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ON THE CLOSED EMBEDDING OF THE PRODUCT

OF THETA DIVISORS INTO PRODUCT OF

JACOBIANS AND CHOW GROUPS

KALYAN BANERJEE

Abstract. In this article we generalize the injectivity of the push-
forward homomorphism at the level of Chow groups, induced by
the closed embedding of Symm

C into Symn

C for m ≤ n, where
C is a smooth projective curve, to symmetric powers of a smooth
projective variety of higher dimension. We also prove the analog of
this theorem for product of symmetric powers of smooth projective
varieties. As an application we prove the injectivity of the push-
forward homomorphism at the level of Chow groups, induced by
the closed embedding of self product of theta divisor into the self
product of the Jacobian of a smooth projective curve.

1. Introduction

Let C be a smooth projective curve and let SymnC denote the n-

th symmetric power of C. In [Co] Collino proved that if we consider

the embedding of SymmC into SymnC, then it induces an injective

push-forward homomorphism at the level of Chow groups. In this text

the author is curious whether the same thing holds true for for higher

dimensional smooth projective varieties. In [BI], we prove that the

embedding of SymmC into SymnC induces an injective push-forward

homomorphism when we consider the Higher Chow groups. Also an

analog of Collino’s theorem was proved in [BI] for some open sub-

schemes of SymmC mapping into an open subscheme of SymnC.

The first theorem in this direction is the generalisation of Collino’s

theorem for higher dimensional smooth projective varieties and for

products of symmetric powers of smooth projective varieties, where we

work with Chow groups with Q-coefficients. Let us denote the Chow

group with Q-coefficients, for a projective variety X by CH ∗(X).

0Mathematics Classification Number: 14C25, 14D05, 14D20, 14D21
0Keywords: Pushforward homomorphism, Theta divisor, Jacobian varieties,

Chow groups, higher Chow groups.
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The push-forward homomorphism i∗ from CH ∗(Sym
mX) to CH ∗(Sym

nX)

is injective.

The push-forward homomorphism in1,n2

m1,m2∗
from CH ∗(Sym

m1X×Symm2Y )

to CH ∗(Sym
n1X × Symn2Y ) is injective.

The method used to prove this theorems are almost the same as in

[Co], the second theorem stated above requires some modification of

the proof given in Collino’s paper [Co][corllary 1 and theorem 1]. Next

we try to understand the kernel of the push-forward homomorphism

induced by the natural regular morphism from SymkX × SymkX to

Sym2k+nX , for some positive integer n. The elements in the kernel

have some nice form, specially when we consider k = 1 and zero cycles

on X2.

We use the machinary derived from Collino’s theorem, for product

of Jacobians and the embedding of product of Theta divisors into the

product of Jacobians, to deduce that this embedding induces injective

push-forward homomorphism at the level of Chow groups.

Let C be a smooth projective curve of genus g. Consider the natural

morphism from SymgC×· · ·×SymgC to J(C)×· · ·×J(C). Let Θ be the

theta divisor embedded into J(C). Let j denote the closed embedding

of Θ×· · ·×Θ into J(C)×· · ·×J(C). Then j∗ from CH k(Θ×· · ·×Θ)

to CH k(J(C)× · · ·J(C)) is injective for k ≥ 0.

The method used to prove this theorem is the fact that the g-th

symmetric power of a curve C is birational to J(C) and g − 1-th sym-

metric power of C is birational to ΘC , the theta divisor of J(C). Also

we make use of the fact that SymnC is a projective bundle over J(C)

for high enough n.

Acknowledgements: The author wishes to thank Jaya Iyer and Manish

Kumar for useful discussions relevant to the proof of some theorems present

in this paper. The author also wishes to thank the ISF-UGC grant for

funding this project and hospitality of Indian Statistical Institute, Bangalore

Center for hosting this project.

2. Collino’s theorem for higher dimensional varieties and

products of symmetric powers

Let X be a smooth projective curve defined over an algebraically

closed field. Let SymnX denote the n-th symmetric power of X . Let
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us fix a point p in X . Consider the closed embedding im,n of SymmX

to SymnX , given by

[x1, · · · , xm] 7→ [x1, · · · , xm, p, · · · , p]

where [x1, · · · , xm] denote the unordered m-tuple of points in SymmX .

Then the push-forward homomorphism im,n∗ from CH ∗(Sym
mX) to

CH ∗(Sym
nX) is injective as proved in [Co, Theorem 1]. In this section

we prove that the same holds for an arbitrary smooth projective variety

X . That is the push-forward homomorphism im,n∗ from CH ∗(Sym
mX)

to CH ∗(Sym
nX) is injective, where im,n is defined as before. To prove

that we follow the approach by Collino in [Co], the argument present

here is a generalisation of the arguments in [Co]. It is straightforward

for the first case when X is a smooth projective variety but requires

minor modifications when we want to prove it for product of symmetric

powers, but we write it for our convenience.

Let Γ be the correspondence given by

πn × πm(Γ
′)

supported on SymmX×SymnX where Γ′ is the graph of the projection

prn,m from Xn to Xm and πn is the natural morphism from Xn to

SymnX . Let g∗ be the homomorphism induced by Γ at the level of

algebraic cycles.

First we prove the following lemma.

Lemma 2.1. The homomorphism g∗ ◦ im,n∗ at the level of the Chow

groups with Q-coefficients, is induced by the cycle (im,n × id)∗Γ on

SymmX × SymmX.

Proof. Let’s denote im,n∗ as i∗. We have

g∗i∗(Z) = prSymmX∗(i∗(Z)× SymmX.Γ) .

The above expression can be written as

prSymmX∗((i× id)∗(Z × SymmX).Γ) .

By the projection formula the above is equal to

prSymmX∗ ◦ (i× id)∗((Z × SymmX).(i× id)∗Γ) .

Since prSymmX ◦(i×id) is the projection prSymmX we get that the above

is equal to

prSymmX∗((Z × SymmX).(i× id)∗Γ) .
3



Here the above two projections are taken respectively on SymnX ×

SymmX and on SymmX × SymmX . So we get that g∗ ◦ i∗ is induced

by (i× id)∗Γ.

�

Now let us consider the closed embedding Symm−1X into SymmX .

Let ρ be the embedding of the complement of Symm−1X in SymmX .

Then we have the following proposition.

Proposition 2.2. At the level of the Chow group with rational co-

efficients we have

ρ∗ ◦ g∗ ◦ i∗ = ρ∗ .

Proof. To prove the proposition we prove that

(i× id)−1Γ = ∆ ∪D

where ∆ means the diagonal in SymmX × SymmX and D is a closed

subscheme of SymmX × Symm−1X . For that we write out

(i× id)−1Γ ,

that is equal to

(i× id)−1(πn × πm)Graph(prn,m) .

The above is equal to

(i× id)−1(πn × πm){((x1 · · · , xn), (x1, · · · , xm))|xi ∈ X}

that is

(i× id)−1{([x1, · · · , xn], [x1, · · · , xm])|xi ∈ X} .

Call the set

{([x1, · · · , xn], [x1, · · · , xm])|xi ∈ X, }

as B, and the set

(i× id)−1{([x1, · · · , xn], [x1, · · · , xm])|xi ∈ X} .

as A. The set A is of the form

{([x′

1, · · · , x
′

m], [y
′

1, · · · , y
′

m])|([x
′

1, · · · , x
′

m, p, · · · , p], [y
′

1, · · · , y
′

m]) ∈ B} .

So the set A can be written as the union of

{([x′

1 · · · , x
′

m], [x
′

1 · · · , x
′

m])|x
′

i ∈ X, }
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and

{([x′

1 · · · , x
′

m], [x
′

1 · · · , p, x
′

m])|x
′

i ∈ X} ,

that is the union

∆ ∪D

where ∆ is the diagonal in the scheme SymmX × SymmX and D is

a closed subscheme in SymmX × Symm−1X . Therefore arguing as in

[Co] [proposition 1]we get that

(i× id)∗(Γ) = ∆ + Y

as an algebraic cycle, where Y is supported on SymmX × Symm−1X .

So g∗i∗(Z) is equal to

prSymmX∗
[(∆ + Y ).(Z × SymmX)] = Z + Z1

where Z1 is supported on Symm−1X . For the above we have to take

some care about defining the intersection product. This Can be done

sinceX is smooth and we have the identification CH ∗(X/G) = CH ∗(X)G

[Fu][Example 1.7.6]. So

ρ∗g∗i∗ = ρ∗(Z + Z1) = ρ∗(Z)

since ρ∗(Z1) = 0. Hence the proposition is proved. �

Now we prove that the push-forward homomorphism i∗ fromCH ∗(Sym
mX)

to CH∗(Sym
nX) is injective.

Theorem 2.3. The push-forward homomorphism i∗ from CH ∗(SymmX)

to CH ∗(SymnX) is injective.

Proof. We prove this by induction. First Sym0X is a single point and

the morphism i0,n = (p, · · · , p). To show that i0,n is injective we use

the definition of the rational equivalence. First we show that the inclu-

sion of Sym0X into X gives an injection at the level of Chow groups.

Suppose that some multiple of p is rationally equivalent to zero on

X . Then there exists a irreducible curve C inside X and a non-zero

rational function f in k(C) such that

np = div(f) .

But by the Collino’s theorem for smooth projective curves it follows

that n = 0 and hence we have, the push-forward induced by this mor-

phism i0,n is injective. Assume now that i∗ is injective for m − 1 and
5



any n greater than or equal to m − 1. Then consider the following

commutative diagram

CH ∗(Symm−1X)
im−1,m∗

//

��

CH ∗(SymmX)
ρ∗

//

imn∗

��

CH ∗(X0(m))

��

CH ∗(Symm−1X)
im−1,n∗

// CH ∗(SymnX) // CH ∗((Symm−1X)c)

In the above (Symm−1X)c is the complement of Symm−1X in SymnX .

In this diagram the left part of the two rows are exact by the in-

duction hypothesis and the middle part is exact by the localization

exact sequence for Chow groups. Now suppose that z belongs to

CH ∗(SymmX), such that

im,n∗(z) = 0

and let Z be the cycle such that the cycle class of Z is z. Let cl(Z)

denote the cycle class in the Chow group, corresponding to the algebraic

cycle Z.

Then we have

cl(ρ∗g∗i∗(Z)) = 0

which means by the theorem 2.3

cl(ρ∗(Z)) = 0 ,

hence

ρ∗(cl(Z)) = ρ∗(z) = 0 .

So by the localization exact sequence there exists z′ in CH ∗(Symm−1X),

such that

z = im−1,m∗(z
′) .

By the commutativity of the left square of the above commutative

diagram we get that

im−1,n∗(z
′) = 0 .

By the injectivity of im−1,n∗ we get that z
′ = 0, so z = 0, hence im,n∗ is

injective. �
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2.4. Collino’s theorem on products of symmetric powers. Let

X, Y be smooth projective varieties over an algebraically closed field k.

Then let us fix two points p, q on X, Y respectively. Consider the map

([x1, · · · , xm1
], [y1, · · · , ym2

]) 7→ ([x1, · · · , xm1
, p, · · · , p], [y1, · · · , ym2

, q, · · · , q])

from Symm1X × Symm2Y to Symn1X × Symn2Y . Denote this map

as in1,n2

m1,m2
as previous. Then we prove that in1,n2

m1,m2∗
is injective from

CH k(Sym
m1X×Symm2Y ) to CH k(Sym

n1X×Symn2Y ). The arguments

do not differ much from the previous arguments, only difficult part is

to prove the analog of 2.2. First we define the correspondence Γ to be

(πX
n1

× πY
n2
)× (πX

m1
× πY

m2
)(Γ′)

where Γ′ is the graph of the projection pr from Xn1 × Y n2 to Xm1 ×

Y m2 . Consider the homomorphism g induced by Γ. Then we have the

following lemma which is the analog of 2.1.

Lemma 2.5. The homomorphism g∗ ◦ i
n1,n2

m1,m2∗
at the level of the Chow

group with rational co-efficients, is induced by the cycle (in1,n2

m1,m2
× id)∗Γ

on (Symm1X × Symm2Y )× (Symm1X × Symm2Y ).

Proof. The proof is same as in the proof of lemma 2.1, replacing SymmX

by Symm1X × Symm2Y . �

Let X0(m)× Y0(m) be the complement of

Symm1−1X × Symm2Y ∪ Symm1X × Symm2−1Y

inside Symm1X × Symm2Y . Let ρ denote the embedding of X0(m) ×

Y0(m). Then we have the following.

Proposition 2.6. Let ρ∗ be the pull-back homomorphism from CH ∗(Sym
m1X×

Symm2Y ) to CH ∗(X0(m)× Y0(m)). Then we have

ρ∗ ◦ g∗ ◦ i∗ = ρ∗ .

Here i denotes in1,n2

m1,m2
.

Proof. First we prove as in 2.2

(i× id)−1(Γ) = ∆ ∪D

where ∆ is the diagonal in (Symm1X×Symm2Y )×(Symm1X×Symm2Y ).

D is supported on

(Symm1−1X × Symm2Y ) ∪ (Symm1X × Symm2−1Y ) .
7



(i×id)−1(Γ) = {(([x1, · · · , xn1
], [y1, · · · , yn2

]), ([x′

1, · · · , x
′

m1
], [y′1, · · · , y

′

m2
])

|xi, x
′

i ∈ X, yi, y
′

i ∈ Y }

Also we have

x′

i = σ(xi) y′i = τ(yi)

for some σ, τ in the group of permutations of n-letters. Call the support

of Γ to be as B and (i × id)−1(Γ) = A. Then A consists of pairs of

pairs of unordered tuples like

(([x1, · · · , xm1
], [y1, · · · , ym2

]),

([x′

1, · · · , x
′

m1
], [y′1, · · · , y

′

m2
]))

such that

(([x1, · · · , xm1
, p, · · · , p], [y1, · · · , ym2

, · · · , q]), ([x′

1, · · · , x
′

m1
], [y′1, · · · , y

′

m2
]))

is in B. So the elements of A are either of the form

(([x1, · · · , xm1
], [y1, · · · , ym2

])([x1, · · · , xm1
], [y1, · · · , ym2

]))

or of the form

(([x1, · · · , xm1
]), [y1, · · · , ym2

]), ([p, · · · , xm1
], [y1, · · · , ym2

]))

or of the form

(([x1, · · · , xm1
], [y1, · · · , ym2

]), ([x1, · · · , xm1
], [q, · · · , ym2

])) .

So we can write

(i× id)−1(Γ) = ∆ ∪D

where ∆ is the diagonal of (Symm1X×Symm2Y )×(Symm1X×Symm2Y )

and D is supported on

(Symm1X × Symm1Y )× (Symm1−1X × Symm2Y )

∪(Symm1X × Symm2Y )× (Symm1X × Symm2−1Y ) .

Then we have g∗i∗ is equal to

pr(Symm1X×Symm2Y ∗)((∆ + Y1).(Z × Symm1X × Symm2Y ))

where Y1 has support D (it follows that the cycle (i× id)∗Γ = ∆ + Y1

as cycles by arguing as in proposition 1 in [Co]). Here again we have to

take care about the Chow moving lemma, which is true on Symm1X ×

Symm2Y , because the variety is a quotient of Xm1 × Y m2 by the group
8



Sm1
× Sm2

, where Si denote the symmetric group on i-letters. So the

above can be written as

Z + Z1

where the support of Z1 is contained in

(Symm1−1X × Symm2Y ) ∪ (Symm1X × Symm2−1Y ) .

Therefore

ρ∗(Z + Z1) = ρ∗(Z)

since ρ∗(Z1) is zero. So we have the proposition.

�

Now we prove that the push-forward homomorphism in1,n2

m1,m2∗
is in-

jective from CH k(Sym
m1X × Symm2Y ) to CH k(Sym

n1X × Symn2Y ).

Denote the closed embedding of Symm1−1X × Symm2Y ∪ Symm1X ×

Symm2−1Y into Symm1X × Symm2Y as j and that into Symn1X ×

Symn2Y as j′.

Theorem 2.7. The push-forward homomorphism in1,n2

m1,m2∗
from CH ∗(Sym

m1X×

Symm2Y ) to CH ∗(Sym
n1X × Symn2Y ) is injective.

Proof. The proof follows by mimicking the arguments of 2.3 with SymmX

is replaced by Symm1X × Symm2Y and by using 2.6. The case when

m = 0 follows, arguing similarly as in 2.3. Let us assume that in1,n2

k1,k2∗
is

injective for k1 = 0, · · · , m1 − 1 or k2 = 0, · · · , m2 − 1.

Here g∗ is the homomorphism Γ defined by the correspondence Γ

mentioned in the beginning of this subsection. So let us consider the

following commutative diagram. Let A be the union of Symm1−1X ×

Symm2Y and Symm1X × Symm2−1Y

CH ∗(A)
j∗

//

��

CH ∗(Symm1X × Symm2Y )
ρ∗
0

//

imn∗

��

CH ∗(X0(m1)× Y0(m2))

��

CH ∗(A)
j′
∗

// CH ∗(Symn1X × Symn2Y ) // CH ∗(V )

Here V is the complement of Symm1−1X × Symm2Y ∪ Symm1X ×

Symm2−1Y in Symn1X × Symn2Y . The map ρ denote the inclusion
9



of U into Symm1X × Symm2Y . Let z belongs to kernel of in1,n2

m1,m2∗
,

denote it by i that is

i∗(z) = 0 .

Then by composing with ρ∗ coming from 2.6 and g∗ we get that

ρ∗g∗(i∗(z)) = 0

but the above is nothing but

ρ∗(z) = 0

by 2.6.

Therefore by the localisation exact sequence present in first row of

the previous diagram we get that there exists z′ in CH ∗(Symm1−1X ×

Symm2Y ∪ Symm1X × Symm2−1Y ) such that

z = j∗(z
′)

by the commutativity of the previous rectangle it follows that

j′
∗
(z′) = 0 .

Now note that there is an exact sequence of Chow groups as follows.

Let A = A1 ∪A2 be the union of irreducible components of A, then we

have

CH ∗(A1 ∩ A2) → CH ∗(A1)⊕ CH ∗(A2) → CH ∗(A) → 0 .

Applying this in our situation when A1 = Symm1−1X × Symm2Y and

A2 = Symm1X × Symm2−1Y and let A be their union, we get that

there exist z′′ such that f(z′′) = z′, where f is the homomorphism

from CH ∗(A1) ⊕ CH ∗(A2) to CH ∗(A), composing this with j′
∗
we get

that

j′
∗
(f(z′′)) = 0

but j′
∗
f is nothing but the homomorphism

CH ∗(A1)⊕ CH ∗(A2) → CH ∗(Sym
n1X × Symn2Y )

we prove that z′′ is actually in the kernel of the above homomorphism

and the kernel is CH ∗(A1 ∩ A2), therefore it is zero by the induction

hypothesis because A1 ∩ A2 = Symm1−1X × Symm2−1Y . This is done

by showing that CH ∗(A1∪A2) to CH ∗(Sym
n1X×Symn2Y ) is injective.

This can be achieved by arguing similarly as above using the technique
10



of producing a correspondence on an appropriate variety and consid-

ering the push-forward induced by that. The Chow moving lemma is

taken care of because we are working with varieties which are union of

quotients of a smooth projective variety by a finite group.

�

2.8. Kernel of the push-forward homomorphism from CH ∗(Sym
kX×

SymkX) to CH ∗(Sym
2k+nX). Let p be a fixed point on a smooth pro-

jective variety X . Consider the morphism i from SymkX × SymkX to

Sym2k+nX given by

([x1, · · · , xk], [y1, · · · , yk]) 7→ [x1, · · · , xk, y1, · · · , yk, p, · · · , p] .

We want to prove that the push-forward homomorphism induced by

this regular morphism is injective at the level of Chow groups. Let us

consider the projection morphism pr from X2k+n to X2k ∼= Xk × Xk.

Let πi be the quotient morphism from X i to SymiX . Then consider

the correspondence

Γ = π2k+n × πk × πk(Graph(pr))

which is supported on Sym2k+nX × SymkX × SymkX . Let g∗ denote

the homomorphism at the level of Chow groups induced by the corre-

spondence Γ.

Lemma 2.9. The homomorphism g∗ ◦ i∗ at the level of Chow group

with rational coefficients, is induced by the cycle (i×id)∗Γ on SymkX×

SymkX × SymkX × SymkX.

Proof. The proof is same as in the proof of lemma 2.1, replacing SymmX

by SymkX × SymkX and by using the projection formula. �

Let X0(k) be the complement of

Symk−1X × SymkX ∪ SymkX × Symk−1X

inside SymkX × SymkX . Let ρ denote the embedding of X0(k) into

SymkX × SymkX . Then we have the following.

Proposition 2.10. Let ρ∗ be the pull-back homomorphism from CH ∗(Sym
kX×

SymkX) to CH ∗(X0(k)). Then we have

ρ∗ ◦ g∗ ◦ i∗(Z) = ρ∗(dZ +
∑

i

diZi) ,

11



where Zi is the algebraic subset

{([y1, · · · , yi, xi+1, · · · , xk], [x1, · · · , xi, yi+1, · · · , yk] : ([x1, · · · , xk], [y1, · · · , yk]) ∈ Z} .

Proof. First we prove as in 2.2

(i× id)−1(Γ) = ∆ ∪∆i ∪D

where ∆ is the diagonal in (SymkX × SymkX)× (SymkX × SymkX).

∆i is the subset of the form

{([x1, · · · , xk], [y1, · · · , yk]), ([y1, · · · , yi, xi+1, · · · , xk], [x1, · · · , xi, yi+1, · · · , yk])}

and D is supported on

(Symk−1X × SymkX) ∪ (SymkX × Symk−1X) .

Call the support of Γ to be as B and (i × id)−1(Γ) = A. Then A

consists of pairs of pairs of unordered tuples like

(([x1, · · · , xk], [y1, · · · , yk]), ([x
′

1, · · · , x
′

k], [y
′

1, · · · , y
′

k]))

such that

(([x1, · · · , xk, y1, · · · , yk, p, · · · , p]), ([x
′

1, · · · , x
′

k], [y
′

1, · · · , y
′

k]))

is in B. So the elements of A are either of the form

(([x1, · · · , xk], [y1, · · · , yk])([x1, · · · , xk], [y1, · · · , yk]))

or of the form

(([x1, · · · , xk]), [y1, · · · , yk]), ([p, · · · , xk], [y1, · · · , yk]))

or of the form

(([x1, · · · , xk], [y1, · · · , yk]), ([x1, · · · , xk], [p, · · · , yk])) ,

or of the form

(([x1, · · · , xk], [y1, · · · , yk]), ([y1, · · · , yi, · · · , xk], [x1, · · · , xi, · · · , yk])) ,

So we can write

(i× id)−1(Γ) = ∆ ∪i ∆i ∪D

where ∆ is the diagonal of (SymkX × SymkX) × (SymkX × SymkX)

and D is supported on

(SymkX×SymkX)×(Symk−1X×SymkX)∪(SymkX×SymkX)×(SymkX×Symk−1X) ,
12



and ∆i’s are described as in the beginning. So the cycle

(i× id)∗(Γ) = d∆+
∑

i

di∆i + Y

where Supp(Y ) = D. Then we have g∗i∗ is equal to

pr(SymkX×SymkX∗)((d∆+
∑

i

di∆i + Y ).(Z × SymkX × SymkX))

where Y has support D. So the above can be written as

dZ +
∑

i

diZi + Z ′

where the support of Z ′ is contained in

(Symk−1X × SymkX) ∪ (SymkX × Symk−1X) .

Therefore

ρ∗(dZ +
∑

i

diZi + Z ′) = dρ∗(Z) +
∑

i

diρ
∗(Zi)

since ρ∗(Z ′) is zero, where Zi’s are as described in the statement of the

proposition. So we have the proposition.

�

Theorem 2.11. Let Z be a cycle belonging to the kernel of i∗. Suppose

that the natural push-forward homomorphism from CH ∗(Sym
k−1X ×

SymkX ∪ SymkX × Symk−1X) to CH ∗(Sym
2k+nX). Then dZ is ratio-

nally equivalent to the cycle −
∑

i diZi, where Zi’s are as described as

in the previous proposition 2.10.

Proof. Here g∗ is the homomorphism Γ defined by the correspondence

Γ mentioned in the beginning of this subsection. So let us consider the

following commutative diagram. Let A be the union of Symk−1X ×

SymkX and SymkX × Symk−1X

CH ∗(A)
j∗

//

��

CH ∗(SymkX × SymkX)
ρ∗

//

i∗

��

CH ∗(X0(k))

��

CH ∗(A)
j′
∗

// CH ∗(Sym2k+nX) // CH ∗(V )
13



Here V is the complement of Symk−1X×SymkX∪SymkX×Symk−1X in

SymkX×SymkX . The map ρ denote the inclusion of U into SymkX×

SymkX . Let Z belongs to kernel of i∗, that is

i∗(Z) = 0 .

Then by composing with ρ∗ coming from 2.6 and g∗ we get that

ρ∗g∗(i∗(Z)) = 0

but the above is nothing but

ρ∗(dZ +
∑

i

diZi) = 0

by 2.10.

Therefore by the localisation exact sequence present in first row of

the previous diagram we get that there exists Z ′ in CH ∗(Sym
k−1X ×

SymkX ∪ SymkX × Symk−1X) such that

dZ +
∑

i

diZi = j∗(Z
′)

by the commutativity of the previous rectangle it follows that

j′
∗
(Z ′) = 0 .

By the assumption it will follow that Z ′ is rationally equivalent to zero,

hence dZ +
∑

i diZi is rationally equivalent to zero. Therefore we have

the required result that dZ is rationally equivalent to −
∑

i diZi.

�

Example 2.12. Now consider k = 1, then we have the push-forward

homomorphism from CH ∗(X
2) to CH ∗(Sym

n+2X). By theorem 2.3 we

have that the push-forward homomorphism CH ∗(X) to CH ∗(Sym
n+2X)

is injective. Therefore if we take Z to be an algebraic cycle in the

kernel in the push-forward homomorphism i∗, we get that Z is rationally

equivalent to some rational multiple −Zt if we tensor the Chow groups

with Q, where Supp(Zt) = {(y, x)|(x, y) ∈ SuppZ}. In particular let z

be a zero cycle in the kernel of i∗. Write

z =
∑

i

(xi, yi)

then z is rationally equivalent to

−
m

n
zt = −

m

n

∑

i

(yi, xi)
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since z belongs to the kernel of i∗, −
m
n
zt also belongs to the kernel of

i∗.

3. Injectivity of the kernel of the push-forward

homomorphism: some examples

In this section we derive some nice consequences of the Collino’s

theorem.

Theorem 3.1. Let C be a curve of genus g. Consider the natural

morphism from SymgC × SymgC to J(C) × J(C). Let Θ denote the

theta divisor in J(C). Let j denote the closed embedding of Θ×Θ into

J(C)×J(C). Then the push-forward homomorphism j∗ from CH k(Θ×

Θ) to CH k(J(C)× J(C)) is injective.

Proof. First of all notice that.

Symg−1C × Symg−1C

qΘ

��

j′
// SymgC × SymgC

q

��

Θ×Θ
j

// J(C)× J(C)

Considering the above commutative diagram, the proof goes in the

same line as in 2.4, where we consider a correspondence Γ1, and then

we consider the push-forward induced by Γ1. Here Γ1 will be (q×qΘ)(Γ),

where Γ is as in 2.4. Then we prove that ρ∗Γ∗j∗ is equal to ρ∗, where

ρ is the open embedding of q((Symg−2C × Symg−1C) ∪ (Symg−1C ×

Symg−2C)). Then we proceed as in 2.4.

�

Corollary 3.2. Let C be a smooth projective curve of genus g. Con-

sider the natural morphism from SymgC×· · ·×SymgC to J(C)×· · ·×

J(C). Let Θ be the theta divisor embedded into J(C). Let j denote the

closed embedding of Θ× · · ·×Θ into J(C)× · · ·× J(C). Then j∗ from

CH k(Θ× · · · ×Θ) to CH k(J(C)× · · ·J(C)) is injective for k ≥ 0.

Proof. The proof follows from the previous theorem 3.1.

�
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Let i be involution on an abelian variety A given by

i(a) = −a .

Corollary 3.3. Let C be as in the previous corollary 3.2, and suppose

that i(Θ) = Θ. Then the push-forward homomorphism induced by the

closed embedding of Θ×· · ·×Θ/{i} to J(C)×· · ·×J(C)/{i} is injective

at the level of CH k.

Proof. Follows from corollary 3.2 and from the fact that for a projective

variety X and a finite group G acting on X we have

CH k(X/G) = CH k(X)G

from [Fu], example 1.7.6. where CH k(X)G denote the G-invariants of

CH k(X) under the action of G. �
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