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Abstract: In this paper, a new class of (C, G f )-invex functions introduce and give nontrivial numerical
examples which justify exist such type of functions. Also, we construct generalized convexity definitions
(such as, (F, G f )-invexity, C-convex etc.). We consider Mond–Weir type fractional symmetric dual
programs and derive duality results under (C, G f )-invexity assumptions. Our results generalize several
known results in the literature.
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1. Introduction

The goal of optimization is to find the best value for each variable in order to achieve satisfactory
performance. Optimization is an active and fast growing research area and has a great impact on the real
world. In most real life problems, decisions are made taking into account several conflicting criteria, rather
than by optimizing a single objective. Such a problem is called multiobjective programming. Problems of
multiobjective programming are widespread in mathematical modelling of real world systems problems
for a very broad range of applications.

In 1981, Hanson [1] introduced the concept of invexity which is an extension of differentiable convex
function and proved the sufficiency of Kuhn-Tucker conditions. Antczak [2] introduced the concept of
G-invex functions and derived some optimality conditions for constrained optimization problems under
G-invexity. In [3], Antczak extended the above notion by defining a vector valued G f -invex function
and proved necessary and sufficient optimality conditions for a multiobjective nonlinear programming
problem. Recently, Kang et al. [4] defined G-invexity for a locally Lipchitz function and obtained optimality
conditions for multiobjective programming using these functions. Many researchers have worked related
to the same area [5–7].

In the last several years, various optimality and duality results have been obtained for multiobjective
fractional programming problems. Bector and Chandra Motivated by various concepts of generalized
convexity. Ferrara and Stefaneseu [8] used the (φ, ρ)-invexity to discuss the optimality conditions and
duality results for multiobjective programming problem. Further, Stefaneseu and Ferrara [9] introduced

Axioms 2019, 8, 97; doi:10.3390/axioms8030097 www.mdpi.com/journal/axioms

http://www.mdpi.com/journal/axioms
http://www.mdpi.com
https://orcid.org/0000-0001-7774-7290
http://www.mdpi.com/2075-1680/8/3/97?type=check_update&version=1
http://dx.doi.org/10.3390/axioms8030097
http://www.mdpi.com/journal/axioms


Axioms 2019, 8, 97 2 of 11

a new class of (φ, ρ)ω-invexity for a multiobjective program and established optimality conditions and
duality theorems under these assumptions.

In this article, we have introduced various definitions (C, G f )-invexity/(F, G f )-invexity and
constructed nontrivial numerical examples illustrates the existence of such functions. We considered
a pair of multiobjective Mond–Weir type symmetric fractional primal-dual problems. Further, under the
(C, G f )-invexity assumptions, we derive duality results.

2. Preliminaries and Definitions

Consider the following vector minimization problem:

(MP) Minimize f (x) =
{

f1(x), f2(x), ..., fk(x)
}T

Subject to X0 = {x ∈ X ⊂ Rn : gj(x) ≤ 0, j = 1, 2, ..., m}

where f = { f1, f2, ..., fk} : X → Rk and g = {g1, g2, ..., gm} : X → Rm are differentiable functions defined
on X.

Definition 1 ([10]). A point x̄ ∈ X0 is said to be an efficient solution of (MP) if there exists no other x ∈ X0 such
that fr(x) < fr(x̄), for some r = 1, 2, ..., k and fi(x) ≤ fi(x̄), for all i = 1, 2, ..., k.

Let f = ( f1, ..., fk) : X → Rk be a differentiable function defined on open set φ 6= X ⊆ Rn and I fi
(X), i =

1, 2, ..., k be the range of fi.

Definition 2 ([11]). Let C : X×X×Rn → R (X ⊆ Rn) be a function which satisfies Cx,u(0) = 0, ∀(x, u) ∈ X×
X. Then, the function C is said to be convex on Rn with respect to third argument iff for any fixed (x, u) ∈ X× X,

Cx,u(λx1 + (1− λ)x2) ≤ λCx,u(x1) + (1− λ)Cx,u(x2), ∀λ ∈ (0, 1), ∀x1, x2 ∈ Rn.

Now, we introduce the definition of C-convex function:

Definition 3 ([12]). The function f is said to be C-convex at u ∈ X such that ∀x ∈ X,

fi(x)− fi(u) ≥ Cx,u[∇x fi(u)], ∀ i = 1, 2, ..., k.

If the above inequality sign changes to ≤, then f is called C-concave at u ∈ X.

Definition 4. The function f is said to be G f -convex at u ∈ X if there exist a differentiable function G f =

(G f1 , G f2 , ..., G fk
) : R→ Rk such that every component G fi

: I fi
(X)→ R is strictly increasing on the range of I fi

such that ∀ x ∈ X,

G fi
( fi(x))− G fi

( fi(u)) ≥ (x− u)G′fi
( fi(u))∇x fi(u), ∀ i = 1, 2, ..., k.

If the above inequality sign changes to ≤, then f is called G f -concave at u ∈ X.

Definition 5. A functional F : X× X× Rn → R is said to be sublinear with respect to the third variable if for all
(x, u) ∈ X× X,

(i) Fx,u(a1 + a2) ≤ Fx,u(a1) + Fx,u(a2), for all a1, a2 ∈ Rn,
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(ii) Fx,u(αa) = αFx,u(a), for all α ∈ R+ and a ∈ Rn.

Now, we introduce the definition of a differentiable vector valued (F, G f )-invex function.

Definition 6. The function f is said to be (F, G f )-invex at u ∈ X if there exist sublinear functional F and
a differentiable function G f = (G f1 , G f2 , ..., G fk

) : R→ Rk such that every component G fi
: I fi

(X)→ R is strictly
increasing on the range of I fi

such that ∀ x ∈ X,

G fi
( fi(x))− G fi

( fi(u)) ≥ Fx,u[G′fi
( fi(u))∇x fi(u)], ∀ i = 1, 2, ..., k.

If the above inequality sign changes to ≤I f is called (F, G f )-incave at u ∈ X.

Next, we introduce the definition of (C, G f )-invex function:

Definition 7. The function f is said to be (C, G f )-invex at u ∈ X if there exist convex function C and a differentiable
function G f = (G f1 , G f2 , ..., G fk

) : R→ Rk such that every component G fi
: I fi

(X)→ R is strictly increasing on
the range of I fi

such that ∀ x ∈ X,

G fi
( fi(x))− G fi

( fi(u)) ≥ Cx,u[G′fi
( fi(u))∇x fi(u)], ∀ i = 1, 2, ..., k.

Definition 8. Let f : X → Rk be a vector-valued differentiable function. If there exist sublinear functional F and
a differentiable function G f = (G f1 , G f2 , ..., G fk

) : R→ Rk such that every component G fi
: I fi

(X)→ R is strictly
increasing on the range of I fi

and a vector valued function η : X× X → Rn such that ∀ x ∈ X and pi ∈ Rn,

Fx,u[G′fi
( fi(u))∇x fi(u)] ≥ 0⇒ G fi

( fi(x))− G fi
( fi(u)) ≥ 0, for all i = 1, 2, ..., k,

then f is called (F, G f )-pseudoinvex at u ∈ X with respect to η.
If the above inequalities sign changes to ≤, then f is called (F, G f )-incave/ (F, G f )-pseudoincave at u ∈ X.

Definition 9. Let f : X → Rk be a vector-valued differentiable function. If there exist convex function C and a
differentiable function G f = (G f1 , G f2 , ..., G fk

) : R→ Rk such that every component G fi
: I fi

(X)→ R is strictly
increasing on the range of I fi

and a vector valued function η : X× X → Rn such that ∀ x ∈ X and pi ∈ Rn,

Cx,u[G′fi
( fi(u))∇x fi(u)] ≥ 0⇒ G fi

( fi(x))− G fi
( fi(u)) ≥ 0, for all i = 1, 2, ..., k,

then f is called (C, G f )-pseudoinvex at u ∈ X.
If the above inequalities sign changes to ≤, then f is called (C, G f )-incave/ (C, G f )-pseudoincave at u ∈ X.

Now, we give a nontrivial example which is (C, G f )-invex function, but on the either side the function
f cannot hold the definitions like as (F, G f )-invex, F-convex and C-convex.

Example 1. Let f : [−1, 1]→ R2 be defined as

f (x) =
{

f1(x), f2(x)
}

where f1(x) = x4, f2(x) = arc (tan x) and G f =
{

G f1 , G f2

}
: R→ R2 be defined as:

G f1(t) = t9 + t7 + t3 + 1 and G f2(t) = tan t.
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Let C : X× X× R2 → R be given as:

Cx,u(a) = a2(x− u).

Now, we will show that f is (C, G f )-invex at u = 0. For this, we have to claim that

τi = G fi
( fi(x))− G fi

( fi(u))− Cx,u[G′fi
( fi(u))∇x fi(u)] ≥ 0, for i = 1, 2.

Substituting the values of f1, f2, G f1 and G f2 in the above expressions, we obtain

τ1 = x36 + x28 + x12 + 1− (u36 + u28 + u12 + 1)− Cx,u

[
(36u35 + 28u27 + 12u11)× 4u3

]
,

and

τ2 = x− u− Cx,u

[
1× 1

(1 + u2)

]
which at u = 0 yield

τ1 = x36 + x28 + x12 and τ2 = 0.

Obviously, τ1 ≥ 0, and τ2 ≥ 0, ∀ x ∈ [−1, 1].
Hence, f is (C, G f )-invex at u = 0 ∈ [−1, 1].
Now, suppose

δ = f2(x)− f2(u)− Cx,u

(
∇x f2(u)

)
or

δ = arc (tan x)− arc (tan u)− Cx,u

[
1

(1 + u2)

]
which at u = 0 yields

δ = arc (tan x)− 1.

This expression may not be non-negative for all x ∈ [−1, 1]. For instance at x = 1 ∈ [−1, 1],

δ =
π

4
− 1 < 0.

Therefore, f2 is not C-convex at u = 0. Hence, f = ( f1, f2) is not C-convex at u = 0 ∈ [−1, 1].
Finally, Cx,u is not sublinear in its third position. Hence, function f is neither F nor (F, G f )-invex functions.

3. G-Mond-Weir Type Primal-Dual Model

In this section, we consider the following pair of multiobjective fractional symmetric primal-dual
programs:

(MFP) Minimize L(x, y) =
{G f 1 ( f1 (x, y))

Gg1 (g1 (x, y))
,

G f 2 ( f2 (x, y))
Gg2 (g2 (x, y))

...,
G f k ( fk (x, y))
Ggk (gk (x, y))

}
subject to

k

∑
i=1

λi

[
G
′
fi
( fi(x, y))∇y fi(x, y)−

G fi
( fi(x, y))

Ggi (gi(x, y))
(G
′
gi

gi(x, y))∇ygi(x, y)
]
≤ 0,



Axioms 2019, 8, 97 5 of 11

yT
k

∑
i=1

λi

[
G
′
fi
( fi(x, y))∇y fi(x, y)−

G fi
( fi(x, y))

Ggi (gi(x, y))
(G
′
gi
(gi(x, y))∇ygi(x, y))

]
≥ 0,

λ > 0, λTe = 1.

(MFD) Maximize M(u, v) =
{G f 1 ( f1 (u, v))

Gg1 (g1 (u, v))
,

G f 2 ( f2 (u, v))
Gg2 (g2 (u, v))

...,
G f k ( fk (u, v))
Ggk (gk (u, v))

}
subject to

k

∑
i=1

λi

[
G
′
fi
( fi(u, v))∇x fi(u, v)−

G fi
( fi(u, v))

Ggi (gi(u, v))
(G
′
gi
(gi(u, v))∇xgi(u, v))

]
≥ 0,

uT
k

∑
i=1

λi

[
G
′
fi
( fi(u, v))∇x fi(u, v)−

G fi
( fi(u, v))

Ggi (gi(u, v))
(G
′
gi
(gi(u, v))∇xgi(u, v))

]
≤ 0,

λ > 0, λTe = 1.

G fi
: I fi
→ R and Ggi : Igi → R are differentiable strictly increasing functions on their domains. It is

assumed that in the feasible regions, the numerators are nonnegative and denominators are positive.
Now, Let U = (U1, U2, ..., Uk) and V = (V1, V2, ..., Vk). Then, we can express the programs (MFP) and

(MFD) equivalently as:

(MFP)U Minimize U
subject to

G fi
( fi(x, y)

)
−UiGgi (gi(x, y)) = 0, i = 1, 2, ..., k, (1)

k

∑
i=1

λi
[
(G
′
fi
( fi(x, y))∇y fi(x, y))−Ui

(
G
′
gi
(gi(x, y))∇ygi(x, y)

)]
≤ 0, (2)

yT
k

∑
i=1

λi
[
(G
′
fi
( fi(x, y))∇y fi(x, y))−Ui

(
G
′
gi
(gi(x, y))∇ygi(x, y)

)]
≥ 0, (3)

λ > 0, λTe = 1. (4)

(MFD)V Minimize V
subject to

G fi
( fi(u, v))−Vi

(
Ggi (gi(u, v))

)
= 0, i = 1, 2, ..., k, (5)

k

∑
i=1

λi
[
(G
′
fi
( fi(u, v))∇x fi(u, v))−Vi

(
G
′
gi
(gi(u, v))∇xgi(u, v)

)]
≥ 0, (6)
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uT
k

∑
i=1

λi
[
(G
′
fi
( fi(u, v))∇x fi(u, v))−Vi

(
G
′
gi
(gi(u, v))∇xgi(u, v)

)]
≤ 0, (7)

λ > 0, λTe = 1. (8)

Next, we prove duality theorems for (MFP)U and (MFP)V , which one equally apply to (MFP) and
(MFD), respectively.

Theorem 1. (Weak duality). Let (x, y, U, λ) and (u, v, V, λ) be feasible for (MFP)U and (MFD)V, respectively. Let

(i) f (., v) be (C, G f )-invex at u for fixed v,
(ii) g(., v) be (C, Gg)-incave at u for fixed v,
(iii) f (x, .) be (C̄, G f )-incave at y for fixed x,
(iv) g(x, .) be (C̄, G f )-invex at y for fixed x,

(v)
k

∑
i=1

λi[1−Ui] > 0 and
k

∑
i=1

λi[1−Vi] > 0,

(vi) Ggi (gi(x, v)) > 0, ∀ i = 1, 2, ..., k,
(vii) Cx,u(a) + aTu ≥ 0, ∀a ≥ 0 and C̄v,y(b) + bTy ≥ 0, ∀b ≥ 0,

where C : Rn × Rn × Rn → R and C̄ : Rm × Rm × Rm → R.
Then, U � V.

Proof. By hypotheses (i) and (ii), we have

G fi
( fi(x, v))− G fi

( fi(u, v)) ≥ Cx,u

(
G′fi

( fi(u, v))∇x fi(u, v)
)

(9)

and

−Ggi (gi(x, v)) + Ggi (gi(u, v)) ≥ −Cx,u

(
G′gi

(gi(u, v))∇xgi(u, v)
)

. (10)

Using (v), λ > 0,
λi
τ

, and
λiVi

τ
, where τ =

k

∑
i=1

λi(1−Vi) and (9)–(10), respectively, we obtain

λi
τ

(
G fi

( fi(x, v))− G fi
( fi(u, v))

)
≥ λi

τ
Cx,u

(
G′fi

( fi(u, v))∇x fi(u, v)
)

.

and

λiVi
τ

[
− G fi

(gi(x, v)) + G fi
(gi(u, v))

]
≥ −λiVi

τ
Cx,u

(
G′fi

(gi(u, v))∇xgi(u, v)
)

.

Now, summing over i and adding the above two inequalities and using convexity of Cx,u, we have

k

∑
i=1

λi
τ

[
G fi

( fi(x, v))− G fi
( fi(u, v))

]
+

k

∑
i=1

λiVi
τ

[
− Ggi (gi(x, v)) + Ggi (gi(u, v))

]

≥ Cx,u

[ k

∑
i=1

λi
τ

((
G′fi

( fi(u, v))∇x fi(u, v)
)
−Vi(G′gi

(gi(u, v))∇xgi(u, v))
)]

. (11)
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Now, from (6), we have

a =
k

∑
i=1

λi
τ
[(G′fi

( fi(u, v))∇x fi(u, v)−Vi(G′gi
(gi(u, v))∇xgi(u, v)] ≥ 0.

Hence, for this a, Cx,u(a) ≥ −uTa ≥ 0
(
from (vii)

)
. Using this in (11), we obtain

k

∑
i=1

λi
(
G fi

( fi(x, v))− G fi
( fi(u, v))

)
+

k

∑
i=1

λiVi
[
− Ggi (gi(x, v)) + Ggi (gi(u, v))

]
≥ 0.

Using (5) in above inequality, we get

k

∑
i=1

λi[G fi
( fi(x, v))−ViGgi gi(x, v)] ≥ 0. (12)

From hypotheses (iii)− (v) and from the condition (vii), for

b = −
k

∑
i=1

λi
τ
[G′fi

( fi(x, y))∇y fi(x, y)−Ui(G′gi
(gi(x, y))∇ygi(x, y))] ≥ 0,

we get

k

∑
i=1

λi[−G fi
( fi(x, v)) + Ui(Ggi (gi(x, v))] ≥ 0. (13)

Adding the inequalities (12) and (13), we get

k

∑
i=1

λi(Ui −Vi)(Ggi (gi(x, v)) ≥ 0. (14)

Since λ > 0 and using (vi), it follows that U � V. This completes the proof.

Theorem 2. (Weak duality). Let (x, y, U, λ) and (u, v, V, λ) be feasible for (MFP)U and (MFD)V, respectively. Let

(i) f (., v) be (C, G f )-pseudoinvex at u for fixed v,
(ii) g(., v) be (C, Gg)-pseudoincave at u for fixed v,
(iii) f (x, .) be (C̄, G f )-pseudoincave at y for fixed x,
(iv) g(x, .) be (C̄, G f )-pseudoinvex at y for fixed x,

(v)
k

∑
i=1

λi[1−Ui] > 0 and
k

∑
i=1

λi[1−Vi] > 0,

(vi) Ggi (gi(x, v)) > 0, ∀ i = 1, 2, ..., k,
(vii) Cx,u(a) + aTu ≥ 0, ∀a ≥ 0 and C̄v,y(b) + bTy ≥ 0, ∀b ≥ 0,

where C : Rn × Rn × Rn → R and C̄ : Rm × Rm × Rm → R.
Then, U � V.

Proof. The proof follows on the lines of Theorem 2.

Theorem 3. (Strong duality). Let (x̄, ȳ, Ū, λ̄) be an efficient solutions of (MFP)U and fix λ = λ̄ in (MFD)V .
If the following conditions hold:
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(i) the matrix
k

∑
i=1

λ̄i[G
′′
fi
( fi(x̄, ȳ))∇y fi(x̄, ȳ)

(
∇y fi(x̄, ȳ)

)T
+ G

′
fi
( fi(x̄, ȳ))∇yy fi(x̄, ȳ)

−Ūi(G
′′
gi
(gi(x̄, ȳ))∇ygi(x̄, ȳ)

(
∇ygi(x̄, ȳ)

)T
+ G

′
gi
(gi(x̄, ȳ))∇yygi(x̄, ȳ))]

is positive definite or negative definite,

(ii) the vectors (
(G
′
fi
( fi(x̄, ȳ))∇y fi(x̄, ȳ))− Ūi(G

′
gi
(gi(x̄, ȳ))∇ygi(x̄, ȳ))

)k

i=1

are linearly independent,

(iii) Ūi > 0, i = 1, 2, ..., k,

then, (x̄, ȳ, Ū, λ̄) is feasible solution for (MFD)V . Furthermore, if the hypotheses of Theorem 2 and 3
hold, then (x̄, ȳ, Ū, λ̄) is an efficient solution of (MFD)V and the objective functions have same values.

Proof. Since (x̄, ȳ, Ū, λ̄) is an efficient solution of (MFD)U , therefore by the Fritz John necessary optimality
conditions [13], there exist α ∈ Rk, β ∈ Rk, γ ∈ R+, δ ∈ R, ξ ∈ Rk, i = 1, 2, ..., k such that

k

∑
i=1

βi((G
′
fi
( fi(x̄, ȳ))∇x fi(x̄, ȳ))− Ūi(G

′
gi
(gi(x̄, ȳ))∇xgi(x̄, ȳ)))

+ (y− δȳ)T
k

∑
i=1

λ̄i[G
′′
fi
( fi(x̄, ȳ))∇x fi(x̄, ȳ)(∇y fi(x̄, ȳ))T + G

′
fi
( fi(x̄, ȳ))∇xy fi(x̄, ȳ)]

−Ūi[G
′′
gi
(gi(x̄, ȳ))∇xgi(x̄, ȳ)(∇ygi(x̄, ȳ))T + G

′
gi
(gi(x̄, ȳ))∇xygi(x̄, ȳ)] = 0, (15)

k

∑
i=1

(βi − δλ̄i)(G
′
fi
( fi(x̄, ȳ))∇y fi(x̄, ȳ)− Ūi(G

′
gi
(gi(x̄, ȳ))∇ygi(x̄, ȳ))

+ (γ− δȳ)T
k

∑
i=1

λ̄i[G
′′
fi
( fi(x̄, ȳ))∇y fi(x̄, ȳ)(∇y fi(x̄, ȳ))T + G

′
fi
( fi(x̄, ȳ))∇yy fi(x̄, ȳ)]

−Ūi[G
′′
gi
(gi(x̄, ȳ))∇ygi(x̄, ȳ)(∇ygi(x̄, ȳ))T + G

′
gi
(gi(x̄, ȳ))∇yygi(x̄, ȳ)] = 0, (16)

αi − βi(Ggi (gi(x̄, ȳ)))− (γ− δȳ)λ̄i(G
′
gi
(gi(x̄, ȳ))∇ygi(x̄, ȳ)) = 0, i = 1, 2, ..., k, (17)

(γ− δȳ)T [(G
′
fi
( fi(x̄, ȳ))∇y fi(x̄, ȳ))

− Ūi(G
′
gi
(gi(x̄, ȳ))∇ygi(x̄, ȳ))]− ξi = 0, i = 1, 2, ..., k, (18)

γT
k

∑
i=1

λ̄i[G
′
fi
( fi(x̄, ȳ))∇y fi(x̄, ȳ)− Ūi(G

′
gi
(gi(x̄, ȳ))∇ygi(x̄, ȳ))] = 0, (19)
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δȳT
k

∑
i=1

λ̄i[G
′
fi
( fi(x̄, ȳ))∇y fi(x̄, ȳ)− Ūi(G

′
gi
(gi(x̄, ȳ))∇ygi(x̄, ȳ))] = 0, (20)

λ̄Tξ = 0, (21)

(α, δ, ξ) ≥ 0, (α, β, γ, δ, ξ) 6= 0. (22)

Since λ̄ > 0 and ξ̄ ≥ 0, (21) implies that ξ̄ = 0.
Post-multiplication (γ− δȳ) in (16) and using (18) and ξ = 0, we get

(γ− δȳ)T
k

∑
i=1

λ̄i(G
′′
fi
( fi(x̄, ȳ))∇y fi(x̄, ȳ)(∇y fi(x̄, ȳ))T + G

′
fi
( fi(x̄, ȳ))∇yy fi(x̄, ȳ)

−Ūi(G
′′
gi
(gi(x̄, ȳ))∇ygi(x̄, ȳ)(∇ygi(x̄, ȳ))T + G

′
gi
(gi(x̄, ȳ))∇yygi(x̄, ȳ))(γ− δȳ) = 0, (23)

which from hypothesis (i) yields

γ = δȳ. (24)

Using (24) in (16), we have

k

∑
i=1

(βi − δλ̄i)[G
′
fi
( fi(x̄, ȳ))∇y fi(x̄, ȳ)− Ūi(G

′
gi
(gi(x̄, ȳ))∇ygi(x̄, ȳ))] = 0.

It follows from hypothesis (ii) that

βi = δλ̄i, i = 1, 2, ..., k. (25)

Now, we claim that βi 6= 0, ∀ i. Otherwise, if βt0 = 0, for some i = t0, then from (25), since λ̄ > 0, we
have δ = 0. Again from (25), βi = 0, ∀ i. Thus from (17), we get αi = 0, ∀ i. Also from (24), γ = 0. This
contradicts (22). Hence, βi 6= 0, for all i. Further, if βi < 0, for any i, then from (25), δ < 0, which again
contradicts (22). Hence, βi > 0, ∀ i.

Further, using (22) and (25) in (15), we get

k

∑
i=1

λ̄i[(G
′
fi
( fi(x̄, ȳ))∇x fi(x̄, ȳ))− Ūi(G

′
gi
(gi(x̄, ȳ))∇xgi(x̄, ȳ))] = 0, (26)

and

x̄T
k

∑
i=1

λ̄i[(G
′
fi
( fi(x̄, ȳ))∇x fi(x̄, ȳ))− Ūi(G

′
gi
(gi(x̄, ȳ))∇xgi(x̄, ȳ))] = 0. (27)

Next, it follows that

(G fi
( fi(x̄, ȳ)))− Ūi(Ggi (gi(x̄, ȳ))) = 0, i = 1, 2, ..., k. (28)
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This together with (26), (27) and (28) shows that (x̄, ȳ, Ū, λ̄) is feasible solution of (MFD)V . Now,
let (x̄, ȳ, Ū, λ̄) be not an efficient solution of (MFD)V . Then, there exists other (u, v, V, λ) is feasible solution
of (MFD)V such that Ūi ≤ Vi, ∀ i ∈ K and Ūj < Vj, for some j ∈ K. This contradicts the result of the
Theorems 2 and 3. Hence, this completes the proof.

Theorem 4. (Converse duality). Let (ū, v̄, V̄, λ̄) be an efficient solutions of (MFD)V and fix λ = λ̄ in (MFP)U . If
the following conditions hold:

(i) the matrix
k

∑
i=1

λ̄i[G
′′
fi
( fi(ū, v̄))∇x fi(ū, v̄) (∇x fi(ū, v̄))T + G

′
fi
( fi(ū, v̄))∇xx fi(ū, v̄)

−V̄i(G
′′
gi
(gi(ū, v̄))∇xgi(ū, v̄) (∇xgi(ū, v̄))T + G

′
gi
(gi(ū, v̄))∇xxgi(ū, v̄))]

is positive definite or negative definite,

(ii) the vectors (
G
′
fi
( fi(ū, v̄))∇x fi(ū, v̄)− V̄i(G

′
gi
(gi(ū, v̄))∇xgi(ū, v̄))

)k

i=1

are linearly independent,

(iii) V̄i > 0, i = 1, 2, ..., k,
then, (ū, v̄, V̄, λ̄) is feasible solution of (MFP)U . Furthermore, if the assumptions of Theorems 2 and 3 hold, then
(ū, v̄, V̄, λ̄) is an efficient solution of (MFP)U and objective functions have equal values.

Proof. The results can be obtained on the lines of Theorem 3.

4. Conclusions

In this paper, we have considered a new type of nondifferentiable multiobjective fractional symmetric
programming problem and derived duality theorems under generalized assumptions. The present work
can further be extended to nondifferentiable second order fractional symmetric programming problems
over arbitrary cones. This will orient the future task of the authors.
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