Header menu link for other important links
Modeling treatment of cancer using virotherapy with generalized logistic growth of tumor cells
Rajalakshmi M,
Published in Informa UK Limited
Volume: 36
Issue: 6
Pages: 1068 - 1086

Virotherapy is an effective strategy in cancer treatment. It eliminates tumor cells without harming the healthy cells. In this article, a deterministic mathematical model to understand the dynamics of tumor cells in response to virotherapy is formulated and analyzed by incorporating cytotoxic T lymphocytes (CTLs). The basic reproduction number and the immune response reproduction number are computed and different equilibria of the proposed model are found. The local stability of different equilibria is discussed in detail. Further, the proposed model is extended to stochastic model. Numerical simulation is performed for both deterministic and stochastic models. It is observed that when both the reproduction numbers are greater than one, which corresponds to existence of unique nontrivial equilibrium point, dynamics of deterministic and stochastic models are almost same. The deterministic model shows a very complex dynamics when one or both the reproduction numbers are below one. The system exhibits both backward bifurcation and Hopf-bifurcation for suitable sets of parameters and in this situation it is not easy to predict the dynamics of cancer cells and virus particles. The existence of backward bifurcation demonstrates the fact that partial success of virotherapy can be achieved even if the immune response reproduction number is less than one. © 2018, © 2018 Taylor & Francis Group, LLC.

About the journal
JournalStochastic Analysis and Applications
PublisherInforma UK Limited
Open Access0