Header menu link for other important links
X
Multi-response optimization of friction stir corner welding of dissimilar thickness AA5086 and AA6061 aluminum alloys by Taguchi grey relational analysis
Krishnan M.,
Published in SAGE Publications Ltd
2019
Volume: 233
   
Issue: 11
Pages: 3733 - 3742
Abstract
Friction stir welding is a promising solid-state joining process to weld light materials like aluminum alloys. In this paper, an attempt has been made to optimize the friction stir corner welding process parameters using Taguchi grey relational analysis to attain the improved mechanical properties of dissimilar thickness AA5086 and AA6061 dissimilar aluminum alloys with plate thicknesses of 6 mm and 4 mm, respectively. The input parameters of the welding play a crucial role to achieve the desired weld properties. The friction stir welding experiments were conducted according to the L9 orthogonal array. The input process parameters are tool rotation speed (900–1100 r/min), welding speed (100–190 mm/min), and plunge depth (0.1–0.3 mm). The processes parameters were optimized and ranked based on the results of the grey relational analysis. The percentage contribution of each input process parameter on the weld quality was quantified using analysis of variance (ANOVA). The optimal process parameters were determined at tool rotation speed of 1100 r/min, welding speed of 150 mm/min, and tool plunge depth of 0.2 mm. The percentage contribution of the welding speed was 40.50% and revealed a significant influence on multiple responses followed by plunge depth 25.84% and rotational speed 18.13%. The microstructures of various regions were observed and analyzed. The fracture mode and fracture surface of the welded sample were observed and discussed. © IMechE 2018.
About the journal
JournalData powered by TypesetProceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
PublisherData powered by TypesetSAGE Publications Ltd
ISSN09544062
Open AccessNo