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Nullspace Property for Optimality of Minimum

Frame Angle Under Invertible Linear Operators
Pradip Sasmal, Prasad Theeda, Phanindra Jampana and Challa S Sastry

Abstract—Frames with a large minimum angle between any
two distinct frame vectors are desirable in many present day
applications. For a unit norm frame, the absolute value of the
cosine of the minimum frame angle is also known as coherence.
Two frames are equivalent if one can be obtained from the other
via left action of an invertible linear operator. Frame angles
can change under the action of a linear operator. Most of the
existing works solve different optimization problems to find an
optimal linear operator that maximizes the minimal frame angle
(in other words, minimizes the coherence). In the present work,
nevertheless, we consider the question: Is it always possible to find
an equivalent frame with smaller coherence for a given frame?.
In this paper, we derive properties of the initial unit norm frame
that can ensure an equivalent frame with strictly larger minimal
frame angle compared to the initial one. It turns out that the
nullspace property of a certain matrix obtained from the initial
frame can guarantee such an equivalent frame. We also present
the numerical results that support our theoretical claims.

Index Terms—Minimum frame angle, Coherence, Precondi-
tioning, Compressed Sensing, Convex Optimization, Semidefinite
Programming.

I. INTRODUCTION

Frame theory has applications in fields such as signal

processing, sparse representation theory and operator theory.

The coherence of a frame is defined as the largest absolute

normalized inner product between two distinct frame vectors.

A finite frame can be represented as a matrix of full row

rank. For a fixed number of elements, frames with the smallest

coherence are called Grassmannian frames [12]. Grassmanian

frames attaining the Welch bound are known as equiangular

tight frames (ETFs) [7]. Incoherent frames play a significant

role due to their ability in providing sparse representations.

The field of sparse representation theory, popularly known

as compressed sensing (CS) [5], [8], recovers a sparse signal

from a few of its linear measurements. Performance of several

sparse recovery algorithms such as basis pursuit (BP) and

orthogonal matching pursuit (OMP) depends on the coherence

of the underlying frame. Frames that satisfy the restricted

isometry property (RIP) [3][10] are known to allow for exact

recovery of sparse signals from a few of their linear mea-

surements. However, in general, it is computationally hard to
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verify the RIP of a given frame. In contrast, the coherence of

a frame, being easily computable, asserts RIP up to certain

order [6].

Two linear systems of equations provided by two frames are

equivalent if the underlying frames are equivalent. However,

the sparse recovery properties of equivalent frames can be sig-

nificantly different. Consequently, the performances of sparse

recovery algorithms can be different. In [15], the authors

presented that the RIP of an equivalent frame can be bad

compared to the initial frame, where as, in [11], the authors

derived that the RIP constant of an equivalent frame can be

improved. On the other hand, the coherence of two equivalent

frames can also be different.

Several methods exist in the literature [5][4][9][1] for find-

ing an equivalent frame with optimal coherence. Although

these methods work well in practice, they do not possess

theoretical guarantees for reduction in coherence. In this work,

however, we consider the question: “ For a given frame, is it

possible to find an equivalent frame with smaller coherence?.”

The main objective of the present work is to derive sufficient

conditions on a frame that can ensure an equivalent frame

possessing smaller coherence. We show that the existence of

such an equivalent frame can be ascertained by checking for

in-feasibility of a linear system of equations. The null space

property of a certain matrix obtained from the initial frame

ensures the existence of an equivalent frame with a strictly

smaller coherence. The main contributions of the paper are

summarized below:

• We derive the sufficient conditions that can guarantee ex-

istence of an equivalent frame having smaller coherence

compared to the initial frame.

• We present numerical results that validate our theoretical

analysis.

II. BASICS OF FRAME THEORY

A. Frame Theory

A family of vectors {φi}Mi=1 in R
m is called a frame [2]

for Rm, if there exist constants 0 < A ≤ B < ∞ such that

A ‖z‖2 ≤
M
∑

i=1

|〈z, φi〉|
2 ≤ B ‖z‖2 , ∀z ∈ R

m,

where A and B are called the lower and upper frame bounds

respectively. If A = B, then {φi}Mi=1 is an A−tight frame. If

there exists a constant d such that | 〈φi, φj〉 | = d, for 1 ≤ i <
j ≤ M, then {φi}Mi=1 is an equiangular frame. If there exits

a constant c such that ‖φi‖2 = c for all i = 1, 2, . . . , n, then

{φi}Mi=1 is an equal norm frame. If c = 1, then it is called
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a unit norm frame. If a frame is both unit norm and tight, it

is called a unit norm tight frame (UNTF). If a frame is both

UNTF and equiangular, it is called an equiangular tight frame

(ETF). The coherence of a frame Φ is given by

µ(Φ) = max
1≤ i,j≤ M, i6=j

| φT
i φj |

‖φi‖2‖φj‖2
.

Coherence based techniques are used in establishing the guar-

anteed recovery of sparse signals via Orthogonal Matching

Pursuit (OMP) or Basis Pursuit (BP), as summarized by the

following result [13].

Theorem II.1. An arbitrary k−sparse signal x can be

uniquely recovered using OMP and BP, provided

k <
1

2

(

1 +
1

µ(Φ)

)

. (1)

If G is a nonsingular matrix, then the system Gy = GΦx is

equivalent to y = Φx. The bound in (1) then suggests that if

µ(GΦ) < µ(Φ) both BP and OMP have better performance

guarantees when applied on the equivalent system Gy = GΦx.

III. MAIN RESULTS

In this section, we present the properties of an initial

frame that can ensure strict fall in coherence under the left

multiplication of an invertible linear operator. Our main results

concerning the sufficient conditions on the initial frames can

be given by the following theorem.

Theorem III.1. For a given unit norm frame Φm×M for R
m

with coherence µ(Φ), let φi denote the ith column of Φ and

suppose

D+
Im

:= {(i, j) : φT
i φj = µ(Φ)}

and,

D−
Im

:= {(i, j) : φT
i φj = −µ(Φ)}.

Consider the matrix Ψm2×(M+|D+
Im

|+|D−
Im

|) =

[(

vec(φiφ
T
i )

)M

i=1

(

vec(φ′
ij)

)

(i,j)∈D
+
Im

−

(

vec(φ′
ij)

)

(i,j)∈D
−
Im

]

,

where φ′
ij :=

φiφ
T
j +φjφ

T
i

2 , and the ‘vec’ operation on a matrix

of size m×M produces a vector of length mM by stacking

the columns one below the other vertically. If there does not

exist a vector r ∈ R
M+|D+

Im
|+|D−

Im
| in the nullspace of Ψ

satisfying
M
∑

k=1

rk = −µΦ

and
M+|D+

Im
|+|D−

Im
|

∑

k=M+1

rk = 1,

then there exits an invertible operator G such that µ(GΦ) <
µ(Φ).

Proof. Let S be the set of invertible operators G such that

GΦ is a unit norm frame for Rm, that is,

S = {G ∈ R
m×m : |G| 6= 0, ‖GΦi‖2 = 1, ∀ i = 1, 2, . . . ,M},

where |G| denotes the determinant of G. It can be noted that

S 6= ∅ as Im×m ∈ S, where Im×m is the identity matrix.

Therefore, in order to show that there exists an invertible

operator G ∈ S such that µGΦ < µΦ, it is enough to show that

Im×m is not an optimal solution for the following optimization

problem

C0 : arg min
G∈S

max
i6=j

|〈Gφi, Gφj〉|.

An equivalent formulation of C0 is

arg min
X

max
i6=j

|φT
i Xφj |

subject to φT
i Xφi = 1, ∀i = 1, . . . ,M.

X ≻ 0,

where X = GTG and X ≻ 0 denotes that X is positive

definite. The advantage of the equivalent formulation of C0 is

that the constraints are linear in X and the objective function

is convex in X. Since the constraint set

S0 = {X ≻ 0 : φT
i Xφi = 1, ∀i = 1, . . . ,M}

is convex but not closed, we consider

S1 = {X � 0 : φT
i Xφi = 1, ∀i = 1, . . . ,M},

where X � 0 implies that X is positive semi-definite with the

corresponding convex optimization problem,

C′
0 : arg min

X

max
i6=j

|φT
i Xφj |

subject to X ∈ S1,

Adding slack and surplus variables pij ≥ 0 and qij ≥ 0
respectively, one may obtain an equivalent formulation of C′

0:

C1 :

max
X,q,pij ,qij

(−q)

subject to φT
i Xφi = 1, ∀i = 1, . . . ,M ;

φT
i Xφj + pij − q = 0, ∀1 ≤ i < j ≤ M ;

− φT
i Xφj + qij − q = 0, ∀1 ≤ i < j ≤ M ;

X � 0

q ≥ 0

pij ≥ 0, ∀1 ≤ i < j ≤ M ;

qij ≥ 0, ∀1 ≤ i < j ≤ M.

Using M ′ = M(M−1)
2 , let 0 denote the zero matrix of

size m × m, 0
′ a square zero matrix of size M ′ × M ′,

P a diagonal matrix of size M ′ × M ′ consisting of pij as

diagonal elements, Q a diagonal matrix of size M ′ × M ′

containing qij as diagonal elements. Finally, let 1ij be the

diagonal matrix of size M ′ ×M ′ whose diagonal entries are

indexed by arranging the tuples (i, j) in lexicographic order for

1 ≤ i < j ≤ M so that it contains 1 at the (i, j)−th diagonal

element and zero elsewhere. For simplicity in notation, we

consider φ′
ij =

φiφ
T
j +φjφ

T
i

2 and define the following block

matrices:

F0 =









0 0 0 0
0 0

′ 0 0
0 0 0

′ 0
0 0 0 1









, Fii =









φiφ
T
i 0 0 0

0 0
′ 0 0

0 0 0
′ 0

0 0 0 0









,
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Fij =









φ′
ij 0 0 0
0 1ij 0 0
0 0 0

′ 0
0 0 0 −1









, Y =









X 0 0 0
0 P 0 0
0 0 Q 0
0 0 0 q









,

Fji =









−φ′
ij 0 0 0

0 0
′ 0 0

0 0 1ij 0
0 0 0 −1









.

It is easy to check that, for 1 ≤ i < j ≤ M , Fii, Fij , Fji

and F0 are symmetric. Using these matrices, we reformulate

C1 in a standard Semi-definite Programming (SDP) [14] form

as

SDPC1 :

max
Y

− Tr(F0Y )

subject to Tr(FiiY ) = 1, ∀ i = 1, . . . ,M ;

Tr(FijY ) = 0, ∀ 1 ≤ i < j ≤ M ;

Tr(FjiY ) = 0, ∀ 1 ≤ i < j ≤ M,

Y � 0,

where Tr(A) represents trace of the matrix A and Y � 0
implies that Y is positive semi-definite, that is, ζTY ζ ≥ 0 for

all ζ ∈ R
M2−M+m+1. The dual of SDPC1 is given by

SDPDC1 :

min
z={zij}M

i,j=1

cT z

subject to F0 +

M
∑

i=1

ziiFii +

M
∑

i,j=1,i<j

zijFij+

M
∑

i,j=1,i<j

zjiFji � 0
′′,

where 0′′ is a square zero matrix of size M ′′ = M2−M+m+
1 and c = {ci}M

2

i=1 ∈ R
M2

, where ci is 1 for i = 1, 2, . . . ,M
and 0 for i = M + 1, . . . ,M2.

It is easy to check that, if X is the identity matrix, pij =
1 − φT

i φj , qij = 1 + φT
i φj and q = 1, then Y becomes a

strict feasible solution of SDPC1 . Similarly, one can verify

that with zii = 1 and zij = zji = 1
M2 , Z becomes a strict

feasible solution of SDPDC1 . Since both primal and dual

have strict feasible solutions, by strong duality (Theorem 3.1 in

[14]), optimal values of primal and dual optimization problems

coincide with each other. Consequently, the duality gap is zero

for any optimal pair (Y ∗, Z∗), where Y ∗ is an optimal solution

for SDPC1 and Z∗ is an optimal solution for SDPDC1 . The

duality gap being zero implies that 0 = CT
M ′′Z∗+Tr(F0Y ) =

∑M

i=1 z
∗
ii + q∗ which implies further that q∗ = −

∑M

i=1 z
∗
ii.

The standard optimality condition (Equation (33) in [14])

concerning the primal and dual solutions can be written as

Tr(FiiY
∗) = 1, ∀ i = 1, . . . ,M ;

Tr(FijY
∗) = 0, ∀ 1 ≤ i < j ≤ M ;

Tr(FjiY
∗) = 0, ∀ 1 ≤ i < j ≤ M,

Y � 0.

and

Y ∗



F0 +

M
∑

i=1

z∗iiFii +

M
∑

i,j=1,i<j

z∗ijFij +

M
∑

i,j=1,i<j

z∗jiFji





= 0
′′,

(c∗)T z∗ = q∗.

The above condition results in the following equations:

(i) Tr

(

X∗(φiφ
T
i )

)

= 1, ∀ i = 1, . . . ,M

(ii) Tr(X∗φ′
ij) + p∗ij − q∗ = 0, ∀ 1 ≤ i < j ≤ M

(iii) Tr(−X∗φ′
ij) + q∗ij − q∗ = 0, ∀ 1 ≤ i < j ≤ M

(iv) X∗

(

∑M

i=1 z
∗
iiφiφ

T
i +

∑M

i,j=1,i<j(z
∗
ij − z∗ji)φ

′
ij

)

= 0

(v) z∗ijp
∗
ij = 0

(vi) z∗jiq
∗
ij = 0

(vii) q∗
(

1−
∑M

i,j=1,i<j(z
∗
ij + z∗ji)

)

= 0

(viii) −
∑M

i=1 z
∗
ii = q∗.

If X∗ is assumed to be positive definite, then the fourth

equality above reduces to

M
∑

i=1

z∗iiφiφ
T
i +

M
∑

i,j=1,i<j

(z∗ij − z∗ji)φ
′
ij = 0 (2)

For a positive semi-definite matrix X = GTG, let D+(X, q)
and D−(X, q) be the sets of tuples of indices for which the

corresponding entry of ΦTXΦ (equivalently the inner-product

between two corresponding columns of GΦ) is equal to q and

−q respectively, that is,

D+(X, q) = {(i, j) : φT
i Xφj = q}

and

D−(X, q) = {(i, j) : φT
i Xφj = −q}.

It is clear that

p∗ij = 0 if and only if (i, j) ∈ D+(X∗, q∗)

and

q∗ij = 0, if and only if (i, j) ∈ D−(X∗, q∗).

From the definition of D+(X∗, q∗) and D−(X∗, q∗), it fol-

lows that

z∗ij = 0, if (i, j) /∈ D+(X∗, q∗) (3)

and

z∗ji = 0, if (i, j) /∈ D−(X∗, q∗). (4)

Since q∗ > 0,

1 =

M
∑

i,j=1,i<j

(z∗ij + z∗ji)

=
∑

(i,j)∈D+(X∗,q∗)

z∗ij +
∑

(i,j)∈D−(X∗,q∗)

z∗ji.

(5)

Therefore, a positive definite matrix X∗ is optimal if and

only if (2), (3), (4), (5) and −
∑M

i=1 z
∗
ii = q∗ are satisfied. In

other words if there exist z∗ satisfying the above equations

then X∗ is optimal. Hence, if X∗ = Im×m is not an optimal
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solution there do not exist scalars {z̃ij}Mi,j=1 satisfying the

following conditions

1) z̃ij = 0 for (i, j) /∈ D+(Im, µΦ),
2) z̃ji = 0 for (i, j) /∈ D−(Im, µΦ),

3)
∑M

i,j=1,i<j(z̃ij + z̃ji) = 1,

4)
∑M

i=1 z̃iiφiφ
T
i +

∑M

i,j=1,i<j(z̃ij − z̃ji)φ
′
ij = 0.

5) −
∑M

i=1 z̃ii = µ(Φ)
The above conditions can be written as a linear system of

equations Ψ̃z̃ = y, where Ψ̃(m2+2)×(M+|D+
Im

|+|D−
Im

|) =



















(

vec(φiφ
T
i

)

)

M

i=1

(

vec(φ′
ij

)

)

(i,j)∈D
+
Im

−

(

vec(φ′
ij

)

)

(i,j)∈D
−
Im

01×M 1
1×|D

+
Im

|
1
1×|D

−
Im

|

11×M 0
1×|D

+
Im

|
0
1×|D

−
Im

|



















,

z̃(M+|D+
Im

|+|D−
Im

|)×1 =

[(z̃ii)
M
i=1 (z̃ij)(i,j)∈D

+
Im

(z̃ji)(i,j)∈D
−
Im

]T ,

and y(m2+2)×1 = [0m2×1 11×1 − µ(Φ)]T .

Therefore, the infeasiblity of the linear system Ψ̃z̃ = y
guarantees the existence of an operator Ĝ such that ĜΦ is a

unit norm frame and µ(ĜΦ) < µ(Φ). Despite this, there is no

guarantee that Ĝ is positive definite. Nevertheless, there exist

nonsingular matrices Gn so that Gn → Ĝ in the Frobenious

norm. Since coherence µ(GΦ) is a continuous function of G
in the Frobenious norm, we have µ(GnΦ) → µ(ĜΦ). This

ensures that there exists a non-singular matrix G for which

µ(GΦ) < µ(Φ).

The following corollary follows from the main theo-

rem III.1.

Corollary III.2. If Ψ has a trivial nullspace, then there exits

an invertible operator Ĝ such that µ(ĜΦ) < µ(Φ).

Proof. The proof follows from the fact that if Ψ has a trivial

nullspace then the two equations given in Theorem III.1 can

not be satisfied.

So far, we have discussed our theoretical findings. In the

next section, we present numerical results in support of our

analytical results.

IV. NUMERICAL OBSERVATIONS

In this section, we present the effect of coherence on random

Gaussian matrices by invertable linear operators G, obtained

by solving the C′
0 problem (See Section III). To begin with,

we considered random Gaussian matrices Φ ∈ R
m×M for

different row sizes m along with varying value for the column

size M.
As examples, we fixed row sizes as 10 and 20, while varying

the column sizes, and generated the Tables I and II. From

Table I, for M ≤ 50, it may be noted that the rank of

the corresponding matrix Ψ (as defined in Theorem III.1)

and M + |D+
Im

| + |D−
Im

|, the column size of Ψ, are the

same. As a result, Ψ has trivial nullspace. Consequently, from

Corollary III.2, one can expect a strict fall in coherence. In

Table I, we observe the similar behaviour on the coherence as

predicted by Corollary III.2, that is, for M ≤ 50, µ(GΦ) is

strictly smaller than µ(Φ). For M > 50, M + |D+
Im

|+ |D−
Im

|

becomes strictly greater than rank of Ψ and we observe from

Table I that the coherence remains unchanged.

TABLE I: Solving C′
0 for Gaussian random matrices with row

size 10 and column size incremented by 10 starting with 20.

m×M µ(Φ) M + |D+

Im
|+ |D−

Im
| rank (Ψ) µ(GΦ)

10× 20 0.7225 22 22 0.4968

10× 30 0.7468 32 32 0.6234

10× 40 0.8738 42 42 0.7541

10× 50 0.8509 52 52 0.8261

10× 60 0.8765 62 56 0.8765

10× 70 0.8626 72 56 0.8626

For a given frame Φ, the authors in [9], proposed a method

to find an invertible operator G for which the associated gram

matrix of the transformed frame becomes close to the identity

matrix. In other words, the transformed frame becomes close

to a unit norm frame and has small coherence. For the frames

obtained via solving optimization problem described in [9],

we observe similar behaviour on the coherence provided in

Table II as predicted by Corollary III.2. Therefore, we can

justify the fall in coherence as described in [9] via proposed

null space property.

TABLE II: Applying optimization method in [9] on Gaussian

random matrices with row size 300 and column size incre-

mented by 300 starting with 610.

m×M µ(Φ) M + |D+

Im
|+ |D−

Im
| rank( Ψ) µ(GΦ)

300 × 610 0.2562 612 612 0.1985

300 × 810 0.2742 812 812 0.2219

300× 1010 0.2898 1012 1012 0.2368

300× 1210 0.2778 1212 1212 0.2648

300× 1410 0.2759 1412 1412 0.2536

300× 1510 0.2731 1512 1512 0.2649

V. CONCLUDING REMARKS

In the present work, we derived properties of an initial frame

that ensure strict fall in coherence via left multiplication by

an invertible linear operator. It turns out that the infeasibilty

of a linear system of equations obtained from the initial frame

results in an equivalent frame with a larger minimum frame

angle. In particular, if a certain matrix obtained from initial

frame possesses trivial nullspace, then there exists an equiv-

alent frame with strictly smaller coherence. The numerical

results also support our theoretical analysis.
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