 𝛽) + (𝛾 + 𝛽)] [𝑛 (1 + 𝛽) + (𝛿 + 𝛽)]

× Ψ (𝑛, 𝜆) − (1 − 𝛾) (1 − 𝛿) (𝑛 + 1))
−1

) ,

(62)

for 𝑛 ≥ 1 where Ψ(𝑛, 𝜆) is given by (55) and, since Ψ(𝑛, 𝜆) is
a decreasing function of 𝑛 (𝑛 ≥ 1), we have

𝜂 = 1

−
(1 − 𝛾) (1 − 𝛿) (3 + 𝛽)

(1 + 𝛾 + 2𝛽) (1 + 𝛿 + 2𝛽)Ψ (1, 𝜆) − 2 (1 − 𝛾) (1 − 𝛿)
,

(63)

andΨ(1, 𝜆) = Υ𝑙
𝑚
(1)/(1−2𝜆), which completes the proof.

Theorem 11. Let the functions 𝑓
𝑗
, (𝑗 = 1, 2), defined by (53)

be in the class M𝑙
𝑚
(𝜆, 𝛽, 𝛾). Then (𝑓

1
∗ 𝑓
2
)(𝑧) ∈ M𝑙

𝑚
(𝜆, 𝛽, 𝜂)

where

𝜂 = 1 −
(1 − 𝛾)

2

(3 + 𝛽)

(1 + 𝛾 + 2𝛽)
2

Ψ (1, 𝜆) − 2(1 − 𝛾)
2

(64)

with Ψ(1, 𝜆) = Υ𝑙
𝑚
(1)/(1 − 2𝜆).

Proof. By taking 𝛿 = 𝛾 in the above theorem, the results
follow.

For functions in the class M𝑙
𝑚
(𝜆, 𝛽, 𝛾), we can prove the

following inclusion property.

Theorem 12. Let the functions 𝑓
𝑗
(𝑗 = 1, 2) defined by (53) be

in the classM𝑙
𝑚
(𝜆, 𝛽, 𝛾). Then the function ℎ, defined by

ℎ (𝑧) =
1

𝑧 − 𝜉
+

∞

∑

𝑛=1

(𝑎
2

𝑛,1
+ 𝑎
2

𝑛,2
) (𝑧 − 𝜉)

𝑛

, (65)

is in the classM𝑙
𝑚
(𝜆, 𝛽, 𝛿) where

𝛿 ≤ 1 −
4(1 − 𝛾)

2

(1 + 𝛽)

[1 + 𝛾 + 2𝛽]
2

Ψ (1, 𝜆) + 2(1 − 𝛾)
2

, (66)

and Ψ(1, 𝜆) = Υ𝑙
𝑚
(1)/(1 − 2𝜆).

Proof. In view of Theorem 6, it is sufficient to prove that

∞

∑

𝑛=2

Ψ (𝑛, 𝜆)
[𝑛 (1 + 𝛽) + (𝛿 + 𝛽)]

(1 − 𝛿)
(𝑎
2

𝑛,1
+ 𝑎
2

𝑛,2
) ≤ 1, (67)

where 𝑓
𝑗
∈ M𝑙
𝑚
(𝜆, 𝛽, 𝛾) (𝑗 = 1, 2); we find from (53) and

Theorem 6 that

∞

∑

𝑛=1

[Ψ (𝑛, 𝜆)
[𝑛 (1 + 𝛽) + (𝛾 + 𝛽)]

1 − 𝛾
]

2

𝑎
2

𝑛,𝑗

≤

∞

∑

𝑛=1

[Ψ(𝑛, 𝜆)
[𝑛(1 + 𝛽) + (𝛾 + 𝛽)]

1 − 𝛾
𝑎
𝑛,𝑗
]

2

≤ 1,

(68)

which would yield

∞

∑

𝑛=2

1

2
[Ψ(𝑛, 𝜆)

[𝑛(1 + 𝛽) + (𝛾 + 𝛽)]

1 − 𝛾
]

2

(𝑎
2

𝑛,1
+ 𝑎
2

𝑛,2
) ≤ 1. (69)

On comparing (67) and (69) it can be seen that inequality (66)
will be satisfied if

Ψ (𝑛, 𝜆)
[𝑛 (1 + 𝛽) + (𝛿 + 𝛽)]

1 − 𝛿
(𝑎
2

𝑛,1
+ 𝑎
2

𝑛,2
)

≤
1

2
[Ψ (𝑛, 𝜆)

[𝑛 (1 + 𝛽) + (𝛾 + 𝛽)]

1 − 𝛾
]

2

× (𝑎
2

𝑛,1
+ 𝑎
2

𝑛,2
) .

(70)

That is, if

𝛿 ≤ 1 −
2(1 − 𝛾)

2

[(𝑛 + 1) (1 + 𝛽)]

[𝑛 (1 + 𝛽) + (𝛾 + 𝛽)]
2

Ψ (𝑛, 𝜆) + 2(1 − 𝛾)
2
, (71)

where Ψ(𝑛, 𝜆) is given by (55) and Ψ(𝑛, 𝜆) is a decreasing
function of 𝑛 (𝑛 ≥ 1), we get (66), which completes the
proof.
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5. Closure Theorems

We state the following closure theorems for 𝑓 ∈M𝑙
𝑚
(𝜆, 𝛽, 𝛾)

without proof (see [8–10]).

Theorem 13. Let the function 𝑓
𝑘
(𝑧) = (1/(𝑧 − 𝜉)) + ∑

∞

𝑛=1
𝑎
𝑛,𝑘

(𝑧 − 𝜉)
𝑛 be in the class M𝑙

𝑚
(𝜆, 𝛽, 𝛾) for every 𝑘 = 1, 2, . . . , 𝑚.

Then the function 𝑓 defined by

𝑓 (𝑧) =
1

𝑧 − 𝜉
+

∞

∑

𝑛=1

𝑎
𝑛,𝑘
(𝑧 − 𝜉)

𝑛

, (𝑎
𝑛,𝑘
≥ 0) (72)

belongs to the classM𝑙
𝑚
(𝜆, 𝛽, 𝛾), where 𝑎

𝑛,𝑘
= (1/𝑚)∑

𝑚

𝑘=1
𝑎
𝑛,𝑘
,

(𝑛 = 1, 2, . . .).

Theorem 14. Let 𝑓
0
(𝑧) = 1/(𝑧 − 𝜉) and 𝑓

𝑛
(𝑧) = (1/(𝑧 − 𝜉)) +

((1−𝛾)(1−2𝜆)/𝑑
𝑛
(𝜆, 𝛽, 𝛾)Υ

𝑙

𝑚
(𝑛))(𝑧−𝜉)

𝑛 for 𝑛 = 1, 2, . . ..Then
𝑓 ∈ M𝑙

𝑚
(𝜆, 𝛽, 𝛾) if and only if 𝑓 can be expressed in the form

𝑓(𝑧) = ∑
∞

𝑛=0
𝜂
𝑛
𝑓
𝑛
(𝑧) where 𝜂

𝑛
≥ 0 and ∑∞

𝑛=0
𝜂
𝑛
= 1.

Theorem 15. The class M𝑙
𝑚
(𝜆, 𝛽, 𝛾) is closed under convex

linear combination.

Now, we prove that the class isM𝑙
𝑚
(𝜆, 𝛽, 𝛾) closed under

integral transforms.

Theorem 16. Let the function 𝑓(𝑧) given by (4) be in
M𝑙
𝑚
(𝜆, 𝛽, 𝛾). Then the integral operator

𝐹 (𝑧) = 𝑐∫

1

0

𝑢
𝑐

𝑓 (𝑢𝑧) 𝑑𝑢 (0 < 𝑢 ≤ 1, 0 < 𝑐 < ∞) (73)

is inM𝑙
𝑚
(𝜆, 𝛽, 𝛿), where

𝛿 ≤ (𝑛
2

(1 + 𝛽) + 𝑛 [(𝛾 + 𝛽) + (1 + 𝛽) (1 + 𝑐𝛾)]

+ (𝑐 + 1) (𝛾 + 𝛽) + 𝑐𝛽 (1 − 𝛾) )

× (𝑛
2

(1 + 𝛽) + 𝑛 [(𝛾 + 𝛽) + (1 + 𝑐) (1 + 𝛽)]

+ (1 + 𝑐) (𝛾 + 𝛽) + 𝑐 (1 − 𝛾) )
−1

.

(74)

The result is sharp for the function 𝑓(𝑧) = (1/(𝑧 − 𝜉)) +
((1 − 𝛾)(1 − 2𝜆)/(1 + 𝛾 + 2𝛽)Υ

𝑙

𝑚
(1))(𝑧 − 𝜉).

Proof. Let 𝑓(𝑧) ∈M𝑙
𝑚
(𝜆, 𝛽, 𝛾). Then

𝐹 (𝑧) = 𝑐∫

1

0

𝑢
𝑐

𝑓 (𝑢𝑧) 𝑑𝑢 =
1

𝑧 − 𝑤
+

∞

∑

𝑛=1

𝑐

𝑐 + 𝑛 + 1
𝑎
𝑛
(𝑧 − 𝜉)

𝑛

.

(75)

It is sufficient to show that
∞

∑

𝑛=1

𝑐𝑑
𝑛
(𝜆, 𝛽, 𝛿) Υ

𝑙

𝑚
(𝑛)

(𝑐 + 𝑛 + 1) (1 − 𝛿)
𝑎
𝑛
≤ 1. (76)

Since 𝑓 ∈M𝑙
𝑚
(𝜆, 𝛽, 𝛾), we have
∞

∑

𝑛=1

𝑑
𝑛
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑛)

(1 − 𝛾) (1 − 2𝜆)
𝑎
𝑛
≤ 1. (77)

Note that (76) is satisfied if

𝑐𝑑
𝑛
(𝜆, 𝛽, 𝛿) Υ

𝑙

𝑚
(𝑛)

(𝑐 + 𝑛 + 1) (1 − 𝛿)
≤
𝑑
𝑛
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑛)

(1 − 𝛾) (1 − 2𝜆)
. (78)

From (78), we have

𝛿 ≤ ( (𝑛
2

(1 + 𝛽) + 𝑛 [(𝛾 + 𝛽) + (1 + 𝛽) (1 + 𝑐𝛾)]

+ (𝑐 + 1) (𝛾 + 𝛽) + 𝑐𝛽 (1 − 𝛾) )

× (𝑛
2

(1 + 𝛽) + 𝑛 [(𝛾 + 𝛽) + (1 + 𝑐) (1 + 𝛽)]

+ (1 + 𝑐) (𝛾 + 𝛽) + 𝑐 (1 − 𝛾) )
−1

) = Φ (𝑛) .

(79)

A simple computation will show that Φ(𝑛) is increasing and
Φ(𝑛) ≥ Φ(1). Using this, the results follow.

6. Partial Sums

Silverman [15] determined sharp lower bounds on the real
part of the quotients between the normalized starlike or
convex functions and their sequences of partial sums. As
a natural extension, one is interested in searching results
analogous to those of Silverman for meromorphic univalent
functions. In this section, motivated essentially by the work
of Silverman [15] and Cho and Owa [16], we will investigate
the ratio of a function of the form (4) to its sequence of partial
sums. Consider

𝑓
𝑘
(𝑧) =

1

𝑧 − 𝜉
+

𝑘

∑

𝑛=1

𝑎
𝑛
(𝑧 − 𝜉)

𝑛

, (80)

when the coefficients are sufficiently small to satisfy the
condition analogous to

∞

∑

𝑛=1

𝑑
𝑛
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑛) 𝑎
𝑛
≤ (1 − 𝛾) (1 − 2𝜆) . (81)

More precisely we will determine sharp lower bounds for
R(𝑓(𝑧)/𝑓

𝑘
(𝑧)) and R(𝑓

𝑘
(𝑧)/𝑓(𝑧)). In this connection we

make use of the well-known results that R((1 + 𝑤(𝑧))/(1 −
𝑤(𝑧))) > 0, (𝑧 − 𝜉 ∈ Δ), if and only if 𝑤(𝑧) = ∑∞

𝑛=1
𝑐
𝑛
(𝑧 − 𝜉)

𝑛

satisfies the inequality |𝑤(𝑧)| ≤ |𝑧 − 𝜉|.
Unless otherwise stated, we will assume that 𝑓 is of the

form (4) and its sequence of partial sums is denoted by (80).

Theorem 17. Let 𝑓(𝑧) ∈ M𝑙
𝑚
(𝜆, 𝛽, 𝛾) be given by (4) which

satisfies condition (26) and suppose that all of its partial sums
(80) do not vanish in Δ. Moreover, suppose that

2 − 2

𝑘

∑

𝑛=1

𝑎𝑛
 −
𝑑
𝑘+1
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑘 + 1)

(1 − 𝛾) (1 − 2𝜆)

∞

∑

𝑛=𝑘+1

𝑎𝑛
 > 0,

∀𝑘 ∈ N.

(82)

Then,

R(
𝑓 (𝑧)

𝑓
𝑘
(𝑧)
) ≥ 1 −

(1 − 𝛾) (1 − 2𝜆)

𝑑
𝑘+1
(𝜆, 𝛽, 𝛾) Υ𝑙

𝑚
(𝑘 + 1)

(𝑧 − 𝜉 ∈ Δ) ,

(83)
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where

𝑑
𝑛
(𝜆, 𝛽, 𝛾)

≥ {
(1 − 𝛾) (1 − 2𝜆) , if 𝑛 = 1, 2, 3, . . . , 𝑘
𝑑
𝑘+1
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑘 + 1) , if 𝑛 = 𝑘 + 1, 𝑘 + 2, . . . .

(84)

The result (83) is sharp with the function given by

𝑓 (𝑧) =
1

𝑧 − 𝜉
+

(1 − 𝛾) (1 − 2𝜆)

𝑑
𝑘+1
(𝜆, 𝛽, 𝛾) Υ𝑙

𝑚
(𝑘 + 1)

(𝑧 − 𝜉)
𝑘+1

. (85)

Proof. Define the function 𝑤(𝑧) by

𝑤 (𝑧)

=
𝑑
𝑘+1
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑘 + 1)

(1 − 𝛾) (1 − 2𝜆)

× [
𝑓 (𝑧)

𝑓
𝑘
(𝑧)
− (1 −

(1 − 𝛾) (1 − 2𝜆)

𝑑
𝑘+1
(𝜆, 𝛽, 𝛾) Υ𝑙

𝑚
(𝑘 + 1)

)]

= 1

+ (((𝑑
𝑘+1
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑘 + 1))

× ((1 − 𝛾) (1 − 2𝜆))
−1

×

∞

∑

𝑛=𝑘+1

𝑎
𝑛
(𝑧 − 𝜉)

𝑛+1

)

× (1 +

𝑘

∑

𝑛=1

𝑎
𝑛
(𝑧 − 𝜉)

𝑛+1

)

−1

) .

(86)

It suffices to show thatR(𝑤(𝑧)) > 0; hence we find that


1 + 𝑤 (𝑧)

1 − 𝑤 (𝑧)



≤ (((𝑑
𝑘+1
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑘 + 1)) × ((1 − 𝛾) (1 − 2𝜆))

−1

×

∞

∑

𝑛=𝑘+1

𝑎𝑛
)

× (2 − 2

𝑘

∑

𝑛=1

𝑎𝑛


− (𝑑
𝑘+1
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑘 + 1))

× ((1 − 𝛾) (1 − 2𝜆))
−1

×

∞

∑

𝑛=𝑘+1

𝑎𝑛
)

−1

) ≤ 1.

(87)

From condition (26), it readily yields the assertion (83) of
Theorem 17.

To see that the function given by (85) gives the sharp
result, we observe that for 𝑧 = 𝑟𝑒𝑖𝜋/(𝑘+2)

𝑓 (𝑧)

𝑓
𝑘
(𝑧)

= 1 +
(1 − 𝛾) (1 − 2𝜆)

𝑑
𝑘+1
(𝜆, 𝛽, 𝛾) Υ𝑙

𝑚
(𝑘 + 1)

(𝑧 − 𝜉)
𝑛

→ 1 −
(1 − 𝛾) (1 − 2𝜆)

𝑑
𝑘+1
(𝜆, 𝛽, 𝛾) Υ𝑙

𝑚
(𝑘 + 1)

,

(88)

when 𝑟 → 1
− which shows that the bound (83) is the best

possible for each 𝑘 ∈ N.

We next determine bounds for 𝑓
𝑘
(𝑧)/𝑓(𝑧).

Theorem 18. Under the assumptions of Theorem 17, we have

R(
𝑓
𝑘
(𝑧)

𝑓 (𝑧)
) ≥

𝑑
𝑘+1
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑘 + 1)

𝑑
𝑘+1
(𝜆, 𝛽, 𝛾) Υ𝑙

𝑚
(𝑘 + 1) + (1 − 𝛾) (1 − 2𝜆)

(𝑧 − 𝑤 ∈ Δ) ,

(89)

The result (89) is sharp with the function given by (85).

Proof. By setting

𝑤 (𝑧)

= (1 +
𝑑
𝑘+1
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑘 + 1)

(1 − 𝛾) (1 − 2𝜆)
)

× [
𝑓
𝑘
(𝑧)

𝑓 (𝑧)

−

(𝑑
𝑘+1
(𝜆, 𝛽, 𝛾) Υ

𝑙

𝑚
(𝑘 + 1) / (1 − 𝛾) (1 − 2𝜆))

1 + (𝑑
𝑘+1
(𝜆, 𝛽, 𝛾) Υ𝑙

𝑚
(𝑘 + 1) / (1 − 𝛾) (1 − 2𝜆))

]

(90)

and proceeding as in Theorem 17, we get the desired result
and so we omit the details.

Concluding Remark. We observe that, if we specialize the
parameters 𝜆 and 𝛽 as mentioned in Examples 1 and 2, we
obtain the analogous results for the classes M𝑙

𝑚
(𝛽, 𝛾) and

M𝑙
𝑚
(𝛾). Further specializing the parameters 𝑙, 𝑚 various

other interesting results (as inTheorems 6–18) can be derived
easily for the function class based on interesting differential
operators as illustrated below.

(1) For 𝑎
𝑖
= 𝑞
𝑎
𝑖 , 𝑏
𝑗
= 𝑞
𝑏
𝑗 , 𝑎
𝑖
> 0, 𝑏

𝑗
> 0, (𝑖 = 1, . . . , 𝑙; 𝑗 =

1, . . . , 𝑚, 𝑙 = 𝑚 + 1), 𝑞 → 1, the operator I𝑙
𝑚
𝑓(𝑧) =

H𝑙
𝑚
[𝑎
1
]𝑓(𝑧) defined by Liu and Srivastava [10].

(2) For 𝑙 = 2, 𝑚 = 1, 𝑎
2
= 𝑞, 𝑞 → 1, the operator

L2
1
[𝑎
1
, 𝑞, 𝑏
1
, 𝑞]𝑓(𝑧) = L[𝑎

1
; 𝑏
1
]𝑓(𝑧) was introduced and

studied by Liu and Srivastava [9].
(3) For 𝑙 = 1, 𝑚 = 0, 𝑎

1
= 𝛿 + 1, 𝑞 → 1, the operator

L[𝑎
1
; 𝑏
1
]𝑓(𝑧) = 𝐷

𝛿

𝑓(𝑧) = (1/𝑧(1 − 𝑧)
𝛿+1

) ∗ 𝑓(𝑧), (𝛿 > −1)
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where 𝐷𝛿 is the differential operator which was introduced
by Ganigi and Uralegaddi [17].
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