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Abstract Swine flu is an infectious disease which spreads

very rapidly in the population. Infected droplets are

expelled into the air by swine flu infected individuals

through coughing and sneezing. This disease is transmitted

to susceptible individuals by inhalation or ingestion of

these infected droplets containing virus. In this paper, we

propose and analyze a mathematical model for Swine Flu

by considering symptomatic and asymptomatic infections.

It is assumed that the transmission rates due to symp-

tomatic and asymptomatic individuals are different. The

mathematical model is formulated by assuming simple

mass-action type incidence. The basic reproduction number

R0 of the model is computed and the local and the global

stabilities of different equilibria of the model are studied.

Further, this model is extended to optimal control model.

The optimal control model is analyzed using Pontryagin’s

Maximum Principle and is solved numerically using

MATLAB. Finally numerical simulation is performed to

see the effect of optimal control on the infected population.

It is observed that optimal control model gives better result

compared to the model without optimal control as it

reduces the number of infectives significantly in a desired

interval of time.

Keywords Swine influenza � Mathematical model �
Stability analysis � Optimal control

Introduction

In 21st century, Swine Influenza has emerged as a deadly

infectious disease. There are mainly three types of influenza,

namely, Influenza A, Influenza B and Influenza C. Influenza

of type A and type B aremore prevalent in human population

and are of particular public health concern. Influenza A have

many subtype strains, e.g. H1N1, H2N2, H3N2, etc. Here we

are studying H1N1 subtype which is currently circulating in

human population and is known as Swine Flu.

Many Influenza outbreaks are reported in all over the

world e.g. 1918 pandemic, 1976 US outbreak, 1988 US

outbreak, 2007 Philippine outbreak, 2009 Northern Ireland

outbreak, 2015 India outbreak.

In 1918, a new disease was identified in pig, that is known

as swine influenza. In human, this pandemic is associated

with the infection of H1N1 virus. This virus also circulates in

pig, so this pandemic was called zoonosis (from swine to

humans, or from humans to swine). In this pandemic near

about 500 million people were infected and 50–100 million

people were killed across the world. We can say that it was

one of the deadliest disasters in human history.

Recently, in 2015, an outbreak of swine flu (H1N1

virus) had been reported in India, which was similar to

2009 Influenza pandemic. This outbreaks were reported in

late 2014 and early 2015. In March 2015, Health Ministry

released a data and according to this data 31,974 people

had been reported infected and 1895 person had died. The

largest number of cases and deaths due to the disease

occurred in states like Delhi, Madhya Pradesh, Rajasthan,

and Gujarat in India (MHFW 2016).
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Symptoms of swine flu are as follows:

In adults: difficulty in breathing, pain or pressure in the

chest, sudden dizziness, confusion, severe vomiting, low

temperature.

In children: fast breathing or working hard to breathe,

bluish skin color, not drinking enough fluids, not waking up

or not interacting, being so irritable that the child does not

want to be held, flu-like symptoms which improve but then

return with fever and worse cough, fever with a rash, being

unable to eat, having no tears when crying (CDC 2016).

There are several mathematical models to describe and

analyze the transmission dynamics of influenza. In Sharomi

et al. (2011), authors presented a deterministic model for

the transmission dynamics of swine influenza (H1N1) in

the presence of an imperfect vaccine and use of drug

therapy. Their analysis reveals that if the associated

reproduction number is less than unity then the system

exhibits vaccine induced backward bifurcation. Mathe-

matical models for AH1N1/09 incorporating spatio-tem-

poral elements are studied in Gonzlez-Parra et al. (2011).

Authors validated their model with the time series notifi-

cations from selected regions. In Changpuek et al. (2013),

authors considered a mathematical model for swine flu by

dividing the whole population into different age groups and

assuming different rates of transmission in different age

groups. Optimal control theory is applied to a mathematical

model for swine flu in Aldila et al. (2014) where it is

identified that medical mask intervention can reduce the

disease prevalence significantly. Our work is based on

Pongsumpun and Tang (2011), where authors have ana-

lyzed a mathematical model for swine flu by considering

both symptomatic (with symptoms) and asymptomatic

(without symptoms) infections. Here total population was

considered as constant and disease transmission was

assumed to follow standard incidence. This study is suit-

able for shorter span of time as population need not be a

constant over a longer span of time. As swine flu is

endemic now so study of long term dynamics of disease is

required and total population should be variable. Hence we

have formulated a mathematical model for swine flu by

considering total population variable. Additionally we

considered simple mass action type incidence for disease

transmission as transmission of this disease is very much

dependent on population size. The rates of movement from

symptomatic and asymptomatic class to class of quarantine

individuals are taken different in our model where as in

Pongsumpun and Tang (2011) they were same.

Later our proposed model is extended to optimal control

problem to get the optimal control profile related to rate of

transmission and rate of quarantine.

The remaining of this paper is organized as follows:

Sect. 2 describes the basic model and corresponding basic

reproduction number; Sect. 3 presents the equilibria and

their stability; Sect. 4 discusses the numerical simulation

and results of the proposed model; Sect. 5 discusses the

optimal control model and its analysis; Sect. 6 demon-

strates the numerical simulation results of the optimal

control model and finally Sect. 7 concludes the paper.

Mathematical model

We first divide the total population N(t) into six compart-

ments, namely, susceptible individuals (S), exposed indi-

viduals (E), symptomatic infective individuals ðIsÞ,
asymptomatic infective individuals ðIaÞ, quarantine indi-

viduals (Q), recovered (R). Hence N ¼ Sþ Eþ
Is?Ia?Qþ R. It is assumed that the total population is

varying and homogeneously mixed i.e., all people are

equally likely to be infected by the infectious individuals if

they come into contact. It is assumed that susceptible

individuals after being exposed to the infection can move to

any one of the following infective classes, namely, symp-

tomatic infective, asymptotic infective with different

transmission rates. Both types of infectious individuals can

move to class of quarantine individuals. Quarantine indi-

viduals may recover and after recovery it move to recovered

class. However the rates of recovery may vary from one

compartment to another. Keeping the above facts/assump-

tions in mind, a mathematical model is proposed as follows:

dS

dt
¼ K� lS� cIS ð1aÞ

dE

dt
¼ cIS� ðbs þ baÞbE � lE ð1bÞ

dIs

dt
¼ bsbE � dIs � lIs � gIs ð1cÞ

dIa

dt
¼ babE � mIa � lIa ð1dÞ

dQ

dt
¼ dIs þ mIa � lQ� wQ ð1eÞ

dR

dt
¼ wQ� lR: ð1fÞ

The flow diagram of the proposed model is shown in Fig. 1.

Let ðS;E; Is; Ia;Q;RÞ be any solution with positive ini-

tial condition. Then we have

N ¼ Sþ E þ Ia þ Is þ Qþ R:

Then the time derivative of the total population N(t) is

given by

dN

dt
¼ K� lN � gIs;

which shows that
dN

dt
is bounded by K� lN. Now using

standard comparison theorem (Lakshmikantham et al.
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1989), it is easy to observe that NðtÞ� K
l

if Nð0Þ� K
l
.

Hence the region X ¼
(
ðS;E; Ia; Is;Q;RÞ : Sþ E þ Ia?

Is þ Qþ R� K
l

)
is positively invariant.

The basic reproduction number R0

The system (1) has the disease-free equilibrium (DFE) E0

as

E0 ¼ ðS0;E0; Ia
0; Is

0;Q0;R0Þ ¼ K
l
; 0; 0; 0; 0; 0

� �

To find the basic reproduction number R0, we follow the

same method as discussed in Korobeinikov and Wake

(2002), Li and Muldowney (1995) and using the same

notations, the matrices F and V, for the new infection terms

and the remaining transfer terms respectively, corre-

sponding to the system (1) are computed as follows:

F ¼
cIS
0

0

0
@

1
A ¼

cðIa þ IsÞS
0

0

0
@

1
A

and

V ¼
bsbE þ babE þ lE

�bsbE þ lIs þ dIs þ gIs
�babE þ lIa þ mIa

0
@

1
A

We can find F and V as follows:

F ¼ Jacobian of F at E0 ¼

F ¼
0 cS0 cS0

0 0 0

0 0 0

0
@

1
A

and V = Jacobian of ðVÞ at E0 ¼

V ¼
bðbs þ baÞ þ l 0 0

�bbs lþ dþ g 0

�bba 0 lþ m

0
@

1
A

and it follows that

FV�1 ¼
m11 m12 m13

0 0 0

0 0 0

0
@

1
A;

where

m11 ¼
cbS0

bbs þ bba þ l
bs

lþ dþ g
þ ba
lþ m

� �
;

m12 ¼
cS0

lþ d
;m13 ¼

cS0

lþ m
:

Then the basic reproduction number R0 is given by the

largest eigenvalue of FV�1 and is obtained as follows:

R0 ¼
cbS0

bbs þ bba þ l
bs

lþ dþ g
þ ba
lþ m

� �

The reproduction number R0 gives the average number of

infected humans generated by one infected human in a fully

susceptible population in his/her whole infectious period.

Table 1 Description of parameters

Parameter Description

K Recruitment rate

l Natural death rate

c Transmission rate of swine flu

1/b Incubation period of swine flu in human

bs Transmission probability of swine flu to the human so

that person becomes symptomatic patient

ba Transmission probability of swine flu to the human so

that person becomes asymptomatic patient

d Rate of quarantine for symptomatic infectious person

m Rate of quarantine for asymptotic infectious person

w Rate of movement of individuals from quarantine class to

recovered class

u1 Control parameter on the transmission rate

u2 Control parameter on the progression of symptomatic

individuals to quarantine class

g Disease related death rate

S

E

I I
a s

Q

R

γ

β

ν δ

ψ

sa

IS

βbb

Fig. 1 Flow diagram of the model
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Equilibria and their stability

In addition to the disease-free equilibrium E0, the model

system (1) also has a unique endemic equilibrium point

E1 ¼ ðS�;E�; Ia
�; Is

�;Q�;R�Þ, where

S� ¼ ðbs þ baÞbþ l
cðd1 þ d2Þ

;E� ¼

l
c
ðR0 � 1Þ

ðd1 þ d2Þ
; Is

� ¼ d1E
�; Ia

� ¼ d2E
�;

Q� ¼ dd1 þ md2
lþ w

E�;R� ¼ wQ�

l

and

d1 ¼
bsb

lþ dþ g
; d2 ¼

bab
lþ m

:

From above expressions it is clear that E� is positive only

when R0 [ 1. Hence the endemic equilibrium point E1

exists whenever R0 [ 1.

Global stability of disease free equilibrium (DFE)

To prove the global stability of disease free equilibrium,

we are using the theorem by Castillo-Chavez et al. (Li and

Muldowney 1996).

Theorem 1 If the given mathematical model can be

written in the form:

dX

dt
¼ FðX; YÞ; and dY

dt
¼ GðX; YÞ;GðX; 0Þ ¼ 0ð�Þ

where X ¼ S; Y ¼ ðE; Ia; IsÞT , denoting the classes of

uninfected and flu infected individuals respectively.

The DFE is represented here by E0 ¼ ðX0; 0Þ ¼
K
l
; 0

� �
:

For the global asymptotic stability of E0, the condition

ðH1ÞandðH2Þ given below must be satisfied.

H1 : for
dX

dt
¼ FðX0; 0Þ;X0 is global asymptotically

stable,H2 : GðX; YÞ ¼ AY � bGðX; YÞ; bGðX; YÞ� 0 here A

¼ DYGðX0; 0Þ is M- matrix (In M-matrix, all the off

diagonal element of matrix are non-negative) . If the given

system of differential equation in mathematical model

satisfies the given condition in ð�Þ then the point E0 ¼
ðX0; 0Þ is a global asymptotically stable equilibrium of

given mathematical model provided R0\1. And for the

given mathematical model, the result is shown in the next

theorem, as given below.

Theorem 2 The equilibrium point E0 ¼ ðX0; 0Þ of the

system (1) is global asymptotically stable (G.A.S.) provided

R0\1 and the conditions given in ð�Þ are satisfied.

Proof By using Theorem 1 to our model system (1), we

get

FðX0; 0Þ ¼ K� lS;GðX; YÞ ¼ AY � bGðX; YÞ

where

A ¼
�½bðbs þ baÞ þ l� cS0 cS0

bbs �ðlþ dþ gÞ 0

bba 0 �ðlþ mÞ

0
@

1
A

and

ĜðX; YÞ ¼
Ĝ1ðX; YÞ
Ĝ2ðX; YÞ
Ĝ3ðX; YÞ

0
@

1
A ¼

cðIa þ IsÞðS0 � SÞ
0

0

0
@

1
A:

Here we can easily see S0 � S, hence bGðX; YÞ� 0 for all

(X,Y), we can also notice that the matrix A is M matrix (by

definition of M matrix) .

Hence the DFE ðE0Þ is globally stable.

Theorem 3 The endemic equilibrium E1 ¼
ðS�;E�; Is

�; Ia
�;Q�;R�Þ of the given mathematical model is

globally asymptotically stable.

Proof For the global stability result, we will use the

method discussed in Korobeinikov and Wake (2002), Li

and Muldowney (1995). Here we consider the following

Lyapunov function:

V1 ¼ K1 S� S� � S�ln
S

S�

� �
þ K2 E � E� � E�ln

E

E�

� �

þ K3 Is � Is
� � Is

�ln
Is

Is
�

� �
þ K4 Ia � Ia

� � Ia
�ln

Ia

Ia
�

� �

Then the time derivative of V1 is given by

dV1

dt
¼ K1 1� S�

S

� �
dS

dt
þ K2 1� E�

E

� �
dE

dt
þ K3 1� Is

�

Is

� �
dIs

dt
þ K4 1� Ia

�

Ia

� �
dIa

dt

Now from the mathematical model we put the expressions

for
dS

dt
;
dE

dt
;
dIs

dt
;
dIa

dt
in the above equation, which gives

dV1

dt
¼ K1 1� S�

S

� �
½K� lS� cIS� þ K2 1� E�

E

� �
� ½cIS� ðbbs þ bba þ lÞE�

þ K3 1� Is
�

Is

� �
½bbsE � ðdþ lþ gÞIs�

þ K4 1� Ia
�

Ia

� �
½bbaE � ðmþ lÞIa�

ð2Þ

The mathematical model system satisfies the following

relation at the equilibrium point.
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K ¼ lS� þ cI�S�; ½ðbs þ baÞbþ l� ¼ cI�S�

E� ;

ðdþ lþ gÞ ¼ bbsE
�

Is
� ; ðmþ lÞ ¼ bbaE

�

Ia
� :

Putting all the above expressions in (2) we get,

dV1

dt
¼ K1 1� S�

S

� �
½lS� þ cI�S� � lS� cIS�

þ K2 1� E�

E

� �
cIS� cI�S�

E�

� �
E

� �

þ K3 1� Is
�

Is

� �
bbsE � bbsE

�

Is
� Is

� �

þ K4 1� Ia
�

Ia

� �
bbaE � bbaE

�

Ia
� Ia

� �

Then

dV1

dt
¼� ðK1Þ

ðS� � SÞ2

S

 !
lþ K1 1� S�

S

� �
½cI�S� � cIS�

þ K2 1� E�

E

� �
cIS� cI�S�

E�

� �
E

� �

þ K3 1� Is
�

Is

� �
bbsE � bbsE

�

Is
� Is

� �

þ K4 1� Ia
�

Ia

� �
bbaE � bbaE

�

Ia
� Ia

� �

dV1

dt
¼ �K1lðS� � SÞ2

S
þ gðx1; x2; x3; x4Þ

where

S

S�
¼ x1;

E

E� ¼ x2;
Is

Is
� ¼ x3;

Ia

Ia
� ¼ x4; S

�Is
�

¼ a; S�Ia
� ¼ c; bsbE

� ¼ d; babE
� ¼ f

and

gðx1; x2; x3; x4Þ ¼ cK1ðaþ c� ax1x3 þ cx1x4Þ � K1ca
1

x1
� K1cc

1

x1

þ K1cax3 þ cK1hx4 þ K2cðax1x3 þ cx1x4 � ax2 � cx2Þ

� K2cðax1x3Þ
1

x2
� K2cðax1x4Þ

1

x2
þ K2caþK2ccþ K3dx2

� K3dx3 � K3d
x2

x3
þ K3d þ K4ðfx2 � x4f Þ �K4f

x2

x4

þ K4f

¼ð�K1caþK2caÞx1x3 þ ð�K1ccþ K2ccÞx1x4 þ ðK1ca� K3dÞx3
þ x4ðK1cc� K4f Þ þ x2ð�K2aþ K4f þ K3dÞ þK1cðaþ cÞ

� K1cðaþ cÞ 1
x1

� K2cðax1x3 þ cx1x4Þ
1

x2
þ K2cðaþ cÞ

� K3d
x2

x3
þ K3d � K4f

x2

x4
þ K4f

To get the values of K1;K2;K3;K4 we take the coefficients

of x1x3; x1x4; x4; x3; x2 equal to zero and solve the algebraic

equations in K1;K2;K3;K4. This gives

K1 ¼ K2;K4 ¼
K1cc
f

;K3 ¼
K1ca
d

Choosing K1 ¼ K2 ¼ 1 , we get

gðx1; x2; x3; x4Þ ¼ ca 3� 1

x1
� x1x3

x2
� x2

x3

� �

þcc 3� 1

x1
� x1x4

x2
� x2

x4

� �

Since the arithmetic mean (A.M.) is greater than or equal to

geometric mean (G.M.), we have

1

x1
þ x1x3

x2
þ x2

x3
� 3; and

1

x1
þ x1x4

x2
þ x2

x4
� 3:

Finally, we get

dV1

dt
¼ �ðS� � SÞ2

S
lþ ca 3� 1

x1
� x1x3

x2
� x2

x3

� �

þcc 3� 1

x1
� x1x4

x2
� x2

x4

� �

Thus it is easy to observe that
dV1

dt
� 0 and the equality

dV1

dt
¼ 0 hold only for x1 ¼ x2 ¼ x3 ¼ x4 ¼ 1 for which

S ¼ S�;E ¼ E�; Is ¼ Is
�; Ia ¼ Ia

�.
From the LaSalle’s invariance principle (LaSalle 1976),

the equilibrium E1 of the given system is globally

asymptotically stable for R0 [ 1. h

Numerical simulation

Here numerical simulation is performed to support our

analytical results. Most of our parameter values are from

the reference Pongsumpun and Tang (2011), and the

remaining parameters we have assumed. Here it is noted

that all the parameters are in per day. The system (1) is

simulated for different sets of parameters using MATLAB.

In Fig. 2, we have shown stability of DFE ðE0Þ using the

following parameter values:

K ¼ 3; l ¼ 0:00421; bs ¼ 0:025; ba ¼ 0:075;

c ¼ 0:0001; d ¼ 0:2; m ¼ 0:02;w ¼ 0:071; b ¼ 0:4:

For this set of parameters, the basic reproduction number

R0 ¼ 0:8179 and the disease-free equilibrium point is

(300, 0, 0, 0, 0, 0). In Figs. 3 and 4, we have

shown stability of the Endemic equilibrium ðE1Þ using the

following set of parameters:
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K ¼ 7; l ¼ 0:00421; bs ¼ 0:025; ba ¼ 0:075; c ¼ 0:0001;

d ¼ 0:2; m ¼ 0:02;w ¼ 0:071; b ¼ 0:4; g ¼ 0:04227:

For this parameters, the basic reproduction number R0 ¼
2:0378 and the endemic equilibrium point is (354.43,

31.68, 41.14, 51.14, 36.74, 225.31). The effect of

d on equilibrium levels of Ia and Is, are demonstrated in the

Figs. 5 and 6. It is observed that the equilibrium level of

infective population decreases with the increase in d.

Optimal control problem

Here we extend our model (1) by incorporating two optimal

control parameters, namely, u1 and u2. The control u1ðtÞ
corresponds to the reduction in the transmission rate ðcÞ and
the control u2ðtÞ corresponds to the increase in the rate of

movement of symptomatic infectives to quarantine class.

Our main aim is to minimize the transmission rate between

susceptible individuals and infective individuals and also

maximize the rate of quarantine of symptomatic infectives

by adding additional time dependent rate u2ðtÞwith minimal

cost of controls. Both control functions are bounded and

Lebesgue integrable on the interval [0, tf ], where tf repre-

sents a pre-selected length of time during which these con-

trols are applied. Our u1 and u2 must be equal to one for

maximum control (effort). If u1 and u2 are equal to zero, then

there is no effort being placed in these controls at time t. The

optimal control system is given below:

dS

dt
¼ K� lS� ð1� u1ðtÞÞcIS ð3aÞ

dE

dt
¼ ð1� u1ðtÞÞcIS� ðbs þ baÞbE � lE ð3bÞ

dIs

dt
¼ bsbE � ðdþ u2ðtÞÞIs � lIs � gIs ð3cÞ
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Fig. 2 Variation of S E ,Is, Ia, Q, R showing the stability of disease

free equilibrium point
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Fig. 3 Variation of S and R showing the stability of endemic

equilibrium point
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Fig. 5 Variation of Is with time showing the effect of d
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Fig. 6 Variation of Ia with time showing the effect of d
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dIa

dt
¼ babE � mIa � lIa ð3dÞ

dQ

dt
¼ ðdþ u2ðtÞÞIs þ mIa � lQ� wQ ð3eÞ

dR

dt
¼ wQ� lR: ð3fÞ

The objective functional for fixed duration of control tf is

given below:

J ¼
Z tf

0

A1Is þ A2Ia þ
1

2
c1u1

2 þ 1

2
c2u2

2

� �
dt;

where the parameter A1 � 0, A2 � 0, c1 � 0, c2 � 0, and it

represent the weight constants.

Our objective is to find the control parameter u1
� and

u2
�, such that Jðu1�; u2�Þ = minu1;u22X Jðu1; u2Þ, where X is

the control set and is defined as X ¼ fu1; u2 : measurable

and 0� u1; u2 � 1 for t 2 ½0; tf �g.
The Lagrangian of this problem is defined as:

LðIs; Ia; u1; u2Þ ¼ A1Is þ A2Ia þ
1

2
c1u1

2 þ 1

2
c2u2

2

For our problem, we formed Hamiltonian H as follows:

H ¼ LðIs; Ia; u1; u2Þ þ k1
dS

dt
þ k2

dE

dt
þ k3

dIs

dt

þk4
dIa

dt
þ k5

dQ

dt
þ k6

dR

dt
;

where ki, i = 1–6 are the adjoint variables and are given by

the solution of the following system of differential

equations:

dk1
dt

¼ � oH
oS

¼ k1lþ ð1� u1ðtÞÞcIðk1 � k2Þ ð4aÞ

dk2
dt

¼ � oH
oE

¼ k2lþ bsbðk2 � k3Þ þ babðk2 � k4Þ

ð4bÞ
dk3
dt

¼ � oH
oIs

¼ �A1 þ ð1� u1ðtÞÞcSðk1 � k2Þ

þ ðdþ u2Þðk3 � k5Þ þ k3lþ k3g
ð4cÞ

dk4
dt

¼ � oH
oIa

¼ �A2 þ ð1� u1ðtÞÞcSðk1 � k2Þ

þ mðk4 � k5Þ þ k4l
ð4dÞ

dk5
dt

¼ � oH
oQ

¼ ðk5 � k6Þwþ k5l ð4eÞ

dk6
dt

¼ � oH
oR

¼ lk6 ð4fÞ

satisfying the transversality condition

kiðtf Þ ¼ 0; for i ¼ 1; 2; . . .6:

Let eS, eE, eIs , eIa , eQ, eR be the optimum values of S, E, Is,

Ia, Q, R, and also let ek1 , ek2 , ek3 , ek4 , ek5 , ek6 , be the solution
of the system. By using Pontryagin and Boltyanskii (1980)

and Pontryagin et al. (1962) we state and prove the fol-

lowing theorem:

Theorem 4 There exist optimal controls u1
�; u2

� 2 X
such that Jðu1�; u2�Þ ¼ minu1;u22X Jðu1; u2Þ subject to

system (3).

Proof To prove this theorem we use Pontryagin et al.

(1962). Here the state variable and the controls are positive.

For this minimizing problem, the necessary convexity of

the objective functional in ðu1; u2Þ is satisfied. The control

variable set X, where u1; u2 2 X is also convex and closed

by the definition. The integrand of the functional

A1Is þ A2Ia þ
1

2
c1u1

2 þ 1

2
c2u2

2

� �
is convex on the con-

trol set X and the state variables are bounded.

Since there exists an optimal control for minimizing the

functional subject to given mathematical model and adjoint

variables. To derive necessary condition and to find

optimal solution, we use Pontryagin’s maximum principle.

If (x, u) is an optimal solution of an optimal control

problem, then there exist a non-trivial vector function k ¼
k1; k2; k3; . . .; kn satisfying the following inequalities.

dx

dt
¼ oHðt; x; u; kÞ

ok

0 ¼ oHðt; x; u; kÞ
ok

dk
dt

¼ oHðt; x; u; kÞ
ok

With the help of Pontryagin’s maximum principle (Pon-

tryagin and Boltyanskii 1980) we proved the following

theorem: h

Theorem 5 The optimal controls ðu1�; u2�Þ which mini-

mize J over the region X are given by

u1
� ¼ minf1;maxð0; eu1Þg

u2
� ¼ minf1;maxð0; eu2Þg

where

eu1 ¼ cðeIa þ eIsÞeSðk2 � k1Þ
c1

eu2 ¼ ðk3 � k5ÞeIs
c2

Proof Using optimally condition:

oH
ou1

¼ 0;
oH
ou2

¼ 0;
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u1 ¼
ðk2 � k1ÞceSeI

c1
¼ eu1 and; u2 ¼

ðk3 � k5ÞeIs
c2

¼ eu2
Again upper and lower bounds for these control are 0 and 1

respectively. i.e. u1 ¼ u2 ¼ 0 if eu1\0 and eu2\0, and

u1 ¼ u2 ¼ 1 if eu1 [ 1 and eu2 [ 1, otherwise u1 ¼ eu1 and

u2 ¼ eu2 . Hence for these controls u1�; u2� we get optimum

value of the function J. This completes the proof of the

theorem. h

Simulation of the optimal control model

The following set of parameters are used to simulate the

optimal control model. Here it is noted that most of the

parameters used here are same as the parameter values used

to get endemic equilibrium for the model (1).

K ¼ 7; l ¼ 0:00421; bs ¼ 0:025; ba ¼ 0:075; c ¼ 0:0001;

d ¼ 0:2; m ¼ 0:02;w ¼ 0:071; b ¼ 0:4; g ¼ 0:04227:

The time interval for which optimal control is applied is

taken as 300 days. At first we solve the state equations by the

forward Euler method in the time interval [0, 300] starting

with an initial guess for the control. Thenwe solve the adjoint

system using the solutions of the state system and the

transversality conditions backward in time. The control

profile of u1ðtÞ and u2ðtÞ are shown in Figs. 7 and 8.Variation
of the symptomatic infective population with and without

optimal control is demonstrated in Fig. 9. From this figure,

one can see the significant decrease in the infective popula-

tion in presence of optimal control. From Figs. 7 and 8, it is

observed that the control u2ðtÞ is required more compared to

the control u1ðtÞ. So in Figs. 10 and 11, we have tried to see
the effect of different values of weight constant c2 on the

control profile u2ðtÞ and the corresponding effect on the

symptomatic infective population Is. From these figures it is

observed that when we increase the weight constant C2, the
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Fig. 7 Control profile of u1
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Fig. 8 Control profile of u2
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Fig. 9 Variation of Is with and without optimal control
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Fig. 10 Optimal control profile of u2 for different costs of control C2
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Fig. 11 Variation of Is for different costs of control C2
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cost of efforts increases and optimal control decreases,

leading to increase in the number of infectives due to

reduction in the intensity of intervention.

Conclusion

An epidemic model for transmission dynamics of Swine flu

disease is proposed and analyzed. There exist two equi-

libria, namely the disease-free equilibrium (DFE) and the

endemic equilibrium (EP). The DFE is globally asymp-

totically stable whenever the basic reproduction number R0

is less than unity. The endemic equilibrium (EE) is also

globally asymptotically stable whenever it exists. Numer-

ical simulation is performed to support our analytical

results. Also it supports the fact that increase in the

parameter d (rate of quarantine) causes the decrease in the

equilibrium level of the infective population. Finally, we

extend our model to optimal control problem and analyze

it. Numerical simulation is extended to this model too to

see the effect of optimal controls. The symptomatic

infectives is plotted against time with and without optimal

control. The control profile for both the controls are

obtained and it is observed that optimal control gives better

result in reducing the number of infectives in desired time

interval. The effect of weight constant C2 associated with

the optimal control parameter u2 on the infectives are also

studied. Here it is noted that u2ðtÞ is the additional time

dependent rate of quarantine and increase in the cost of

quarantine leads to increase in the number of infectives.
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