Header menu link for other important links
X
Molecular Cloning, Computational and Expression Analysis of Anthocyanidin Reductase in Tea (Camellia sinensis)
Thirugnanasambantham K, Muralidaran S,
Published in Springer Science and Business Media LLC
2014
PMID: 24997573
Volume: 174
   
Issue: 1
Pages: 130 - 145
Abstract
Tea [Camellia sinensis (L.) O. Kuntze] is one of the most popular non-alcoholic beverages rich in phenolic compounds, which includes epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC) and catechin (C). Anthocyanidin reductase (ANR) is responsible for catechin biosynthesis in plants, and analysis of its protein sequences and structures will be valuable for further research in the field. We have screened our dormant bud-specific complementary DNA (cDNA) library and reported 1,322-bp cDNA encoding CsANR. Analysis of the sequence revealed the presence of 1,011-bp open reading frame with coding capacity for a polypeptide of 337 amino acids, flanked by 1,123- and 196-bp 5′ and 3′ untranslated regions, respectively. Theoretical molecular weight (MW) and isoelectric point (pI) of the deduced ANR protein were predicted (using ProtParam) to be 36.4 kDa and 6.54. For the first time, we have reported 3D model of ANR from C. sinensis. Quality of the predicted model was analysed with PROCHECK analysis. Molecular docking of modelled ANR revealed similar binding pockets for both substrates and products. Expression analyses of CsANR and accumulation pattern of catechins were observed to be varied with developmental age of tissue and seasonal condition. Variation in accumulation pattern of catechins and its fractions was found to be correlated with expression pattern of ANR. © 2014 Springer Science+Business Media.
About the journal
JournalData powered by TypesetApplied Biochemistry and Biotechnology
PublisherData powered by TypesetSpringer Science and Business Media LLC
ISSN0273-2289
Open Access0