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Abstract. Incompressible unsteady laminar flow of a micropolar fluid in a lid driven square 

cavity has been examined numerically with finite difference scheme .In this paper, we verify 

the code validation of  Newtonian incompressible fluid (K=0) with standard bench mark 

problem  in the literature and then proceed the present computation. The vorticity-stream 

function formulation of Navier-Stokes equations and angular momentum equation is solved by 

the Euler’s explicit method. The effect of various values of Reynolds number (Re) and vortex 

viscosity parameter (K) of the flow characteristics is studied and discussed through several 

graphs. 

 

1. Introduction 

Fluid flows within or over the cavities has been several applications in the field of engineering. An 

incompressible fluid flow governing equations of cavity solvers increase the interest to study the 

benchmark driven flow problems in a cavity with moving top lid. Micropolar fluid is a major subject 

of theory of microphoric fluid. The micropolar fluid model is introduced by C.A Eringen [1]. 

Increased curiosity in mathematical modelling and numerical analysis of micro flows because it is an 

active research topic. There are several practical applications of micropolar fluid flows that include, 

Biofluids, animal blood, liquid crystals, colloidal suspensions, polymeric suspensions and so more. 

Many researchers studied lid driven cavity flow problem through numerically and experimentally [2-

10] and their computed results are validated with ghia et al. [11]. Comparative study conducted by 

Hogan et al. [12] examined an idealized stenosis with blood flow. They are noticed that velocities 

profiles and flow patterns are similar in micropolar and the classical continuum theories. Sherief et al. 

[13] carried out perturbation technique on based investigation of creeping motion of micropolar fluid 

between two corrugated plates. Hari et al. [14] have studied natural convective incompressible 

micropolar fluid flows in between vertical walls under the influence of uniform magnetic field. 

Electromagnetics of micropolar fluid fundamentals are briefly presented by Chen et al. [15]. They 

examined the Balance laws of mass, energy, entropy angular and linear momentums, for Micropolar 

Fluid Dynamics (MFD) are integrated with Maxwell’s equations. Ettwein et al. [16] have studied 

existence of weak solution for micropolar electrorheological. Muthu et al. [17] investigated oscillatory 

micropolar fluid flow behaviour in annular tube with different radius of out tube.  Hogan et al. [18] 

developed finite element formulation of steady incompressible fluid flow with microstructure. They 

are exhibited for fully developed fluid flow through a straight tube and validated with an analytical 

solution.  
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In the current study, we compute the results of unsteady laminar incompressible micropolar fluid flows 

in a lid driven cavity with various values of Reynolds number. The finite difference technique is 

implemented for solving the linear momentum equation in the form of vorticity-streamfunction and 

angular momentum equations with the no-slip and no-spin boundary conditions. 

 

2. Basic Equations 

The schematic diagram of incompressible laminar flow of micropolar in lid driven square cavity 

depicted in figure.1a with dimensional Cartesian coordinates x and y. The square cavity enclosed with 

three stationary walls except top wall, the horizontal top wall moving with uniform velocity (u=u0). In 

micropolar fluid model, two vector fields which are kinematic  independent is introduced - one is 

representing translation velocities while  the other represents angular velocities of particles of the fluid, 

known  as micro rotation vector. 

 

                     

                Figure 1a. Physical model.                Figure 1b. Uniformly spaced grid. (129X129) 
 

 

The laminar micro polar fluid and properties of micropolar fluid assumed to be constant except for the 

variation of density. The governing equations of micropolar fluid flow are taken from Eringen theory 

of micropolar fluid and are written in dimensional Cartesian form as. 
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The above governing equations reduced as follows with help of (5) 
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Stream function and vorticity defined as: 
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Differentiating the equations (7) with respect to Y and differentiating with respect to X of the equation 

(8) respectively then subtracting. The obtained equations with the help of equation (10), we obtain 

vorticity transport equation yields 
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It registered for K = 0, the Eqs. (9) and (12) illustrates the classical problem of a Newtonian fluid flow 

of a Lid driven square cavity. 

  
                     (a)                                                         (b) 

Figure 2. Comparison of Centreline (a) horizontal and (b) vertical velocity for Re=100 with 

mesh system 129X129. 

  

             (a)                                                (b) 

Figure 3. Comparison of Centreline (a) horizontal and (b) vertical velocity for Re=400 

with mesh system 129X129. 

3. Numerical Method and Validation 

In The governing equations (9), (11) and (12) are solved by the method of Euler’s explicit technique 

with appropriate boundary conditions. The poison’s equation of stream function is evaluate by using 

the Successive over relaxation (SOR) method. Vorticity transport equation and angular momentum 

equation can be discretized with regular central difference scheme. In order to describe this technique, 

let us consider the equation (12) as an example. This equation can be re-written as: 
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This equation can be evaluate as follows 
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The central difference scheme is used to convective and the diffusion terms. The time integration is 

applied to the governing equations with time step (dt=0.0001) and ends when time reaches the final 

level. The procedure is continued in successive time intervals until for the vorticity and the angular 

velocity converges at a required time when the convergence criteria 
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for vorticity, stream function and angular velocity have been meet. In the above converges criteria k 

indicates iterative level. The generic variable  represents ,  and N. 

The 2D computation domain is covered by uniform spaced nodes along both X and Y directions and a 

fine grid of 129X129 is shown in Figure 1b. The numerical code was developed in MATLAB and the 

present problem for the case of K=0 validated with work of Ghia et al. [11] for the values of Re=100 

and Re=400. The comparison of centreline velocities of horizontal and vertical velocity profiles are 

presented in Figures 2&3. These computed results are registered as good agreement. The grid 

sensitivity test is conducted with uniform spaced grid in Four cases for Re=100: a grid of 69X69 

points, a grid of 99X99 points, a grid of 129X129 points and a grid of 159X159 points. Figure 4 

shows an effect of number of grids on horizontal velocity profile along cross-section X = 0.5 in the 

steady state regime. After the verifications of the grid sensitivity, the uniformly spaced grid of 129 

X129 points has been taken for the further numerical computation. 

  
The numerical simulation is carried out for the governing parameters: Reynolds number (Re=100, 400, 

and 1000) and vortex viscosity parameter (K=0.5, 1, 2, 3, 4, and 5), we presents the obtained 

computation results for the weak concentration case (n = 0). We observed that the case K = 0 shows 

the fluid is Newtonian. Initially, for this case, computed results are validated with the results of ghia 

[11] for the square geometry. Particular efforts have been concentrated on the influence of these 

parameters on lid driven cavity flow. Streamlines and fluid flow rate for various values of 

dimensionless parameters maintained above are presented in Figures 5-10. 

Figure 5 shows the streamlines inside the lid driven square cavity of micropolar fluid with Re=400 and 

different values of vortex viscosity parameter K. The enlarged clockwise circulation is formed in the 

middle of the cavity and two anti-clockwise minor circulations are developed at corners of the bottom 

wall for K=0.5. The influence of vortex viscosity parameter K=1 on fluid flow, the major cell is slight 

moving towards the top wall is noticed. The considerable changes are observed on minor eddies and 

the large eddy developed fully inside the cavity by driven top wall with constant velocity for K=2&3. 

The developed fluid flow patterns are changes inside the cavity for increasing vortex viscosity 

parameter K. The large clockwise circulation moves towards the top wall and the minor anti-clockwise 

cells are shrinks with the increasing of vortex viscosity parameter K from k=4 to K=5 is observed. The 

fluid flow patterns are spread throughout the cavity and the circulation forms at near the top wall is 

notice at K=5. The mid-section velocity of U are presented in Figure 6 with various values of vortex 

viscosity parameter K for the Reynolds number Re=400. The minimum value of the U velocity 

gradually decreases with increasing of vortex viscosity parameter and the fluid particle velocity 

changes along from bottom to top of the cavity, the major changes are found in middle of the cavity. 
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The influence of different values of K on mid-section velocity profile V is depicted in Figure 7 with 

the fixed Reynolds number Re=400. The fluid particle velocity decreases when vortex viscosity 

parameter enhanced. The vortex viscosity parameter (K=5) influence on streamlines for Re=100 and 

Re=1000 are presented in Figure 8. The major circulation is developed at moving top wall and the 

minor eddies are diminishes with the affected by vortex viscosity parameter K for Re=100. The size of 

minor eddies are shrinks and the flow patterns are occupies fully inside the cavity for the case of 

Re=1000 with the vortex viscosity parameter K influence. The influence of various values of Reynolds 

number on micropolar fluid flow velocity profiles are illustrates Figure 9 and Figure 10.  The fluid 

flow particles velocities is observed for Re=100, 400 and 100 with fixed K=5. The velocity profiles are 

increases with the increasing of Reynolds number. 

4. Conclusions 

In the present paper, unsteady micropolar fluid inside a lid-driven cavity under the influence of vortex 

viscosity parameter was studied. The Euler’s explicit technique was used to compute for the solution 

of the nonlinear coupled partial differential equations. Comparisons was conducted with published 

work done by the Newtonian fluid and notice to be in good agreement. The graphical representation 

results were depicted and discussed. From this numerical investigation, the following conclusions can 

be drawn. 

 

 The developed minor eddies at corners of bottom wall are diminishes when increasing vortex 

viscosity parameter K. 

 The formation of circular cell drag towards centre of the top wall was predicted when 

increasing the non-dimensional vortex viscosity parameter. 

 The rate of fluid particle motions are increased by the reducing the vortex viscosity parameter. 

 The centreline velocity profiles are enhanced with increased Reynolds numbers Re. 

 

 

Figure 4. Centreline horizontal velocity profile for different mesh parameters with Re=100. 
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           K=0.5    K=1 

 

                                               K=2                            K=3 

 

                                               K=4                              K=5     

Figure 5. The vortex viscosity parameter K influence on streamlines for Re=400. 
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Figure 6. The Influence of vortex viscosity parameter K on mid-section horizontal velocity 

profile for Re=400. 

 

 

 

Figure 7. In Influence of vortex viscosity parameter K on mid-section vertical velocity 

profile for Re=400. 
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(a)                                                                                        (b)  

Figure 8. The Reynolds number influence on streamlines for K=5 (a) Re=100 (b) Re=1000. 

 

 

 

Figure 9. The Reynolds number influence on U-velocity for vortex viscosity parameter K=5. 
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Figure 10. The effect of Reynolds number on V-velocity for K=5. 

 

NOMENCLATURE 

j  micro –inertia density 

K  dimensionless vortex viscosity 

k  vortex viscosity 

L enclosure length 

 n = micro-gyration parameter 

N  non -dimensional micro rotation angular velocity 

p  pressure 

P  non-dimensional pressure 

Re  Reynolds number 

t    time 

0u  Lid velocity 

 VU ,  dimensionless velocity fields 

  vu,  dimensional velocity profiles 

 YX , dimensionless coordinate axes 

  yx,  dimensional coordinate axes 

GREEK SYMBOLS 

 spin-gradient viscosity 

 dimensionless vorticity 

 fluid density 

 dimensionless time 

  dynamic viscosity 

  dimensional  angular momentum  

 stream function 
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