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Abstract. The numerical simulation of an electric machine (E-machine) used for hybrid 

electric vehicle, electric vehicle, and plug-in electric vehicle is carried out to explore the 

impact of distinct kinds of coolants such as water and distinct nanofluids on the bracket 

housing cooling performance. Nanofluids are stable nanofiber and fluid particle suspensions. 

Recent research shows that these nanofluids have enhanced thermal conductivity and 

convection coefficients, are superior to pure fluid. The aim is to understand the heat transfer 

enhancement brought by different nanofluids. The present study suggests that the use of Ga-

In-Sn (Gallium, Indium, and tin) as the coolant leads to higher efficiency of heat transfer 

compared to other nanofluids agents and base fluid. Results indicate increased heat transfer in 

the cooling of the electrical machine as shown by a significant reduction of ~ 30% in the 

operating temperature when using nanofluids compared to pure fluid implementation. With 

superior thermal characteristics and countless advantages, nanofluids are promising to meet 

the cooling requirements of the machine by a reduction in thermal resistance and maximum 

temperature.  

Key words: Electrical machine· Nanofluids ·Numerical Simulation ·  Heat                           

Transfer Enhancement 

 
 
1. Introduction 

The thermal expansion or contraction on the E-machines are created by the dissipated losses of the 

system, which will heat individual machine parts such as end windings, rotor assembly, rotor 

magnets, and need to be cooled. The E-machines thermally protected by reducing local losses, i.e. 

induced eddy-current losses in the electrical conduction fields, iron cores, magnets, maintaining 

sleeves and/or using an efficient cooling system. Depending on the implementation, it is possible to 

use cooling systems with natural convection (completely enclosed non-ventilated), forced convection 

(air or fluid cooling) [1] or radiation cooling (for E-machine working in a vacuum). An E-machine's 

conjugate heat transfer analysis is generally considered a more complicated one in terms of the 

construction and precision of a device.  

   Heat is extracted through conduction, convection (natural and forced) and radiation. Thermal 

management of electrical devices is a three-dimensional issue that needs complicated heat extraction 

phenomena to be resolved; e.g. heat transfer through composite parts such as wound slot, the 

temperature drop across component interfaces and flow within end caps [2]. This research provides 

alternatives for effective heat extraction and thermal management of the electrical machines used in 

electric hybrid vehicles, electric vehicles and electric vehicle plug-in. 

   Numerous experiments were carried out on motor cooling using different methods of cooling. 

Matsuzaki et al [3], for example, used liquid nitrogen to improve motor cooling. For electric motors 

Davin et al. [4] used lubricating oil as a coolant. They investigated patterns of oil injection to increase 

the cooling capacity. Lim and Kim [5] have suggested an in-wheel motor oil spray cooling system in 

electric vehicles using a hollow shaft. King et al. [6] used water direction to cool the permanent 

synchronous high-speed magnet (PMSM) motor. For brushless DC motors, Kim et al. [7] used air-

cooling by increasing cooling capacity with optimized coolant route optimization. Huang et al. [8] 

used oil-cooling system to lower traction machine operating temperature. Mudawar et al., meanwhile, 

https://scholar.google.com/citations?user=gmoQV_8AAAAJ&hl=en&oi=ao
https://en.wikipedia.org/wiki/Gallium
https://en.wikipedia.org/wiki/Indium
https://en.wikipedia.org/wiki/Tin
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used spray cooling for a feasible thermal control approach for electronic hybrid vehicles [9]. Karim 

and Yus[10] developed effective method for water cooling electric motors. Zhang et al. [11] 

developed a 3D finite element model with ANSYS for the controlled temperature field of an air-

cooled and water-cooled motor.  

   Based on the literature survey, it is observed that various methods of heat removal have been 

adopted in the thermal management of E-machines. However, none has considered different 

nanofluids as a coolant in the thermal management system of E-machines yet. Therefore, this paper 

aims to study the heat transfer aspects using nanofluids as a coolant flowing in the channel for the 

electric vehicle motor cooling module to improve the effective heat transfer areas between liquid-

coolant and the bracket surface.  

 

2. Boundary Conditions & Simulation Method 
The velocity is zero at all limits for hydraulic boundary condition except the inlet and outlet of the 

channel. At the inlet, a uniform velocity is applied. The velocity is obtained from the Reynolds 

number. The Reynolds number ranges from 90 to 4500 for all coolants including water. Based on the 

Reynolds number the flow is laminar& turbulent. In calculation of the Reynolds number, the channel 

inlet diameter and coolant properties are used as follows 

dhρ.
Re.μ

=u

                    (1) 

Where dth = hydraulic diameter. The flow is fully developed at the channel inlet as shown in the 

equation (2). 

0=
dx

du

,
0=

dy

dv

, 
0=

dz

dw

                                                (2) 

For thermal condition, constant heat supply is assumed at the stator coil stack. 

dz

dT
kq                                                                            (3) 

   Adiabatic boundary conditions apply to the entire solid region's bracket except the coupled wall.  In 

the cooling passage, the flow is also presumed to be thermally fully developed as the change in 

temperature gradient along the channel's flow path is generally small. Therefore, the thermal boundary 

condition will not introduce large numerical error. 

0=2dx

T2d

                                                                           (4) 

 CFD simulation method is given in figure 1. 

To solve fluid problem physics using CFD the problem physics can be represented by NavierStokes  

equation, it should be converted into discrete form. Simulation equations are solved through 

computers. These simulation results are compared and analysed with real problem. 
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Figure 1. Schematic flow chart 

 

3. CONVENTIONAL COOLANTS 

Water is the most widely used coolant because when compared to other nanofluids it has a higher 

specific heat, thermal conductivity and reduced viscosity. However, due to its high freezing point and 

distribution after freezing, water is not used in closed loop systems. The frequently used standard 

cooling agents primarily categorized into two groups: (I) dielectric and (II) non-dielectric [12] liquids. 

 

3.1 Dielectric coolants 
This group of coolants contains several kinds of liquids, which are fluids based on aromatics, 

aliphatics, silicones, and fluorocarbons. Alkylated aromatics most frequently used as coolants because 

of cheaper and better results. Some aromatic coolants include benzene, diethyl benzene (DEB), 

toluene, and xylene. 

   Paraffinic and iso-paraffinic-type aliphatic hydrocarbons (including mineral oils) used in a variety 

of direct electronics cooling. In some application for cooling electronics, aliphatic poly alpha olefins 

(PAO)-based liquids are also used. Another common form of coolant known as silicone oils (e.g. 

Syltherm XLT) are liquids based on silicones. The primary benefit of this coolant class is its 

characteristics such as viscosity and freezing point governed by altering the length of the chain. 

   Fluorocarbon-based fluid that is widely known in the industry such as FC-77, FC-40, FC-72, and 

FC-87. These are non-flammable, inert, stable, non-reactive liquids. For cooling applications, FC-72 

and FC-77 are most frequently used. 

 

3.2 Non-dielectric coolants 

Non-dielectric liquid coolants used frequently for cooling because of their superior properties 

compared to their dielectric variants. They are usually watery arrangements and thus present enhanced 

thermal conductivity and heat capacity, as well as relatively low viscosity. Ethylene glycol (EG), 

Water (W), and these two mixtures (EG / W) are commonly utilized as coolants for numerous gadgets. 

Other common non-dielectric coolants incorporate NaCl solution, W / ethanol propylene glycol (PG), 

water / methanol, potassium formate (KFO) solution, and liquid metals (e.g., Ga-In-Sn) Table 1. The 

coolants characteristics and properties data can also found in the literature [13-16].  

The nanofluids concentration is in the range of 10
9 
to 10

15
. 
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Table 1: Properties of various common liquids coolant [12] [13] 

 

 

4. Mesh Independent Study 

The E-Machine was analysed for a flow rate of 3l / min to determine the accuracy of the CFD solution 

and to keep the computational costs low. The grid convergence study carried out by developing four 

different meshes with two fluids water, Ethylene glycol: with the E-Machine's coarse, medium, fine 

and very fine grid to predict the maximum stator temperature on standardized mesh cells to determine 

how the mesh quality affects CFD simulations results. As shown in Table 2, M1 contributes to a 

sensible forecast of the stator temperature, whereas M3, M4 is slightly higher than M2, M1. M4 is 

better to consider the effect of all nanofluids and used for numerical analysis. Since 5 million cells is 

fine for water, to be safe, all other fluids evaluated at 7 million cells. 

 

Table 2. Grid size, Computation time and temperature 

 

Grid resolution Coarse 

M1 

Medium 

M2 

Fine M3 Very Fine 

M4 

Cell Count(Million) 1 3 5 7 

 

CFD 

Simulation 

time 

Water(W) 32 min 
1 hrs 20 

min 

2 hr 30 

min 
3 hr 20 min 

Ethylene 

glycol(EG) 
28 min 

1 hr 10 

min 

2 hr 25 

min 
3 hr 10 min 

 

Maximum 
Water(W) 59.955 59.206 59.271 58.965 

 

Coolants 
Thermal conductivity 

(Wm-1K-1) 

Specific heat 

(KJkg-1k-1) 

Viscosity 

(mPas) 

Density  

(kgm-3) 

Water(W) 0.613 4.18 0.89 1000 

Ethylene glycol(EG) 0.26 2.84 19.83 1109 

W/EG (50/50/v/v) 0.36 3.285 3.8 1087 

W/PG (50/50/v/v) 0.36 3.4 6.4 1062 

W/methanol(60/40/w/w) 0.4 3.56 2 935 

Aromatic(DEB) 0.14 1.7 1 860 

Aliphatic(PAO) 0.137 2.15 9 770 

Silicone(Syltherm XLT) 0.11 1.6 1.4 850 

Fluorocarbon(FC-72) 0.054 1.09 0.65 1680 

Fluorocarbon(FC-77) 0.06 1.17 1.13 1800 

W/KFO(60/40/w/w) 0.53 3.2 2.2 1250 

Dynalene HC-30 0.52 3.1 2.5 1275 

Dynalene HC-50 0.505 2.7 3.2 1340 

Ga-In-Sn 39 0.365 2.2 6363 
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Stator 

temperature 

(°C) 

Ethylene 

glycol(EG) 
97.406 96.810 96.320 96.102 

 

5. Numerical Method Validation 

The reported research available in literature for the E-machine bracket cooling is very limited. In 

order to validate the numerical model for the fluid flow and heat transfer, a very similar experimental 

work carried out by Lee [17] is selected. The experimental layout consists of the nozzle and jet flow 

metering system, the heated impingement plate, and the digital image processing system. The wall 

temperature from stagnation region were measured at dimensionless nozzle to plate spacing of L/D=2. 

For the CFD simulations, an impingement surface heated uniformly with a constant heat flux and the 

jet-to-nozzle as shown in figure 2 considered. 

 

Figure 2. Geometry of impingement surface 

  

   The numerical models selected for the fluid flow and heat transfer investigated using Ansys Fluent 

to validate results obtained from the software. Results obtained show good agreement with the 

published paper by Lee [17].  A superposed plot, figure 3, of wall temperature along the heated 

surface shows a maximum difference of 11% between the published work and the present work for Re 

= 20000 and heat flux q=100 W m
-2

. The values of wall temperature show good agreement with 

experimental data from the stagnation points along the distance R. The maximum deviations in the 

wall temperature observed from R/D = 3.5-4. Therefore, the numerical model adopted for the E-

machine CFD simulations is satisfactory. 
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Figure 3. Variation of the wall temperature for L/D=2

6. Thermal Analysis 
E-Machine's thermal model is solved with commercial Ansys Fluent software. The computational 

domain modelling is performed by Ansys meshing, the design of fluid passage and brackets in 3-

D design. Model detail involves the specification of nanofluids (thermal conductivity k, specific heat 

cp, viscosity µ, density ρ, etc.) as shown in Table 1. As operating parameters corresponding to the real 

world-working situation at idle rpm, a flow rate of 3L / min, stator loss (corresponding to quarter 

model) selected as in Table 3. 

 

Table 3: Simulation Input Data 

 

Inlet mass flow (L/min)  3 

Inlet temperature (K)
  

298.15 

Convergence criteria 10
-4

 

Wall function Enhanced Treatment 

 

   A forced liquid cooling system motor generator is implemented and analysed. Figure 4, 5 shows the 

E-Machine's 3D quarter model. The model comprises of a simplified stator stack, front bracket, rear 

bracket and passage of fluids. 

   Some assumptions are made as follows to simplify the numerical calculation: 

1. Both liquid flow and thermal transfer are in a steady state. 

2. The fluid is incompressible in a single phase. 

3. All surfaces of the brackets exposed to the surrounding area are insulated except the bracket and 

stator contact wall where constant heat source boundary conditions simulate heat generation. 

4. Uniform flow of heat from the wall. 

5. Uniform inlet velocity. 

6. Due to forced convection and reduced working temperature, negligible radiation thermal 

transfer. 

7. Flow is fully developed and the inlet, outlet regions are extended for 5, 7 times inlet hydraulic 

diameter dth. [18]   

8. Fluid properties are not depending on temperature [19]. 

   The unstructured mesh used shown in Figure 6 and it includes about 7 million cells of the 

tetrahedral layer with prism. A dual adaptation refinement algorithm, Realizable k- ε model has been 
implemented to solve the thermal and flow problem.  
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Figure 4. Geometry of E-machine 

 

 

 

Figure 5. 3D Quarter model of E-Machine 
 

 
Figure 6. Mesh model of E-Machine 

 

7. Results and Discussion 
The findings are provided with heat conduction and forced convection being taken into consideration. 

The numerical solutions evaluated by the mathematical model integration show the heat transfer 

behaviour around the brackets. Figures 7 to 13 show the graphs & temperature field of the front, rear 

bracket & stator stack respectively i.e. the fluids within the fluid passage and the temperature field. 
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The fluid accumulates heat from the bracket's hot surface during the flow. At the outlet, some 

nanofluids have a temperature close to the inlet temperature, especially at the middle. This can be 

explained by the fact that the fluids in the centre of the channel have a greater velocity than the liquids 

near the brackets. In other words, as a focused jet, the fluids that flow through the cooling passage. As 

the flow pass between the brackets, it loses its efficiency and as time advances, the housing becomes 

progressively hotter. 
 

7.1 Temperature and thermal resistance of nanofluids 

Other surfaces are treated as a wall; the working fluid that entered the channel was heated 

because of the continuous heat source applied to the stator stack. From figure 7,8 & 9 it can be 

noticed that the Aliphatic nanofluid has the highest average temperature at the front bracket, rear 

bracket wall, stack which is around 93°C, 85°C & 113°C. Ga-In-Sn had been used in comparison 

with other nanofluids and it can be seen that when Ga-In-Sn was used, the surface temperature 

was lower than when other nanofluids were used as the working fluid. When using Ga-In-Sn as 

the working fluid, it indicates a temperature decrease of approximately~30% of temperature 

reduction compared to pure water. Also from the contour, the temperature distribution along the 

surface of the bracket is uniform it means by using Ga-In-Sn the cooling is uniform the thermal 

runway limited. However, in case of other nanofluids the temperature gradient along the surface 

is high. From figure 7 the average temperature of nanofluids such as Ga-In-Sn, Dynalene HC-30 

and Dynalene HC-50 are in the range of 20-40 °C for the front bracket. For the remaining 

nanofluids the average temperature of front bracket is in the range of 40-100 °C. 

 

 
 

Figure 7. Influence of nanofluids on average temperature of front bracket  
 

   From figure 8 the average temperature of nanofluids such as W/KFO (60/40 w/w), W/methanol 

(60/40 w/w), W/EG (50/50 v/v, W/PG (50/50 v/v), Dynalene HC-30 and Dynalene HC-50 are in 

the range of 30-45 °C for the rear bracket. For the remaining nanofluids the average temperature 

of rear bracket is in the range of 45-90 °C. From figure 9, the stator stack temperature is below 

40 °C for Ga-In-Sn. 
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Figure 8. Influence of nanofluids on average temperature of rear bracket 
 
 

 
 

Figure 9. Influence of nanofluids on average temperature of stator stack 
 

   From figure 10, the thermal resistance of 0.24°CW-1 observed for aliphatic nanofluid, the heat 

transfer from brackets to fluid is minimal when compared with other nanofluids. The Ga-In-Sn 

found to have good heat transfer enhancement with minimal thermal resistance of 0.028°CW-1. 

For the remaining nanofluids from water to dynalene the thermal resistance falls in the range 

0.050-0.24 °CW
-1

. 
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Figure 10. Influence of nanofluids on thermal resistance 
 

   Figure 11, 12 & 13 also demonstrate the growth of the surface temperature profile for different 

nanofluids in the same typical setup between the two brackets. The profiles shown demonstrates 

the fluid's gradual temperature rise as the fluid flows towards the channel's periphery. It is 

evident that there is no uniform temperature distribution in the brackets. 

 

   Overall, significant rises in overall heat transfer rates of 589.6W was found with the use of Ga-

In-Sn nanoparticles. In all cases, the front bracket observed to have higher temperature when 

compared with rear bracket. For the remaining coolant nanofluids, the temperature of the housing 

bracket falls in the range of 23-85 °C. 

 

   In the first case (a) the temperature distribution along the surface is non-uniform on both the 

front and rear bracket. High temperature gradient of 30 °C observed near the inlet region of the 

stator stack, after the inlet region uniform temperature distribution is observed. Similar thermal 

behaviour observed for all nanofluids from (b)-(o) with thermal gradient from 10- 40 °C for the 

both the front & rear brackets. Only for Ga-In-Sn the temperature distributions is uniform and 

have reduced thermal runaway when compared with other nanofluids and water.
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Figure 11. Temperature field of front bracket 
 

Figure 12. Temperature field of Rear bracket 
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Figure 13. Temperature field of Stator Stack

8. Pressure drop of nanofluids 
To apply the coolants for practical application, it is necessary to study their flow characteristics 

in addition to the heat transfer performance of the coolants. Adding nanoparticles to a base liquid 

can increase pressure loss due to increased viscosity and therefore increase the necessary 

pumping energy for moving of the nanofluids in the fluid passage. Ethylene glycol observed to 

have maximum pressure drop of 33 mbar when compared with other coolants which is higher 

than the limit of 25 mbar. Aromatic coolants observed to have minimum pressure drop of 1.6 

mbar. For the remaining coolants, pressure drop falls in the range of 10-2.5 mbar. As shown in 

figure 14, the pressure drops of the coolants increase with increasing viscosity of fluid. This 

means that using the nanofluids at higher viscosity may create high-pressure drop. 
 

 
 

Figure 14. Influence of nanofluids on pressure drop 
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9. Conclusion 
In conjugate heat transfer condition, a 3-D quarter electric motor model evaluated numerically to 

explore fluid flow and heat transfer efficiency through distinct kinds of operating fluids, i.e. 

water and multiple kinds of nanofluids. The effectiveness of E-machines measured with respect 

to temperature profile, pressure drop, and thermal resistance. 

 

   The highest temperature encountered at the front bracket wall where the constant heat source 

applied to the stator stack. Ga-In-Sn provided 30% temperature reduction compared to other 

nanofluids. Increased thermal conductivity reduced the temperature at the heated surface of 

brackets. The outcome of the research work show that the enhanced heat transfer obtained by 

Ga-In-Sn, which has a higher thermal conductivity. Indeed, the findings calculated showed that 

Ga-In-Sn's heat transfer effectiveness is better than pure water performance. In this condition, it 

suggested that Ga-In-Sn improve general heat transfer. 
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