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Abstract

In this paper, we define a generalized T -contraction and derive some new coupled fixed point theorems in cone metric spaces

with total ordering condition. An illustrative example is provided to support our results. As an application, we utilize the results

obtained to study the existence of common solution to a system of integral equations. We also present an application to Markov

process.
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1. Introduction and preliminaries

In 1922, the Banach contraction principle [1] was introduced and it remains a powerful tool in nonlinear analysis

which incites many authors to extend it, for instance [2–13]. In 2007, Huang and Zhang [14] generalized the notion

of metric space by replacing the set of real numbers by ordered normed spaces, defined a cone metric space and

extended the Banach contraction principle on these spaces over a normal solid cone. There are many fixed point

results for generalized contractive conditions in metric spaces which were extended to cone metric spaces when the

underlying cone is normal or not normal. Fixed point theory in cone metric spaces has been studied recently by many

authors [2,14–26]. Bhaskar and Lakshmikantham [27] introduced the concept of coupled fixed point and applied their

results to the study of existence and uniqueness of solution for a periodic boundary value problem in partially ordered

metric spaces. Recently, Rahimi et al. [28] defined the concept of T-contraction in coupled fixed-point theory and

obtained some coupled fixed point results on cone metric spaces without normality condition. For the detailed study

on coupled fixed point results in ordered metric spaces and ordered cone metric spaces, we refer the reader to [29–34].
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After the study of T -contractions in a metric space by Beiranvand et al. [35], in [19], Filipović et al. obtained some

fixed and periodic points satisfying T -Hardy-Rogers contraction in a cone metric space. Recently, Rahimi et al. [36]

proved new fixed and periodic point results under T -contractions of two maps in cone metric spaces.

Motivated by the above work, we define generalized T -contraction and establish the existence and uniqueness of

a coupled fixed point in cone metric spaces with a total ordering cone and dropping the normality condition which

in turn will extend and generalize the results of [27,28,37]. We state some illustrative example to justify the obtained

results. Also, we prove the existence of common solution to a system of integral equations. Further, we present an

application to Markov process. The presented results improve and generalize many known results in cone metric

spaces.

Now, we recall the definition of cone metric spaces and some of their properties.

Definition 1.1 ([14]). Let E be a real Banach space. A subset P of E is called a cone if the following conditions are

satisfied:

(i) P is closed, nonempty and P ̸= {θ};
(ii) a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply that ax + by ∈ P.

(iii) P ∩ (−P) = {θ}.

Given a cone P of E , we define a partial ordering ⪯ with respect to P by x ⪯ y if and only if y − x ∈ P . We shall

write x ≺ y to indicate that x ⪯ y but x ̸= y, while x ≪ y will stand for y − x ∈ int P (interior of P).

A cone P is called normal if there is a number K > 0 such that for all x, y ∈ E,

θ ⪯ x ⪯ y implies ∥x∥ ≤ K∥y∥. (1)

or equivalently, if, for any n, xn ⪯ yn ⪯ zn and

lim
n→∞

xn = lim
n→∞

zn = x imply lim
n→∞

yn = x .

The least positive number K satisfying the inequality (1) is called the normal constant of P .

Recently, Küçük et al. studied the characterization of total ordering cones with some properties and optimality

conditions in [38].

Proposition 1.2 ([38]). Let E be a vector space and P be a partial ordering cone with partial order “ ⪯′′ defined by

x ⪯ y if and only if y − x ∈ P. Then “ ⪯′′ is a total order on X if and only if P ∪ (−P) = E .

Definition 1.3 ([14]). Let X be a nonempty set and d : X × X → E be a mapping such that the following conditions

hold:

(i) θ ⪯ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) ⪯ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Example 1.4 ([14]). Let X = R, E = R2, P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R2 and d : X × X → E such that

d(x, y) = (|x − y|, δ|x − y|), where δ ≥ 0 is a constant. Then (X, d) is a cone metric space.

Definition 1.5 ([14]). Let (X, d) be a cone metric space. We say that {xn} is;

(i) a Cauchy sequence if for every c ∈ E with θ ≪ c, there is N such that for all m, n > N , d(xn, xm) ≪ c;

(ii) a convergent sequence if for every c ∈ E with θ ≪ c, there is N such that for all n > N , d(xn, x) ≪ c, for some

x ∈ X. We denote it by limn→∞xn = x or xn → x .

A cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X .

Proposition 1.6 ([19]). Let (X, d) be a cone metric space. Then the following properties are often used, particularly

when dealing with cone metric spaces in which the cone need not be normal.
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(P1) If u ⪯ v and v ≪ w, then u ≪ w.

(P2) If θ ⪯ u ≪ c for each c ∈ int P, then u = θ.

(P3) If E is a real Banach space with a cone P and if a ⪯ λa where a ∈ P and 0 ≤ λ < 1, then a = θ.

(P4) If c ∈ int P, an ∈ E and an → θ , then there exists n0 such that for all n > n0, we have an ≪ c.

Definition 1.7 ([19]). Let (X, d) be a cone metric space, P be a solid cone and f : X → X . Then

(i) f is said to be continuous if limn→∞xn = x implies that limn→∞ f xn = f x , for all {xn} in X .

(ii) f is said to be sequentially convergent if, for every sequence {xn}, such that { f xn} is convergent, then {xn} also

is convergent.

(iii) f is said to be subsequentially convergent if, for every sequence {xn}, such that { f xn} is convergent, then {xn}
has a convergent subsequence.

Definition 1.8 ([19]). Let (X, d) be a cone metric space and T, f : X → X two mappings. A mapping f is said to

be a T -Hardy-Rogers contraction, if there exist ai ≥ 0, i = 1, 2, . . . , 5 with
∑5

i=1ai < 1 such that for x, y ∈ X ,

d(T f x, T f y) ⪯ a1d(T x, T y) + a2d(T x, T f x) + a3d(T y, T f y) + a4d(T x, T f y) + a5d(T y, T f x). (2)

Taking a1 = a4 = a5 = 0, a2 = a3 ̸= 0 (respectively a1 = a2 = a3 = 0, a4 = a5 ̸= 0) in (2), we obtain T -Kannan

(respectively T -Chatterjea) contraction.

Definition 1.9 ([28]). Let (X, d) be a cone metric space and T : X → X be a mapping. A mapping S : X × X → X

is called a T -Sabetghadam-contraction if there exist a, b ≥ 0 with a + b < 1 such that for all x, y ∈ X,

d(T S(x, y), T S(x̃, ỹ)) ⪯ ad(T x, T x̃) + bd(T y, T ỹ).

Definition 1.10 ([31]). Let (X, d) be a cone metric space. An element (x, y) ∈ X × X is called a coupled fixed point

of the mapping F : X × X → X if F(x, y) = x and F(y, x) = y.

Note that if (x, y) is a coupled fixed point of F , then also (y, x) is a coupled fixed point of F.

2. Main results

Initially we define the following contraction condition which generalizes T -Sabetghadam-contraction.

Definition 2.1. Let (X, d) be a cone metric space with P ∪(−P) = E , (i.e. P is a total ordering cone) and T : X → X

be a mapping. A mapping S : X × X → X is called a generalized T -contraction if there exists λ with 0 ≤ λ < 1 such

that

d(T S(x, y), T S(x̃, ỹ)) ⪯ λ max{d(T x, T x̃), d(T y, T ỹ)}. (3)

for all x, y, x̃, ỹ ∈ X .

The first main result in this paper is the following coupled fixed point result which generalizes Theorem 3 of

Rahimi et al. [28].

Theorem 2.2. Let (X, d) be a complete cone metric space, P be a solid cone with P ∪ (−P) = E and T : X → X

be a continuous, one-to-one mapping and S : X × X → X be a mapping such that (3) holds for all x, y, x̃, ỹ ∈ X.

Then

(i) there exist zx0
, zy0

∈ X such that

lim
n→∞

T Sn(x0, y0) = zx0
and lim

n→∞
T Sn(y0, x0) = zy0

;

where Sn(x0, y0) = xn and Sn(y0, x0) = yn are the iterative sequences.

(ii) if T is subsequentially convergent, then {Sn(x0, y0)} and {Sn(y0, x0)} have a convergent subsequence;

(iii) there exist unique wx0
, wy0

∈ X such that S(wx0
, wy0

) = wx0
and S(wy0

, wx0
) = wy0

;
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(iv) if T is sequentially convergent, then for every x0, y0 ∈ X, the sequence {Sn(x0, y0)} converges to wx0
∈ X and

the sequence {Sn(y0, x0)} converges to wy0
∈ X.

Proof. For x0, y0 ∈ X, we define a sequence as follows:

xn+1 = S(xn, yn) = Sn+1(x0, y0) and yn+1 = S(yn, xn) = Sn+1(y0, x0), ∀n = 0, 1, 2, . . . .

Now, using (3), we have

d(T xn, T xn+1) = d(T S(xn−1, yn−1), T S(xn, yn))

⪯ λ max{d(T xn−1, T xn), d(T yn−1, T yn)}, (4)

and

d(T yn, T yn+1) = d(T S(yn−1, xn−1), T S(yn, xn))

⪯ λ max{d(T yn−1, T yn), d(T xn−1, T xn)}. (5)

Let Dn = max{d(T xn, T xn+1), d(T yn, T yn+1)}. Applying (4) and (5), we get

Dn ⪯ λ max{d(T yn−1, T yn), d(T xn−1, T xn)} = λDn−1,

where 0 ≤ λ < 1. Continuing in this fashion, we obtain

θ ⪯ Dn ⪯ λDn−1 ⪯ · · · ⪯ λn D0.

If we take D0 = θ, then (x0, y0) is a coupled fixed point of S. Suppose that D0 > θ and for n > m, we have

d(T xm, T xn) ⪯ d(T xm, T xm+1) + d(T xm+1, T xm+2) + · · · + d(T xn−1, T xn) (6)

and

d(T ym, T yn) ⪯ d(T ym, T ym+1) + d(T ym+1, T ym+2) + · · · + d(T yn−1, T yn). (7)

From (6) and (7), we get

max{d(T xm, T xn), d(T ym, T yn)} ⪯ max{d(T xm, T xm+1), d(T ym, T ym+1)} + · · ·
max{d(T xn−1, T xn), d(T yn−1, T yn)}

= Dm + Dm+1 + · · · + Dn−1

⪯ (λm + λm+1 + · · · + λn−1)D0

⪯
λm

1 − λ
D0.

Now applying (P1) and (P4), we have for every c ∈ int P, there exists a positive integer N such that

max{d(T xm, T xn), d(T ym, T yn)} ≪ c for every n > m > N which implies that {T xn} and {T yn} are Cauchy

sequences in X . By the completeness of X , we can find zx0
, zy0

∈ X such that

lim
n→∞

T Sn(x0, y0) = zx0
and lim

n→∞
T Sn(y0, x0) = zy0

. (8)

If T is subsequentially convergent, then Sn(x0, y0) and Sn(y0, x0) have convergent subsequences. Thus, there exist

wx0
, wy0

in X and sequences {xn j
} and {yn j

} such that

lim
j→∞

Sn j (x0, y0) = wx0
and lim

j→∞
Sn j (y0, x0) = wy0

.

Now, since T is continuous, we obtain

lim
j→∞

T Sn j (x0, y0) = T wx0
and lim

j→∞
T Sn j (y0, x0) = T wy0

. (9)

Hence, from (8) and (9), we have

T wx0
= zx0

, T wy0
= zy0

.
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On the other hand, using (3) we get

d(T S(wx0
, wy0

), T wx0
) ⪯ λ max{d(T wx0

, T xn j
), d(T wy0

, T yn j
)} + d(T xn j +1, T wx0

).

Applying Proposition 1.6, we obtain d(T S(wx0
, wy0

), T wx0
) = θ , that is, T S(wx0

, wy0
) = T wx0

. As T is one-to-one,

we have S(wx0
, wy0

) = wx0
. Similarly, S(wy0

, wx0
) = wy0

. Therefore, (wx0
, wy0

) is a coupled fixed point of S.

Suppose that (vx0
, vy0

) is another coupled fixed point of S, then

d(T wx0
, T vx0

) = d(T S(wx0
, wy0

), T F(vx0
, vy0

)) ⪯ λ max{d(T wx0
, T vx0

), d(T wy0
, T vy0

)}

and

d(T wy0
, T vy0

) = d(T S(wy0
, wx0

), T F(vy0
, vx0

)) ⪯ λ max{d(T wy0
, T vy0

), d(T wx0
, T vx0

)},

which implies that

max{d(T wy0
, T vy0

), d(T wx0
, T vx0

)} ≤ λ max{d(T wy0
, T vy0

), d(T wx0
, T vx0

)}

which yields

d(T wx0
, T vx0

) = d(T wy0
, T vy0

) = θ,

as λ < 1. Thus, T wx0
= T vx0

, T wy0
= T vy0

. Since T is one-to-one, we have (wx0
, wy0

) = (vx0
, vy0

). Further, if T is

sequentially convergent, by replacing n by n j , we obtain

lim
n→∞

Sn(x0, y0) = wx0
and lim

n→∞
Sn(y0, x0) = wy0

.

This completes the proof. □

Example 2.3. Let X = [0, 1], E = R with P = {x ∈ E : x ≥ 0} and define d(x, y) = |x − y|. Then (X, d) is

a cone metric space. Consider the mappings T : X → X defined by T x = x2

2
and S : X × X → X defined by

S(x, y) =
√

x8+y8

5
. Clearly, T is one-to-one, continuous and (3) holds for all x, y, u, v ∈ X and λ > 1

4
. Further, all

the conditions of Theorem 2.2 are satisfied. Therefore, S has a unique coupled fixed point (0, 0).

Theorem 2.4. Let (X, d) be a complete cone metric space, P be a solid cone with P ∪ (−P) = E and T : X → X

be a continuous, one-to-one mapping and S : X × X → X be a mapping such that

d(T S(x, y), T S(x̃, ỹ)) ⪯ λ max{d(T S(x, y), T x), d(T S(x̃, ỹ), T x̃)} (10)

for all x, y, x̃, ỹ ∈ X where 0 ≤ λ < 1. Then the conclusions of Theorem 2.2 hold.

Proof. The proof is similar to that of Theorem 2.2. □

Theorem 2.5. Let (X, d) be a complete cone metric space, P be a solid cone with P ∪ (−P) = E and T : X → X

be a continuous, one-to-one mapping and S : X × X → X be a mapping such that

d(T S(x, y), T S(x̃, ỹ)) ⪯ λ max{d(T S(x, y), T x̃), d(T S(x̃, ỹ), T x)} (11)

for all x, y, x̃, ỹ ∈ X where 0 ≤ λ < 1. Then the conclusions of Theorem 2.2 hold.

Proof. We omit the proof as it is immediate from Theorem 2.2. □

Remarks 2.6. Theorems 2.2, 2.4 and 2.5 generalize the following results:

(i) Theorems 3, 4 and 5 of Rahimi et al. [28].

(ii) Theorems 2.2, 2.5 and 2.6 of Sabetghadam et al. [37].

Remarks 2.7. Note that the main results of Shatanawi [39] can be proved in a total ordering cone P under the weaker

contractive condition of the type (3).
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Now we obtain the following corollaries as consequences of Theorems 2.2, 2.4 and 2.5.

Corollary 2.8. Let (X, d) be a complete cone metric space, P be a solid cone and T : X → X be a continuous,

one-to-one mapping and S : X × X → X be a mapping such that

d(T S(x, y), T S(x̃, ỹ)) ⪯ λ max

{

d(T x, T x̃), d(T y, T ỹ),

d(T x, T x̃) + d(T y, T ỹ)

2

}

for all x, y, x̃, ỹ ∈ X where 0 ≤ λ < 1. Then the conclusions of Theorem 2.2 hold.

Corollary 2.9. Let (X, d) be a complete cone metric space, P be a solid cone and T : X → X be a continuous,

one-to-one mapping and S : X × X → X be a mapping such that

d(T S(x, y), T S(x̃, ỹ)) ⪯ λ max

{

d(T S(x, y), T x), d(T S(x̃, ỹ), T x̃),

d(T S(x, y), T x) + d(T S(x̃, ỹ), T x̃)

2

}

for all x, y, x̃, ỹ ∈ X where 0 ≤ λ < 1. Then the conclusions of Theorem 2.2 hold.

Corollary 2.10. Let (X, d) be a complete cone metric space, P be a solid cone and T : X → X be a continuous,

one-to-one mapping and S : X × X → X be a mapping such that

d(T S(x, y), T S(x̃, ỹ)) ⪯ λ max

{

d(T S(x, y), T x̃), d(T S(x̃, ỹ), T x),

d(T S(x, y), T x̃) + d(T S(x̃, ỹ), T x)

2

}

for all x, y, x̃, ỹ ∈ X where 0 ≤ λ < 1. Then the conclusions of Theorem 2.2 hold.

Next, we explain a general approach to our previous results.

Lemma 2.11. Let (X, d) be a cone metric space. Then we have the following:

(i) (X × X, d1) is a cone metric space with

d1((x, y), (u, v)) = max{d(x, u), d(y, v)}.

In addition, (X, d) is complete if and only if (X × X, d1) is complete.

(ii) The mapping S : X × X → X has a coupled fixed point if and only if the mapping FS : X × X → X × X

defined by FS(x, y) = (S(x, y), S(y, x)) has a fixed point in X × X.

Proof.

(i) Notice that (i) and (ii) of Definition 1.3 are satisfied. Now it suffices to prove the triangle inequality. Since (X, d)

is a cone metric space, we obtain

d1((x, y), (u, v)) = max{d(x, u), d(y, v)}
⪯ max{d(x, s) + d(s, u), d(y, t) + d(t, v)}
⪯ max{d(x, s), d(y, t)} + max{d(s, u), d(t, v)}
= d1((x, y), (s, t)) + d1((s, t), (u, v))

for all (x, y), (u, v), (s, t) ∈ X × X. Hence, (X × X, d1) is a cone metric space. The completeness part can be

easily proved.

(ii) Suppose that (x, y) is a coupled fixed point of S, that is, S(x, y) = x and S(y, x) = y. Then

FS(x, y) = (S(x, y), S(y, x)) = (x, y)
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which shows that (x, y) ∈ X × X is a fixed point of FS. Conversely, assume that (x, y) ∈ X × X is a fixed point

of FS , then FS(x, y) = (x, y) which implies that S(x, y) = x and S(y, x) = y. □

Theorem 2.12. Let (X, d) be a complete cone metric space, P be a total ordering solid cone and T : X → X be a

continuous and one-to-one mapping. Moreover, let S : X × X → X be a mapping satisfying

max{d(T S(x, y), T S(x̃, ỹ)), d(T S(y, x), T S(ỹ, x̃))} ⪯ λ max
{

d(T x, T x̃), d(T y, T ỹ)
}

(12)

for all x, y, x̃, ỹ ∈ X, where 0 ≤ λ < 1. Then the conclusions of Theorem 2.2 hold.

Proof. Let us define T1 : X × X → X × X by T1(x, y) = (T x, T y). Note that T1 is continuous and one-to-one. Now,

applying Y = (x, y), V = (u, v) ∈ X × ×X and (ii) of Lemma 2.11, (12) becomes

d1(T1 FS(Y ), T1 FS(V )) ⪯ λd1(T1Y, T1V ).

It can be viewed that the conclusions follow by setting a1 = λ and a2 = a3 = a4 = a5 = 0 in Theorem 2.1 of [19] as

λ < 1. □

Remarks 2.13. The cone metric defined in Theorem 2.2 is the generalized form of the cone metric defined in [28].

Further, Theorem 2.12 generalizes Theorem 6 of Rahimi et al. [28].

Example 2.14. Let X = [0, 1] and E = C1
R

[0, 1] with d(x, y) = |x − y|et where et ∈ E on P = {ϕ ∈ E : ϕ ≥ 0}.
Then (X, d) is a cone metric space. Suppose that T : X → X defined by T x = x

2
and S : X × X → X defined by

S(x, y) = x−y

10
. Note that

d(T S(x, y), T S(u, v)) =
et

20
|(x − u) − (y − v)| (13)

and

d(T x, T u) =
et

2
|x − u| and d(T y, T v) =

et

2
|y − v|. (14)

From (13) and (14), it can be easily seen that the condition (12) holds for all x, y, u, v ∈ X and λ > 1
10

. Further, all

the conditions of Theorem 2.12 are satisfied. Hence, (0, 0) is a unique coupled fixed point of S.

3. An application to integral equations

The purpose of this section is to study the existence of solution of a system of nonlinear integral equations using

the results we obtained.

Let X = C
(

[0, T ],R
)

(the set of continuous functions defined on [0, T ] and taking values in R) be together with

the metric given by

d(x, y) = sup
t∈[0,T ]

|x(t) − y(t)|, ∀x, y ∈ X.

Consider the following system of integral equations, for t ∈ [0, T ], T > 0,

F(x, y)(t) =
∫ T

0

G(t, s) f (t, x(s), y(s))ds + g(t), (15)

F(y, x)(t) =
∫ T

0

G(t, s) f (t, y(s), x(s))ds + g(t). (16)

Theorem 3.1. Suppose that the following hold:

(i) G : [0, T ] × [0, T ] → R is a continuous function.

(ii) g ∈ C([0, T ],R).

(iii) f : [0, T ] × R × R → R is a continuous function.
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(iv) For all x, y, u, v ∈ X and t ∈ [0, T ], we have

| f (t, x(t), y(t)) − f (t, u(t), v(t))| ≤ λ max{|x(t) − u(t)|, |y(t) − v(t)|},

where 0 ≤ λ < 1.

(v)
∫ T

0
|G(t, s)| ≤ 1.

Then the system (15)–(16) has at least one solution in C
(

[0, T ],R
)

.

Proof. It is easy to see that (x, y) is a solution to (15)–(16) if and only if (x, y) is a coupled fixed point of F. Existence

of such a point follows from Theorem 2.2, by taking T as identity mapping. So we have to check that all the conditions

of Theorem 2.2 hold. For all x, y, u, v ∈ X and t ∈ [0, T ], we have

|F(x, y)(t) − F(u, v)(t)| ≤
∫ T

0

⏐

⏐G(t, s)
⏐

⏐

⏐

⏐ f (t, x(s), y(s)) − f (t, u(s), v(s))
⏐

⏐ds,

≤
∫ T

0

⏐

⏐G(t, s)
⏐

⏐λ max
{

|x(t) − u(t)|, |y(t) − v(t)|
}

ds,

≤
(∫ T

0

⏐

⏐G(t, s)
⏐

⏐ds

)

λ max
{

d(x, u), d(y, v)
}

,

which yields that

d(F(x, y), F(u, v)) ≤ λ max
{

d(x, u), d(y, v)
}

, ∀x, y, u, v ∈ X.

This shows that the contractive condition of Theorem 2.2 holds. Therefore, F has a unique coupled fixed point

(x̃, ỹ) ∈ C
(

[0, T ],R
)

× C
(

[0, T ],R
)

which is the unique solution of (15)–(16). □

4. An application to Markov process

Let Rn
+ = {x = (x1, x2, . . . , xn) : xi > 0, i = 1, 2, . . . , n} and ∆

2
n−1 = {z = (x, y) ∈ R

n
+ × R

n
+ :

∑n
i=1zi =

∑n
i=1(xi + yi ) = 1} denote the 2(n − 1) dimensional unit simplex. Note that any z ∈ ∆

2
n−1 may be regarded as a

probability over the 2n possible states. A random process in which one of the 2n states is realized in each period

t = 1, 2, . . . with the probability conditioned on the current realized state is called Markov Process. Let ai j denote the

conditional probability that state i is reached in succeeding period starting in state j . Then, given the prior probability

vector zt in period t , the posterior probability in period t + 1 is given by zt+1
i =

∑

j ai j z
t
j for each i = 1, 2, . . . , n.

To express this in matrix notation, we let zt denote a column vector. Then, zt+1 = Azt . Observe that the properties

of conditional probability require each ai j ≥ 0 and
∑n

i=1ai j = 1 for each j . If for any period t, zt+1 = zt then zt is

a stationary distribution of the Markov process. Thus, the problem of finding a stationary distribution is equivalent to

the fixed point problem Azt = zt .

For each i , let εi = min j ai j and define ε =
∑n

i=1εi .

Theorem 4.1. Under the assumption ai j > 0, a unique stationary distribution exists for the Markov process.

Proof. Let d : ∆2
n−1 × ∆

2
n−1 → R

2 be given by

d(s, t) = d((x, y), (u, v)) =
( n

∑

i=1

(

|xi − ui | + |yi − vi |
)

, α

n
∑

i=1

(

|xi − yi | + |yi − vi |
)

)

for all s, t ∈ ∆
2
n−1 and some α ≥ 0.

Note that d(s, t) ≥ (0, 0) for all s, t ∈ ∆
2
n−1 and d(s, t) = (0, 0) ⇒

(

∑n
i=1

(

|xi − ui | + |yi − vi |
)

, α
∑n

i=1

(

|xi −

ui |+ |yi − vi |
)

)

= (0, 0) ⇒
(

|xi − ui |+ |yi − vi |
)

= 0 for all i , which implies that s = t. Assume s = t then xi = ui
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and yi = vi for all i which implies that |xi − yi | = |yi − vi | = 0 ⇒
∑n

i=1

(

|xi − ui | + |yi − vi |
)

⇒ d(s, t) = (0, 0).

d(s, t) =
( n

∑

i=1

(

|xi − ui | + |yi − vi |
)

, α

n
∑

i=1

(

|xi − ui | + |yi − vi |
)

)

=
( n

∑

i=1

(

|ui − xi | + |vi − yi |
)

, α

n
∑

i=1

(

|ui − xi | + |vi − yi |
)

)

= d(t, s).

Now

d(s, t) =
( n

∑

i=1

(

|xi − ui | + |yi − vi |
)

, α

n
∑

i=1

(

|xi − ui | + |yi − vi |
)

)

=
( n

∑

i=1

(

|(xi − pi ) + (pi − ui )| + |(yi − qi ) + (qi − vi )|
)

,

α

n
∑

i=1

(

|(xi − pi ) + (pi − ui )| + |(yi − qi ) + (qi − vi )|
)

)

⪯
( n

∑

i=1

(

|(xi − pi )| + |(pi − ui )| + |(yi − qi )| + |(qi − vi )|
)

,

α

n
∑

i=1

(

|(xi − pi )| + |(pi − ui )| + |(yi − qi )| + |(qi − vi )|
)

)

=
( n

∑

i=1

(

|xi − pi | + |yi − qi |
)

, α

n
∑

i=1

(

|xi − pi | + |yi − qi |
)

)

+
( n

∑

i=1

(

|pi − ui | + |qi − vi |
)

, α

n
∑

i=1

(

|pi − ui | + |qi − vi |
)

)

= d(s, r ) + d(r, t) for s = (x, y), r = (p, q), t = (u, v) ∈ ∆
2
n−1.

Thus (∆2
n−1, d) is a cone metric space with P = {(x1, x2, . . . , xn) : xi ≥ 0, ∀i = 1, 2, . . . , n}. For z ∈ ∆n−1, let

t = Az. Then each βi =
∑n

j=1ai j z j ≥ 0. Further more, since each
∑n

j=1ai j = 1, we have

n
∑

i=1

βi =
n

∑

i=1

n
∑

j=1

ai j z j = βi =
n

∑

j=1

ai j

n
∑

j=1

(x j + y j ) =
n

∑

j=1

(x j + y j ) = 1

which shows that t ∈ ∆
2
n−1. Thus, we see that A : ∆2

n−1 → ∆
2
n−1. We shall show that A is a contraction. Let Ai

denote the i th row of A. Then for any (x, y), (u, v) ∈ ∆n−1, we have

d(A(x, y), A(u, v)) =
( n

∑

i=1

|
n

∑

j=1

(ai j (x j + y j ) − ai j (u j + v j ))|,

α

n
∑

i=1

|
n

∑

j=1

(ai j (x j + y j ) − ai j (u j + v j ))|
)

=
( n

∑

i=1

|
n

∑

j=1

(ai j − ϵi )((x j + y j ) − (u j + v j )) + ϵi ((x j + y j ) − (u j + v j ))|,

α

n
∑

i=1

|
n

∑

j=1

(ai j − ϵi )((x j + y j ) − (u j + v j )) + ϵi ((x j + y j ) − (u j + v j ))|
)
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≤
( n

∑

i=1

|
n

∑

j=1

(ai j − ϵi )((x j + y j ) − (u j + v j ))| + |
n

∑

j=1

ϵi ((x j + y j ) − (u j + v j ))|,

α

n
∑

i=1

|
n

∑

j=1

(ai j − ϵi )((x j + y j ) − (u j + v j ))| + |
n

∑

j=1

ϵi ((x j + y j ) − (u j + v j ))|
)

≤
( n

∑

i=1

n
∑

j=1

(ai j − ϵi )(|x j − u j | + |y j − v j |),

α

n
∑

i=1

n
∑

j=1

(ai j − ϵi )(|x j − u j | + |y j − v j |)
)

=
( n

∑

j=1

(|x j − u j | + |y j − v j |)
n

∑

i=1

(ai j − ϵi ),

α

n
∑

j=1

(|x j − u j | + |y j − v j |)
n

∑

i=1

(ai j − ϵi )

)

=
( n

∑

j=1

(|x j − u j | + |y j − v j |)(1 − ϵ), α

n
∑

j=1

(|x j − u j | + |y j − v j |)(1 − ϵ)

)

= (1 − ϵ)d((x, y), (u, v))

which establishes that A is a contraction mapping. Thus, Theorem 2.2 with T as identity mapping ensures a unique

stationary distribution for the Markov Process. Moreover, for any z∗ ∈ ∆n−1, the sequence ⟨Anz∗⟩ converges to the

unique stationary distribution. □
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