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Abstract

This paper is devoted to theoretical aspects in nonlinear optimization, in particular,

duality relations for some mathematical programming problems. In this paper, we

introduce a new generalized class of second-order multiobjective symmetric

G-Wolfe-type model over arbitrary cones and establish duality results under

Gf -bonvexity/Gf -pseudobonvexity assumptions. We construct nontrivial numerical

examples which are Gf -bonvex/Gf -pseudobonvex but neither

η-bonvex/η-pseudobonvex nor η-invex/η-pseudoinvex.

MSC: 90C26; 90C30; 90C32; 90C46

Keywords: Second-order; Multiobjective; Efficient solution; Wolfe;

Gf -Bonvexity/Gf -pseudobonvexity

1 Introduction

It is an undeniable fact that all of us are optimizers as we all make decisions for the sole

purpose of maximizing our quality of life, productivity in time, and our welfare in some

way or another. Since this is an ongoing struggle for creating the best possible among

many inferior designs and is always the core requirement of human life, this fact yields

the development of a massive number of techniques in this area, starting from the early

ages of civilization until now. The efforts and lives behind this aim dedicated bymany bril-

liant philosophers, mathematicians, scientists, and engineers have brought a high level of

civilization we enjoy today. The decision process is relatively easier when there is a single

criterion or object inmind. The process gets complicated whenwe have tomake decisions

in the presence of more than one criteria to judge the decisions. In such circumstances a

single decision that optimizes all the criteria simultaneously may not exist. For handling

such type of situations, we use multiobjective programming, also known as multiattribute

optimization, which is the process of simultaneously optimizing two or more conflict-

ing objectives subject to certain constraints. Multiobjective optimization problems can

be found in various fields such as product and process design, finance, aircraft design, the

oil and gas industry, automobile design, and other where optimal decisions need to be

taken in the presence of trade-offs between two or more conflicting objectives.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-019-2279-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-019-2279-0&domain=pdf
http://orcid.org/0000-0001-7774-7290
mailto:lakshminarayanmishra04@gmail.com


Dubey et al. Journal of Inequalities and Applications         ( 2020)  2020:30 Page 2 of 16

Mangasarian [1] was the first who introduced the concept of second-order duality for

nonlinear programming. Gulati and Gupta [2] introduced the concept of η1-bonvexity/

η2-boncavity and derived duality results for a Wolfe-type model. The concept of G-invex

function is given by Antczak [3] and derived some duality results for a constrained op-

timization problem. Later on, generalizing his earlier work, Antzcak [4] introduced Gf -

invex functions for multivariate models and obtained optimality results for multiobjective

programming problems. Liang et al. [5] discussed conditions for optimality and duality

in a multiobjective programming problem. Bhatia and Garg [6] discussed the concept of

(V ,p) invexity for nonsmooth vector functions and established duality results for mul-

tiobjective programs. Jayswal et al. [7] discussed multiobjective fractional programming

problem involving an invex function. Stefaneseu and Ferrara [8] studied new invexities for

multiobjective programming problem. Several researchers [9–21] have studied related ar-

eas.

This paper is organized as follows. In Sect. 2, we give some preliminaries and def-

initions used in this paper and also a nontrivial example for such type functions. In

Sect. 3, we formulate second-order multiobjective symmetric G-Wolfe-type dual pro-

grams over arbitrary cones. We prove weak, strong, and converse duality theorems by us-

ing Gf -bonvexity/Gf -pseudobonvexity assumptions over arbitrary cones. Finally, we con-

struct nontrivial numerical examples that are Gf -bonvex/Gf -pseudobonvex but neither

η-bonvex/η-pseudobonvex nor η-invex/η-pseudoinvex functions.

2 Preliminaries and definitions

Let f = (f1, f2, f3, . . . , fk) : X → Rk be a vector-valued differentiable function defined on a

nonempty open set X ⊆ Rn, and let Ifi (X), i = 1, . . . ,k, be the range of fi, that is, the image

of X under fi. Let Gf = (Gf1 ,Gf2 , . . . ,Gfk ) : R → Rk be a differentiable function such that

every component Gfi : Ifi (X) → R is strictly increasing on the range of Ifi , i = 1, 2, 3, . . . ,k.

Definition 2.1 The positive polar cone S∗of a cone S ⊆ Rs is defined by

S∗ =
{

y ∈ Rs : xTy≥ 0
}

.

Consider the following vector minimization problem:

Min. f (y) =
{

f1(y), f2(y), . . . , fk(y)
}T

subject to S0 =
{

y ∈ S ⊂ Rn : hj(y) ≤ 0, j = 1, 2, 3, . . . ,m
}

, (MP)

where f = {f1, f2, . . . , fk} : S → Rk and h = {h1,h2, . . . ,hm} : S → Rm are differentiable func-

tions on S.

Definition 2.2 ȳ ∈ S0 is an efficient solution of (MP) if there exists no other y ∈ S0 such

that fr(y) < fr(ȳ) for some r = 1, 2, 3, . . . ,k and fi(y) ≤ fi(ȳ) for all i = 1, 2, 3, . . . ,k.

Definition 2.3 If there exists a function η : S × S → Rn such that for all y ∈ S,

fi(y) – fi(v) ≥ ηT (y, v)∇yfi(v) for all i = 1, 2, 3, . . . ,k,

then f is called invex at v ∈ S with respect to η.



Dubey et al. Journal of Inequalities and Applications         ( 2020)  2020:30 Page 3 of 16

Definition 2.4 If there exist Gfi : Ifi (S)→ R and η : S × S → Rn such that for all y ∈ S,

ηT (y, v)G′
fi

(

fi(v)
)

∇yfi(v)≥ 0 ⇒ Gfi

(

fi(x)
)

–Gfi

(

fi(v)
)

≥ 0 for all i = 1, 2, 3, . . . ,k,

then fi is called Gfi -pseudoinvex at u ∈ S with respect to η.

Definition 2.5 If there exist Gfi : Ifi (S) → R and η : S × S → Rn such that for all y ∈ S and

p ∈ Rn,

Gfi

(

fi(y)
)

–Gfi

(

fi(v)
)

≥ ηT (y, v)
[

G′
fi

(

fi(v)
)

∇yfi(v)

+
{

G′′
fi

(

fi(v)
)

∇yfi(v)
(

∇yfi(v)
)T

+G′
fi

(

fi(v)
)

∇yyfi(v)
}

p
]

–
1

2
pT

[

G′′
fi

(

fi(v)
)

∇yfi(v)
(

∇yfi(v)
)T

+G′
fi

(

fi(v)
)

∇yyfi(v)
]

p

for all i = 1, 2, 3, . . . ,k,

then fi is called Gfi -bonvex at v ∈ S with respect to η.

Definition 2.6 If there exist functions Gf and η : S × S → Rn such that for all y ∈ S and

p ∈ Rn,

ηT (y, v)
[

G′
fi

(

fi(v)
)

∇yfi(v)

+
{

G′′
fi

(

fi(v)
)

∇yfi(v)
(

∇yfi(v)
)T

+G′
fi

(

fi(v)
)

∇yyfi(v)
}

p
]

≥ 0

⇒ Gfi

(

fi(y)
)

–Gfi

(

fi(v)
)

+
1

2
pT

[

G′′
fi

(

fi(v)
)

∇yfi(v)
(

∇yfi(v)
)T

+G′
fi

(

fi(v)
)

∇yyfi(v)
]

p≥ 0

for all i = 1, 2, 3, . . . ,k,

then fi is called Gfi -pseudobonvex at v ∈ S with respect to η.

Now, we discuss nontrivial numerical examples that are Gf -bonvex/Gf -pseudobonvex

but neither η-bonvex/η-pseudobonvex nor η-invex/η-pseudoinvex functions.

Example 2.1 Let f : [–1, 1] → R4 be defined as

f (y) =
{

f1(y), f2(y), f3(y), f4(y)
}

,

where f1(y) = y10, f2(y) = arcsin y, f3(y) = arctan y, f4(y) = arccot y, and let Gf = {Gf1 ,Gf2 ,

Gf3 ,Gf4} : R→ R4 be defined as

Gf1 (t) = t5 + 5, Gf2 (t) = sin t + 2, Gf3 (t) = tan t + 9, Gf4 (t) = cot t + 2.

Let η : [–1, 1]× [–1, 1] → R be given as

η(y, v) = –
1

9
y14 + y +

1

99
y17v5 –

1

7
y4v3 + v3.
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Figure 1 πi ≥ 0 (i = 1, 2, 3, 4), ∀p,∀y ∈ [–1, 1]

To show that f is Gf -bonvex at v = 0 with respect to η, we have to claim that

πi =Gfi

(

fi(y)
)

–Gfi

(

fi(v)
)

– ηT (y, v)
[

G′
fi

(

fi(v)
)

∇yfi(v) +
{

G′′
fi

(

fi(v)
)

∇yfi(v)
(

∇yfi(v)
)T

+G′
fi

(

fi(v)
)

∇yyfi(v)
}

p
]

+
1

2
pT

[

G′′
fi

(

fi(v)
)

∇yfi(v)
(

∇yfi(v)
)T

+G′
fi

(

fi(v)
)

∇yyfi(v)
]

p

≥ 0, i = 1, 2, 3, 4.

Putting the values of fi, Gfi , i = 1, 2, 3, 4, into the last expression, after simplifying at the

point v = 0 ∈ [–1, 1], we clearly see from Fig. 1 that πi ≥ 0, i = 1, 2, 3, 4, for all y ∈ [–1, 1].

Therefore f is Gf -bonvex at v = 0 ∈ [–1, 1] with respect to η and p.

Now, suppose

ξ = f3(y) – f3(v) – ηT (y, v)
[

∇yf3(v) –∇yyf3(v)p
]

+
1

2
pT

[

∇yyf3(v)
]

p

or

ξ = arctan y – arctan v

–

(

–
1

9
y14 + y +

1

99
y17v5 –

1

7
y4v3 + v3

)[

1

1 + v2
–

2vp

(1 + v2)2

]

–
vp2

(1 + v2)2
,

ξ = arctan y +
1

9
y14 – y at v = 0,

ξ � 0 (from Fig. 2).

Therefore f3 is not η-bonvex at v = 0 with respect to p. Hence f is not η-bonvex at v = 0

with respect to p.

Next,

δ = f3(y) – f3(v) – ηT (y, v)∇yf3(v)
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Figure 2 ξ = arctan y + 1
9
y14 – y � 0, at v = 0, ∀p,∀y ∈ [–1, 1]

or

δ = arctan y – arctan v –

(

–
1

9
y14 + y +

1

99
y17v5 –

1

7
y4v3 + v3

)

1

1 + v2
,

δ = arctan y +
1

9
y14 – y at v = 0,

δ =
π

4
+
1

9
– 1 < 0 at y = 1 ∈ [–1, 1].

Therefore f3 is not η-invex at v = 0. Hence f is not η-invex at v = 0.

Example 2.2 Let f : [–2, 2] → R2 be defined as

f (y) =
{

f1(y), f2(y)
}

,

where f1(y) = ( e
2y–1
ey

), f2(y) = y3, and Gf = {Gf1 ,Gf2} : R → R2 is defined as

Gf1 (t) = t2 + 1, Gf2 (t) = t2 + 3.

Let η : [–2, 2]× [–2, 2] → R be given as

η(y, v) = y6 + v9y4 + v5y + v + 3.

To show that f is Gf -pseudobonvex at v = 0 with respect to η, we have to claim that, for

i = 1, 2,

ζi = ηT (y, v)
[

G′
fi

(

fi(v)
)

∇yfi(v) +
{

G′′
fi

(

fi(v)
)

∇yfi(v)
(

∇yfi(v)
)T

+G′
fi

(

fi(v)
)

∇yyfi(v)
}

p
]

≥ 0

⇒ Gfi

(

fi(y)
)

–Gfi

(

fi(v)
)

+
1

2
pT

[

G′′
fi

(

fi(v)
)

∇yfi(v)
(

∇yfi(v)
)T

+G′
fi

(

fi(v)
)

∇yyfi(v)
]

p ≥ 0.
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Figure 3 ϕ1 = ( e
2y–1
ey

)2 ≥ 0 for all y ∈ [–2, 2] and p

Let

φ1 = ηT (y, v)
[

G′
f1

(

f1(v)
)

∇yf1(v) +
{

G′′
f1

(

f1(v)
)

∇yf1(v)
(

∇yf1(v)
)T

+G′
f1

(

f1(v)
)

∇xxf1(u)
}

p
]

.

Substituting the values of η and f1 at the point v = 0, we get

φ1 ≥ 0 for all y ∈ [–2, 2] and p.

Next, consider

ϕ1 =Gf1

(

f1(y)
)

–Gf1

(

f1(v)
)

+
1

2
pT

[

G′′
f1

(

f1(v)
)

∇yf1(v)
(

∇yf1(v)
)T

+G′
f1

(

f1(v)
)

∇xxf1(u)
]

p1.

At v = 0, we get ϕ1 ≥ 0 for all y ∈ [–1, 1] and p (from Fig. 3);

φ2 = ηT (y, v)
[

G′
f2

(

f2(v)
)

∇yf2(v) +
{

G′′
f2

(

f2(v)
)

∇yf2(v)
(

∇yf2(v)
)T

+G′
f2

(

f2(v)
)

∇yyf2(v)
}

p
]

,

φ2 =
(

y6 + v9y4 + v5y + v + 3
)(

6v5 + 30v5p
)

.

At the point v = 0, we have

φ2 ≥ 0 for all y ∈ [–2, 2] and p.

Also,

ϕ2 =Gf2

(

f2(y)
)

–Gf2

(

f2(v)
)

+
1

2
pT

[

G′′
f2

(

f2(v)
)

∇yf2(v)
(

∇yf2(v)
)T

+G′
f2

(

f2(v)
)

∇yyf2(v)
]

p,

ϕ2 = y6 – v6 + 15p2v4.

At the point v = 0, we obtain

ϕ2 ≥ 0 for all y ∈ [–2, 2] and p.
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Figure 4 ϕ3 ≥ 0 for all y ∈ [–2, 2] and p

Hence from the expressions φi and ϕi, i = 1, 2, we get that f is Gf -pseudobonvex at v = 0

with respect to η.

Next, let

φ3 = ηT (y, v)
[

∇yf2(v) +∇yyf2(v)p
]

,

φ3 =
(

y6 + v9y4 + v5y + v + 3
)[

3v2 + 6vp
]

.

At the point v = 0, we have

φ3 ≥ 0 for all y ∈ [–2, 2] and p.

Further, consider

ϕ3 = f2(y) – f2(v) +
1

2
p2∇yyf2(v),

ϕ3 = y3 – v3 + 3p2v.

At the point v = 0, we obtain

ϕ3 � 0 for all y ∈ [–2, 2] and p (from Fig. 4).

Hence f2 is not η-pseudobonvex at v = 0 ∈ [–2, 2]. Therefore f = (f1, f2) is not η-

pseudobonvex at v = 0 ∈ [–2, 2].

Finally,

φ4 = ηT (y, v)∇yf2(v),

φ4 = 3
(

y6 + v9y4 + v5y + v + 3
)

v2.

At the point v = 0, we have

φ4 ≥ 0 for all y ∈ [–2, 2] and p.
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Also,

ϕ4 = f2(y) – f2(v),

ϕ3 = y3 – v3.

At the point v = 0, we obtain

ϕ4 � 0 for all y ∈ [–2, 2].

Hence f2 is not η-pseudoinvex at v = 0 ∈ [–2, 2]. Hence f = (f1, f2) is not η-pseudoinvex at

v = 0 ∈ [–2, 2].

3 Second-order multiobjective G-Wolfe-type symmetric dual program

Consider the following pair of second-order multiobjective G-Wolfe-type dual programs

over arbitrary cones.

Primal problem (GWP) Minimize

R(y, z,λ,p) =
(

R1(y, z,λ1,p),R2(y, z,λ2,p), . . . ,Rk(y, z,λk ,p)
)T

subject to

–

k
∑

i=1

λi

[

G′
fi

(

fi(y, z)
)

∇yfi(y, z)

+
{

G′′
fi

(

fi(y, z)
)

∇yfi(y, z)
(

∇yfi(y, z)
)T

+G′
fi

(

fi(y, z)
)

∇yyfi(y, z)
}

p
]

∈ C∗
2 , (1)

λi > 0, λTek = 1, x ∈ C1, i = 1, 2, 3, . . . ,k. (2)

Dual problem (GWD) Maximize

S(v,w,λ,q) =
(

S1(v,w,λ1,q),S2(v,w,λ2,q), . . . ,Sk(v,w,λk ,q)
)T

subject to

k
∑

i=1

λi

[

G′
fi

(

fi(v,w)
)

∇zfi(v,w)

+
{

G′′
fi

(

fi(v,w)
)

∇zfi(v,w)
(

∇zfi(v,w)
)T

+G′
fi

(

fi(v,w)
)

∇zzfi(v,w))
}

q
]

∈ C∗
1 , (3)

λi > 0, λTek = 1, v ∈ C2, i = 1, 2, 3, . . . ,k, (4)

where for all i = 1, 2, 3, . . . ,k,

Ri(y, z,λ,p) =Gfi

(

fi(y, z)
)

– zT
k

∑

i=1

λi

(

G′
fi

(

fi(y, z)
)

∇yfi(y, z)

+
[

G′′
fi

(

fi(y, z)
)

∇yfi(y, z)
(

∇yfi(y, z)
)T

+G′
fi

(

fi(y, z)
)

∇yyfi(y, z)
]

p
)

–
1

2

k
∑

i=1

λip
T
(

G′′
fi

(

fi(y, z)
)

∇yfi(y, z)
(

∇yfi(y, z)
)T

+G′
fi

(

fi(y, z)
)

∇yyfi(y, z)
)

p,
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Si(v,w,λ,q) =Gfi

(

fi(v,w)
)

– vT
k

∑

i=1

λi

(

G′
fi

(

fi(v,w)
)

∇zfi(v,w)

+
[

G′′
fi

(

fi(v,w)
)

∇zfi(v,w)
(

∇zfi(v,w)
)T

+G′
fi

(

fi(v,w)
)

∇zzfi(v,w)
]

q
)

–
1

2

k
∑

i=1

λiq
T
(

G′′
fi

(

fi(v,w)
)

∇zfi(v,w)
(

∇zfi(v,w)
)T

+G′
fi

(

fi(v,w)
)

∇zzfi(v,w)
)

q,

and

(i) ek = (1, 1, . . . , 1) ∈ Rk and λ ∈ Rk .

(ii) q and p are vectors in Rn and Rm, respectively.

Let Y 0 and Z0 be the sets of feasible solutions of (GWP) and (GWD), respectively.

Theorem 3.1 (Weak duality) Let (y, z,λ,p) ∈ Y 0 and (v,w,λ,q) ∈ Z0. Suppose that for all

i = 1, 2, 3, . . . ,k,

(i) fi(·, v) is Gfi -bonvex at v with respect η,

(ii) fi(x, ·) be Gfi -boncave at y with respect η,

(iii) η1(y, v) + u ∈ C1 and η2(w, z) + y ∈ C2.

Then the following inequalities cannot hold together:

Ri(y, z,λ,p) ≤ Si(v,w,λ,q) for all i = 1, 2, 3, . . . ,k, (5)

and

Rr(y, z,λ,p) < Sr(v,w,λ,q) for at least one r ∈ K . (6)

Proof If possible, then suppose inequalities (5) and (6) hold. For λ > 0, we obtain

k
∑

i=1

λi

[

Gfi

(

fi(y, z)
)

– zT
k

∑

i=1

λi

(

G′
fi

(

fi(y, z)
)

∇yfi(y, z)

+G′′
fi

(

fi(y, z)
)

∇yfi(y, z)
(

∇yfi(y, z)
)T

+G′
fi

(

fi(y, z)
)

∇yyfi(y, z)
)

p

]

–
1

2

k
∑

i=1

λi

(

pT
[

G′′
fi

(

fi(y, z)
)

∇yfi(y, z)
(

∇yfi(y, z)
)T

+G′
fi

(

fi(y, z)
)

∇yyfi(y, z)
]

p
)

<

k
∑

i=1

λi

[

Gfi

(

fi(v,w)
)

– vT
k

∑

i=1

λi

(

G′
fi

(

fi(v,w)
)

∇zfi(v,w) +G′′
fi

(

fi(v,w)
)

∇zfi(v,w)

+
(

∇zfi(v,w)
)T

+G′
fi

(

fi(v,w)
)

∇zzfi(v,w)
)

q

]

–
1

2

k
∑

i=1

λi

(

qT
[

G′′
fi

(

fi(v,w)
)

∇zfi(v,w)
(

∇zfi(v,w)
)T

+G′
fi

(

fi(v,w)
)

∇zzfi(v,w)
]

q
)

]. (7)
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From assumption (i) we get

Gfi

(

fi(y,w)
)

–Gfi

(

fi(v,w)
)

≥ η1x,u
T
[

G′
fi

(

fi(v,w)
)

∇zfi(v,w)

+
{

G′′
fi

(

fi(v,w)
)

∇zfi(v,w)
(

∇zfi(v,w)
)T

+G′
fi

(

fi(v,w)
)

∇zzfi(v,w)
}

q
]

–
1

2
qT

[

G′′
fi

(

fi(v,w)
)

∇zfi(v,w)
(

∇zfi(v,w)
)T

+G′
fi

(

fi(v,w)
)

∇zzfi(v,w)
]

q.

Since λ > 0, this inequality yields

k
∑

i=1

λi

[

Gfi

(

fi(y,w)
)

–Gfi

(

fi(v,w)
)]

≥ ηT
1 (x,u)

{

k
∑

i=1

λi

[

G′
fi

(

fi(v,w)
)

∇zfi(v,w)

+
{

G′′
fi

(

fi(v,w)
)

∇zfi(v,w)
(

∇zfi(v,w)
)T

+G′
fi

(

fi(v,w)
)

∇zzfi(v,w)
}

q
]

}

–
1

2

k
∑

i=1

λiq
T
[

G′′
fi

(

fi(v,w)
)

∇zfi(v,w)
(

∇zfi(v,w)
)T

+G′
fi

(

fi(v,w)
)

∇zzfi(v,w)
]

q. (8)

From the dual constraint (3) and assumption (iii) it follows that

[

η1(y, v) + v
]T

{

k
∑

i=1

λi

[

G′
fi

(

fi(v,w)
)

∇zfi(v,w)

+
{

G′′
fi

(

fi(v,w)
)

∇zfi(v,w)
(

∇zfi(v,w)
)T

+G′
fi

(

fi(v,w)
)

∇zzfi(v,w)
}

q
]

}

≥ 0,

which implies

η1(y, v)
T

{

k
∑

i=1

λi

[

G′
fi

(

fi(v,w)
)

∇zfi(v,w)

+
{

G′′
fi

(

fi(v,w)
)

∇zfi(v,w)
(

∇zfi(v,w)
)T

+G′
fi

(

fi(v,w)
)

∇zzfi(v,w)
}

q
]

}

≥ –vT

{

k
∑

i=1

λi

[

G′
fi

(

fi(v,w)
)

∇zfi(v,w)

+
{

G′′
fi

(

fi(v,w)
)

∇zfi(v,w)
(

∇zfi(v,w)
)T

+G′
fi

(

fi(v,w)
)

∇zzfi(v,w)
}

q
]

}

.

Using inequalities (3) and (8), we obtain

k
∑

i=1

λi

[

Gfi

(

fi(y,w)
)

–Gfi

(

fi(v,w)
)

+
1

2

k
∑

i=1

λiq
T
[

G′′
fi

(

fi(v,w)
)

∇zfi(v,w)
(

∇zfi(v,w)
)T

+G′
fi

(

fi(v,w)
)

∇zzfi(v,w)
]

q

]
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≥ –vT

{

k
∑

i=1

λi

[

G′
fi

(

fi(v,w)
)

∇zfi(v,w)

+
{

G′′
fi

(

fi(v,w)
)

∇zfi(v,w)
(

∇zfi(v,w)
)T

+G′
fi

(

fi(v,w)
)

∇zzfi(v,w)
}

q
]

}

. (9)

Using assumption (iv) and primal constraint (1), we get

k
∑

i=1

λi

[

–Gfi

(

f (y,w)
)

+Gfi

(

fi(y, z)
)

–
1

2
pT

[

G′′
fi

(

fi(y, z)
)

∇yfi(y, z)
(

∇yfi(y, z)
)T

+G′
fi

(

fi(y, z)
)

∇yyfi(y, z)
]

p

]

≥ zT
k

∑

i=1

λi

[

G′
fi

(

fi(y, z)
)

∇yfi(y, z)

+
{

G′′
fi

(

fi(y, z)
)

∇yfi(y, z)
(

∇yfi(y, z)
)T

+G′
fi

(

fi(y, z)
)

∇yyfi(y, z)
}

p
]

. (10)

Finally, adding inequalities (9) and (10) and using λTek = 1, we obtain

k
∑

i=1

λi

[

Gfi

(

fi(y, z)
)

– zT
k

∑

i=1

λi

(

G′
fi

(

fi(y, z)
)

∇yfi(y, z)

+G′
fi

(

fi(y, z)
)

∇yfi(y, z)
(

∇yfi(y, z)
)T

+G′
fi

(

fi(y, z)
)

∇yyfi(y, z)
)

p

]

–
1

2

k
∑

i=1

λi

(

pT
[

G′′
fi

(

fi(y, z)
)

∇yfi(y, z)
(

∇yfi(y, z)
)T

+G′
fi

(

fi(y, z)
)

∇yyfi(y, z)
]

p
)

≥

k
∑

i=1

λi

[

Gfi

(

fi(v,w)
)

– vT
k

∑

i=1

λi

(

G′
fi

(

fi(v,w)
)

∇zfi(v,w)

+G′
fi

(

fi(v,w)
)

∇zfi(v,w)
(

∇zfi(v,w)
)T

+G′
fi

(

fi(v,w)
)

∇zzfi(v,w)
)

q

]

–
1

2

k
∑

i=1

λi

(

qT
[

G′′
fi

(

fi(v,w)
)

∇zfi(v,w)
(

∇zfi(v,w)
)T

+G′
fi

(

fi(v,w)
)

∇yyfi(v,w)
]

q
)

.

This contradicts (7). Hence the result. �

Remark 3.1 Since every Gf -bonvex function is Gf -pseudobonvex, Theorem 3.1 can also

be obtained under Gf -pseudobonvexity assumptions.

Remark 3.2 A vector space V over field K , the span of a set S, may be defined as the set of

all finite linear combinations of elements (vectors) of S:

span(S) =

{

k
∑

i=1

λivi : k ∈N ,ui ∈ S,λi = 1, 2, 3, . . . ,k

}

.
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Theorem 3.2 (Strong duality) Let (ȳ, z̄, λ̄, p̄) be an efficient solution of (GWP); fix λ = λ̄ in

(GWD) such that

(i) for all i = 1, 2, 3, . . . ,k, [G′′
fi
(fi(ȳ, z̄))∇zfi(ȳ, z̄)(∇zfi(ȳ, z̄))

T +G′
fi
(fi(ȳ, z̄))∇zzfi(ȳ, z̄)] is

nonsingular,

(ii)
∑k

i=1 λ̄i∇z({G
′′
fi
(fi(ȳ, z̄))∇zfi(ȳ, z̄)(∇zfi(ȳ, z̄))

T +G′
fi
(fi(ȳ, z̄))∇zzfi(ȳ, z̄)}p̄)p̄ /∈

span{G′
f1
(f1(ȳ, z̄))∇zf1(z̄, x̄), . . . ,G

′
fk
(fk(ȳ, z̄))∇zfk(ȳ, z̄)} \ {0},

(iii) the vectors {G′
f1
(f1(ȳ, z̄))∇zf1(z̄, x̄),G

′
f2
(f2(ȳ, z̄))∇zf2(ȳ, z̄), . . . ,G

′
fk
(fk(ȳ, z̄))∇zfk(ȳ, z̄)} are

linearly independent,

(iv)
∑k

i=1 λ̄i∇y({G
′′
fi
(fi(ȳ, z̄))∇zfi(ȳ, z̄)(∇zfi(ȳ, z̄))

T +G′
fi
(fi(ȳ, z̄))∇zzfi(ȳ, z̄)}p̄)p̄ = 0 implies

that p̄ = 0.

Then for q̄ = 0, we have (v̄, w̄, λ̄, p̄ = 0) ∈ Z0 and R(ȳ, z̄, λ̄, q̄) = S(ȳ, z̄, λ̄, q̄). Also, from Theo-

rem 3.1 it follows that (v̄, w̄, λ̄, p̄ = 0) is an efficient solution for (GWD).

Proof By the Fritz–John necessary conditions [22] there exist α ∈ Rk , β ∈ Rm, and η ∈ R

such that

(y – ȳ)T

{

k
∑

i=1

αi

[

G′
fi

(

fi(ȳ, z̄)
)

∇yfi(ȳ, z̄)
]

+

k
∑

i=1

λ̄i

[

G′′
fi

(

fi(ȳ, z̄)
)

∇yfi(ȳ, z̄)∇yfi(ȳ, z̄) +G′
fi

(

fi(ȳ, z̄)
)

∇xyfi(ȳ, z̄)
](

β –
(

αTek
)

ȳ
)

+

k
∑

i=1

λ̄i∇y

[(

G′′
fi

(

fi(ȳ, z̄)
)

∇yfi(ȳ, z̄)
(

∇yfi(ȳ, z̄)
)T

+G′
fi

(

fi(ȳ, z̄)
)

∇yyfi(ȳ, z̄)
)

p̄
]

×

(

β –
(

αTek
)

(

ȳ +
1

2
p̄

))

}

= 0 for all y ∈ C1, (11)

k
∑

i=1

(

αi –
(

αTek
)

λ̄i

)[

G′
fi

(

fi(ȳ, z̄)
)

∇zfi(ȳ, z̄)
]

+

k
∑

i=1

λ̄i

[{

G′′
fi

(

fi(ȳ, z̄)
)

∇zfi(ȳ, z̄)
(

∇zfi(ȳ, z̄)
)T

+G′
fi

(

fi(ȳ, z̄)
)

∇zzfi(ȳ, z̄)
}

×
(

β –
(

αTek
)

(ȳ + p̄)
)

∇zfi(ȳ, z̄)
(

∇zfi(ȳ, z̄)
)T

+G′
fi

(

fi(ȳ, z̄)
)

∇zzfi(z̄, x̄))p̄}
]

(

β –
(

αTek
)

(

ȳ +
1

2
p̄

))

= 0, (12)

[

G′′
fi

(

fi(ȳ, z̄)
)

∇zfi(ȳ, z̄)
(

∇zfi(ȳ, z̄)
)T

+G′
fi

(

fi(ȳ, z̄)
)

∇zzfi(ȳ, z̄)
]

×
[(

β –
(

αTek
)

(p̄ + ȳ)
)

λ̄i

]

= 0, i = 1, 2, 3, . . . ,k, (13)

G′
fi

(

fi(ȳ, z̄)
)

∇zfi(ȳ, z̄)
(

β –
(

αTek ȳ
))

+ ηek

+

{(

β –
(

αTek
)

(

ȳ +
1

2
p̄1

))T
(

G′′
f1

(

f1(ȳ, z̄)
)

∇yf1(z̄, x̄)
(

∇yf1(z̄, x̄)
)T

+G′
f1

(

f1(ȳ, z̄)
)

∇zzf1(z̄, x̄)
)

p̄1), . . . ,

(

β –
(

αTek
)

(

ȳ +
1

2
p̄k

))T
(

G′′
fk

(

fk(ȳ, z̄)
)

∇zfk(ȳ, z̄)
(

∇zfk(ȳ, z̄)
)T
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+G′
fk

(

fk(ȳ, z̄)
)

∇zzfk(ȳ, z̄)
)

p̄
)

}

= 0, (14)

βT

k
∑

i=1

λ̄i

[

G′
fi

(

fi(ȳ, z̄)
)

∇zfi(ȳ, z̄)

+
{

G′′
fi

(

fi(ȳ, z̄)
)

∇zfi(ȳ, z̄)
(

∇zfi(ȳ, z̄)
)T

+G′
fi

(

fi(ȳ, z̄)
)

∇zzfi(ȳ, z̄)
}

p̄
]

= 0, (15)

ηT
[

λ̄Tek – 1
]

= 0, (16)

(α,β)≥ 0, (α,β ,η) = 0. (17)

Equation (14) can be rewritten as

G′
fi

(

fi(ȳ, z̄)
)

∇zfi(ȳ, z̄)
(

β –
(

αTek
)

ȳ
)

+

(

β –
(

αTek
)

(

ȳ +
1

2
p̄

))T
((

G′′
fi

(

fi(ȳ, z̄)
)

∇zfi(ȳ, z̄)
(

∇zfi(ȳ, z̄)
)T

+G′
fi

(

fi(ȳ, z̄)
)

∇zzfi(z̄, x̄)
)

p̄
)

+ η = 0, i = 1, 2, 3, . . . ,k. (18)

By assumption (i), since λ̄i > 0 for i = 1, 2, 3, . . . ,k, (18) gives

β =
(

αTek
)

(p̄ + ȳ), i = 1, 2, 3, . . . ,k. (19)

If α = 0, then (19) implies that β = 0. Further, equation (18) gives η = 0. Consequently,

(α,β ,η) = 0, which contradicts (17). Hence α = 0, or αTek > 0.

Using (19) and αTek > 0 in (12), we get

k
∑

i=1

λ̄i

[(

∇z

{(

G′′
fi

(

fi(ȳ, z̄)
)

∇zfi(ȳ, z̄)
(

∇zfi(ȳ, z̄)
)T

+G′
fi

(

fi(ȳ, z̄)
)

∇zzfi(z̄, x̄)
)

p̄
}

p̄
)]

= –
2

αTek

k
∑

i=1

[

G′
fi

(

fi(ȳ, z̄)
)

∇zfi(ȳ, z̄)
](

αi –
(

αTek
)

λ̄i

)

. (20)

It follows from assumption (ii) that

k
∑

i=1

λ̄i

[(

∇y

{(

G′′
fi

(

fi(ȳ, z̄)
)

∇zfi(ȳ, z̄)
(

∇zfi(ȳ, z̄)
)T

+G′
fi

(

fi(ȳ, z̄)
)

∇zfi(ȳ, z̄)
)

p̄
}

p̄
)]

= 0. (21)

Hence by assumption (iv) we get p̄ = 0, and therefore inequality (19) implies

β =
(

αTek
)

ȳ. (22)

Now, using p̄ = 0 and (20), we obtain

k
∑

i=1

(

αi –
(

αTek
)

λ̄i

)[

G′
fi

(

fi(ȳ, z̄)
)

∇zfi(ȳ, z̄)
]

= 0.

Assumption (iii) yields

αi =
(

αTek
)

λ̄i, i = 1, 2, 3, . . . ,k. (23)
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Using αTek > 0 and (21)–(23) in (11), we get

(y – ȳ)T
k

∑

i=1

λ̄i

[

G′
fi

(

fi(ȳ, z̄)
)

∇yfi(ȳ, z̄)
]

≥ 0 for all y ∈ C1. (24)

Let y ∈ C1. Then, y + ȳ ∈ C1, and it follows that

yT
k

∑

i=1

λ̄i

[

G′
fi

(

fi(ȳ, z̄)
)

∇yfi(ȳ, z̄)
]

≥ 0 for all y ∈ C1. (25)

Therefore

k
∑

i=1

λ̄i

[

G′
fi

(

fi(ȳ, z̄)
)

∇yfi(ȳ, z̄)
]

∈ C∗
1 . (26)

Also, from (22) we have

ȳ =
β̄

ᾱTek
∈ C2. (27)

Hence (v̄, w̄, λ̄, p̄ = 0) satisfies the dual constraints and Z0.

Now, letting y = 0 and y = 2ȳ in (24), we get

ȳT
k

∑

i=1

λ̄i

[

G′
fi

(

fi(ȳ, z̄)
)

∇yfi(ȳ, z̄)
]

= 0. (28)

Using (28) and q̄ = p̄ = 0 completes the proof. �

Theorem3.3 (Converse duality) Let (v̄, w̄, λ̄, q̄) be an efficient solution of (GWD). Fix λ = λ̄

in (GWP) such that

(i) for all i = 1, 2, 3, . . . ,k, [G′′
fi
(fi(v̄, w̄))∇zfi(v̄, w̄)(∇zfi(v̄, w̄))

T +G′
fi
(fi(v̄, w̄))∇zzfi(v̄, w̄)] is

nonsingular,

(ii)
∑k

i=1 λ̄i∇z({G
′′
fi
(fi(v̄, w̄))∇zfi(v̄, w̄)(∇zfi(v̄, w̄))

T +G′
fi
(fi(v̄, w̄))∇zzfi(v̄, w̄)}q̄)q̄ /∈

span{G′
f1
(f1(v̄, w̄))∇zf1(v̄, w̄), . . . ,G

′
fk
(fk(ū, v̄))∇zfk(ū, v̄)} \ {0},

(iii) the vectors {G′
f1
(f1(v̄, w̄))∇zf1(v̄, w̄),G

′
f2
(f2(v̄, w̄))∇zf2(v̄, w̄), . . . ,G

′
fk
(fk(v̄, w̄))∇zfk(v̄, w̄)}

are linearly independent,

(iv)
∑k

i=1 λ̄i∇z({G
′′
fi
(fi(v̄, w̄))∇zfi(v̄, w̄)(∇zfi(v̄, w̄))

T +G′
fi
(fi(v̄, w̄))∇zzfi(v̄, w̄)}q̄)q̄ = 0⇒

q̄ = 0.

Then, taking p̄ = 0, we have that (v̄, w̄, λ̄, p̄ = 0) ∈ Y 0 and R(v̄, w̄, λ̄, p̄) = S(ū, v̄, λ̄, p̄). Also, by

Theorem 3.1 (v̄, w̄, λ̄, p̄ = 0) is an efficient solution for (GWP).

Proof Proof follows the lines of Theorem 3.2. �

4 Concluding remarks

In this paper, we have formulated a second-order symmetric G-Wolfe-type dual prob-

lem for a nonlinear multiobjective optimization problem with cone constraints. A num-

ber of duality relations are further established under Gf -bonvexity/Gf -pseudobonvexity
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assumptions on the function f . We have discussed various numerical examples to show

the existence of Gf -bonvex/Gf -pseudobonvex functions. The question arises whether the

duality results developed in this paper hold forG-Wolfe- ormixed-type higher-ordermul-

tiobjective optimization problems. This may be the future direction for the researchers

working in this area.
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