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A graph-controlled insertion–deletion (GCID) system is a regulated extension of an 
insertion–deletion system. Such a system has several components and each component 
has some insertion–deletion rules. The transition is performed by any applicable rule in 
the current component on a string and the resultant string is then moved to the target 
component specified in the rule. The language of the system is the set of all terminal 
strings collected in the final component. The parameters in the size (k; n, i′, i′′; m, j′, j′′)
of a GCID system denote (from left to right) the maximum number of components, the 
maximal length of the insertion string, the maximal length of the left context for insertion, 
the maximal length of the right context for insertion; the last three parameters follow a 
similar representation with respect to deletion.
In this paper, we discuss the computational completeness of the families of GCID systems 
of size (k; 1, i′, i′′; 1, j′, j′′) with k ∈ {3, 5} and for (nearly) all values of i′, i′′ j′, j′′ ∈ {0, 1}. 
All proofs are based on the simulation of type-0 grammars given in Special Geffert Normal 
Form (SGNF). The novelty in our proof presentation is that the context-free and the non-
context-free rules of the given SGNF grammar are simulated by GCID systems of different 
sizes and finally we combine them by stitching and overlaying to characterize the recursive 
enumerable languages. This proof presentation greatly simplifies and unifies the proof of 
such characterization results. We also connect some of the obtained GCID simulations to 
the domain of insertion–deletion P systems.

 2017 Elsevier B.V. All rights reserved.

1. Introduction

Insertion and deletion operations often occur in DNA processing and RNA editing. During the theoretical process of mis-

matched annealing in DNA sequences, certain segments of strands are either inserted or deleted [28]. In the process of RNA 
editing, some fragments of messenger RNA are inserted or deleted [3,4]. The motivation for the insertion operation is found 
in [11], where this operation and its iterated variant were introduced as a generalization of concatenation and Kleene’s 
closure. The deletion operation was first discussed in [16], where the deletion was considered as a quotient-like operation. 
Insertion and deletion operations together were introduced into formal language theory in [18]. The corresponding gram-

matical mechanism is called insertion–deletion system (abbreviated as ins–del system). Informally, the insertion and deletion 
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operations of an ins–del system are defined as follows: if a string η is inserted between two parts w1 and w2 of a string 
w1w2 to get w1ηw2 , we call the operation insertion, whereas if a substring δ is deleted from a string w1δw2 to get w1w2 , 
we call the operation deletion. Suffixes of w1 and prefixes of w2 are called contexts.

For an ins–del system, the descriptional complexity measures are based on the size comprising (i) the maximal length 
of the insertion string, denoted by n, (ii) the maximal length of the left context and right context used in insertion rules, 
denoted by i′ and i′′ , respectively, (iii) the maximal length of the deletion string, denoted by m, (iv) the maximal length of 
the left context and right context used in deletion rules denoted by j′ and j′′ , respectively. The size of an ins–del system is 
denoted by (n, i′, i′′; m, j′, j′′) and its corresponding language class is denoted by ID(n, i′, i′′; m, j′, j′′).

Several variants of ins–del systems have been introduced in the literature, like ins–del P systems [2,21], tissue P systems 
with ins–del rules [24], context-free ins–del systems [25], matrix ins–del systems [23,27,22], random context and semi-

conditional ins–del systems [14], etc. All the mentioned papers (as well as [17,29]) attempted to characterize the recursively 
enumerable languages (i.e., they show computational completeness) using ins–del systems. We refer to the survey article [31]

for details of variants of ins–del systems; this survey also discusses some proof techniques for showing computational 
completeness results. We also refer to the thesis [12] for various recent results on variants of ins–del systems.

One of the important variants of ins–del systems is graph-controlled ins–del systems (abbreviated as GCID systems) in-
troduced in [9] and further studied in [15] and [7]. In such a system, the concept of a component is introduced and is 
associated with every insertion or deletion rule. The transition is performed by choosing any applicable rule from the set of 
rules of the current component and by moving the resultant string to the target component specified in the rule. Inciden-
tally, when the underlying graph forms a tree structure, this system can be interpreted as an insertion–deletion P system 
[21], where several membranes (possibly, with nesting membrane structures) contain objects (in our case, strings) and based 
on the rules available in the membrane, they evolve and are sent to an adjacent membrane, as specified in the rule as its 
target membrane. For more details, see [26].

The objective of this paper is to obtain computational completeness results of the GCID systems with few components 
and small descriptional complexity measures of ins–del rules such that the underlying control graph is linear wherever 
possible. In this paper, considering all possible values of i′, i′′, j′, j′′ ∈ {0, 1}, we aim to find which GCID systems with k
components and the underlying ins–del size (1, i′, i′′; 1, j′, j′′), denoted as GCID(k; n, i′, i′′; m, j′, j′′), can characterize the 
recursively enumerable languages.

The novelty in our proof presentation is as follows. We consider a type-0 grammar in Special Geffert Normal Form (SGNF), 
which has two fundamentally different types of rules: context-free ones and non-context-free ones. We independently 
simulate these two types with different (parts of) graph-controlled ins–del systems that have also different properties, 
including the number of components and sizes. Such a part looks (formally) as a GCID �, but we are not interested in the 
language generated by �, but rather in the set of strings over V (i.e., the set of sentential forms) that can be transferred 
into component i f , assuming a certain (usually infinite) set of strings is fed into component i0 . So, such a GCID rather works 
like a transducer, translating languages over V into itself.

We then stitch together a simulation of context-free rules and a simulation of non-context-free rules (note that the 
simulating rules may have different sizes) by overlaying the rules of the two simulations, to obtain a characterization of the 
class of recursively enumerable languages. The concepts of stitching and overlaying are the hallmarks of this paper. These 
concepts are discussed in detail in Sec. 2.3. This approach provides a new perspective to the proof technique for proving such 
characterization results. Appropriate use of rule markers avoids malicious derivations with the new components obtained by 
stitching and/or overlaying.

The results of this paper improve the previous results (available in the literature) in the following ways.

1. In [9], Freund et al. showed that, in our notation, GCID(4; 1, 1, 0; 1, 1, 0) and GCID(4; 1, 1, 0; 1, 0, 1) are computationally 
complete and in [13], the authors proved that GCID(3; 1, 2, 0; 1, 1, 0) and GCID(3; 1, 1, 0; 1, 2, 0) are computationally 
complete. In this paper, we improve the above-mentioned results (i) of [9] by reducing the number of components from 
4 to 3 and (ii) of [13] by reducing the length of left context of insertion/deletion from 2 to 1; see Theorem 28 and 
Theorem 30.

2. In [19], it has been proved that ins–del systems (that is, GCIDs with one component) with size (2, 0, 0; 1, 1, 1) yield RE. 
If one wishes to reduce the length of the insertion string from 2 to 1 in the former result, then in this paper we prove 
that the number of components of a GCID system increases from 1 to 5; see Theorem 34. Reducing the components 
from 5 to, say 4, is left open.

3. In [28], it has been proved that an ins–del systems with size (1, 1, 1; 2, 0, 0) also give RE. Wishing to reduce the length 
of the deletion string from 2 to 1 in this result, we prove in this paper that the number of components again increases 
from 1 to 5; see Theorem 33. Reducing the components from 5 is left open, again.

4. In [29], it has been proved that ins–del systems with size (1, 1, 1; 1, 1, 1) characterize RE. If we desire to have one-sided 
context for insertion/deletion, then it is proved in [19] that the ins–del systems of size (1, 1, 1; 1, 1, 0) or (1, 1, 0; 1, 1, 1)
cannot characterize RE. It is therefore obvious that we need at least 2 components in a graph-controlled ins–del system 
of sizes (1, 1, 1; 1, 1, 0) and (1, 1, 0; 1, 1, 1) to characterize RE. In this paper, we prove the characterization with 3
components, maintaining a linear structure of the control graph only in the former case; see Theorems 27, 28. If we 
further desire to have context-free insertion/deletion (that is, randomly insert/delete in the string), then the number 
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of components of a GCID system increases from 1 to 5, still maintaining a linear structure of the control graph; see 
Theorems 33, 34.

In conclusion, the most significant contributions of this paper are as follows. It is conjectured in [19] that an ins–del system 
with weight ω (defined by n + i′ + i′′ + m + j′ + j′′) = 4 is not computationally complete. However, if we allow more 
components (say 3 or 5) to act, then graph-controlled ins–del systems with underlying weight ω = 4 or 5 all characterize 
RE. More specifically,

1. If ω = 4, then GCID systems with 3 or 5 components describe RE.
2. If ω = 5, then GCID systems with 3 components describe RE.

The results show some trade-off between the weight of a system and the number of components to arrive at computational 
completeness.

2. Preliminaries

We assume that the readers are familiar with the standard notations used in formal language theory. Nevertheless, we 
now recall a few notations here. Let N denote the set of positive integers, and [1 . . .k] = {i ∈N : 1 ≤ i ≤ k}. Given an alphabet
(finite set) �, �∗ denotes the free monoid generated by �. The elements of �∗ are called strings or words; λ denotes the 
empty string. For a string w ∈ �∗ , |w| denotes the length of a string w and wR denotes the reversal (mirror image) of w . 
Likewise, LR and LR are understood for languages L and language families L. FIN, REG, LIN, CF, CS and RE denote the 
families of the finite, regular, linear, context-free, context-sensitive and recursively enumerable languages, respectively.

For the computational completeness results, we are using the fact that type-0 grammars in SGNF are known to charac-
terize the RE languages.

Definition 1. ([9]) A type-0 grammar G = (N, T , P , S) is said to be in Special Geffert Normal Form, SGNF for short, if

• N decomposes as N = N ′ ∪ N ′′ , where N ′′ = {A, B, C, D} and N ′ contains at least the two nonterminals S and S ′ ,

• the only non-context-free rules in P are the two erasing rules AB → λ and CD → λ,

• the context-free rules are of the following forms:

X → Yb or X → bY where X, Y ∈ N ′, X �= Y , b ∈ T ∪ N ′′, or S ′ → λ.

The way the normal form is constructed is described in [9] and is based on [10]. Also, the derivation of a string is done 
in two phases. First, the context-free rules are applied repeatedly and the phase I is completed by applying the rule S ′ → λ

in the derivation. In phase II, only the non-context-free erasing rules are applied repeatedly and the derivation ends. This 
normal form has already been used in [9,13,27] in the domain ins–del systems and their variants. The advantage of using 
this normal form is that as these context-free rules are more like linear type, there can be at most only one nonterminal 
from N ′ present in the derivation of G . We exploit this observation in the proofs of several lemmas.

As usual, we write ⇒x to denote a single derivation step using rule x, and ⇒G (or ⇒ if no confusion arises) denotes 
a single derivation step using any rule of G . Then, L(G) = {w ∈ T ∗ | S ⇒∗ w}, where ⇒ is the reflexive transitive closure 
of ⇒.

2.1. Insertion–deletion systems

We now give the basic definition of insertion–deletion systems, following [18,28].

Definition 2. An insertion–deletion system, or ins–del system for short, is a construct γ = (V , T , A, R), where V is an alphabet, 
T ⊆ V is the terminal alphabet, A is a finite language over V , R is a finite set of triplets of the form (u, η, v)ins or (u, δ, v)del , 
where (u, v) ∈ V ∗ × V ∗ , η, δ ∈ V+ .

The pair (u, v) is called the context, η is called the insertion string, δ is called the deletion string and x ∈ A is called an 
axiom. If one of the u or v is λ for all the insertion (deletion) contexts, then we call the insertion (deletion) as one-sided. If 
both u, v = λ for every insertion (deletion) rule, then it means that the corresponding insertion (deletion) can be done freely 
anywhere in the string and is called context-free insertion (context-free deletion). An insertion rule of the form (u, η, v)ins
means that the string η is inserted between u and v and it corresponds to the rewriting rule uv → uηv . Similarly, a deletion 
rule of the form (u, δ, v)del means that the string δ is deleted between u and v and this corresponds to the rewriting rule 
uδv → uv .

For x, y ∈ V ∗ we write x ⇒ y if y can be obtained from x by using either an insertion rule or a deletion rule. The 
language generated by γ is defined by L(γ ) = {w ∈ T ∗ | x ⇒∗ w, for some x ∈ A} where ⇒∗ denotes (as often with ins–del 
systems, also to distinguish them from derivations within more traditional types of grammars) the reflexive and transitive 
closure of the relation ⇒.
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2.2. Graph-controlled insertion–deletion systems

A graph-controlled insertion–deletion system (GCID for short) with k components is a construct � = (k, V , T , A, H, i0, i f , R)

where

• k is the number of components,

• V is an alphabet,
• T ⊆ V is the terminal alphabet,
• A ⊆ V is a finite set of axioms,

• H is a set of labels associated (in a one-to-one manner) to the rules in R ,
• i0 ∈ [1 . . .k] is the initial component,

• i f ∈ [1 . . .k] is the final component, and
• R is a finite set of rules of the form (i, r, j) where r is an insertion rule of the form (u, η, v)ins or deletion rule of the 

form (u, δ, v)del and i, j ∈ [1 . . .k].

A rule of the form l : (i, r, j), where l ∈ H is the label associated to the rule, denotes that the string is sent from 
component i (for short denoted as Ci) to C j after the application of the insertion or deletion rule r on the string.

A configuration of � is represented by (w)i , where i is the number of the current component (initially i0) and w is 
the current string. In that case, we also say that w has entered component Ci. If the initial component itself is the final 
component, then we call the system to be a returning GCID system. We denote by (w)i ⇒l (w

′) j or (w ′) j ⇐l (w)i if (w ′) j is 
derived from (w)i on applying a rule l : (i, r, j) in R . By (w)i

⇒l
⇐l′

(w ′) j , we mean that (w ′) j is derivable from (w)i using rule 
l and (w)i is derivable from (w ′) j using rule l′ . For a returning GCID system � with initial component i0 , we also use the 
following derived form ⇒′ of a derivation relation: (w)i0 ⇒′ (w ′)i0 is true if there is a sequence of derivation steps (via ⇒) 
that starts with w in Ci0 and ends with w ′ in Ci0 , but no intermediate string in this derivation enters Ci0 . If ⇒′

∗ denotes 
the reflexive transitive closure of ⇒′ , then clearly for returning systems �,

L(�) = {w ∈ T ∗ | (S)i0 ⇒′
∗ (w)i0 , S ∈ A}.

A graph-controlled ins–del system � is said to be of size (k; n, i′, i′′; m, j′, j′′) if

k is the number of components

n = max{|η| : (i, (u,η, v)ins, j) ∈ R} m = max{|δ| : (i, (u, δ, v)del, j) ∈ R}

i′ = max{|u| : (i, (u,η, v)ins, j) ∈ R} j′ = max{|u| : (i, (u, δ, v)del, j) ∈ R}

i′′ = max{|v| : (i, (u,η, v)ins, j) ∈ R} j′′ = max{|v| : (i, (u, δ, v)del, j) ∈ R}

A size s1 = (k1; n1, i′1, i
′′
1; m1, j′1, j

′′
1) is said to be weaker than a size s2 = (k2; n2, i′2, i

′′
2; m2, j′2, j

′′
2) if x1 ≥ x2 for all x ∈

{k, n, m, i′, i′′, j′, j′′}.

We now discuss some examples to clarify the work of GCID systems.

Example 3. Consider the copy language L1 = {ww : w ∈ {a, b}∗}. A returning GCID system �1 of size (3; 1, 1, 0; 1, 0, 0), 
with L1 = L(�1), is described in the following. �1 = (3, {#, $, a, b}, {#$}, {r1.1, r1.2, r1.3, r2.1, r2.2, r2.3, r3.1, r3.2, r3.3},
1, 1, R), where the rules of R are listed below. Here, one can also see our convention of labeling rules in a way that also 
makes the component explicit by using the common infix ‘i.’ to refer to rules in Ci.

r1.1 : (1, (#,a, λ)ins,2) r1.2 : (1, (#,b, λ)ins,3) r1.3 : (1, (λ,$, λ)del,2)

r2.1 : (2, ($,a, λ)ins,1) r2.2 : (2, (λ,#, λ)del,1)

r3.1 : (3, ($,b, λ)ins,1)

Starting from #$ as the axiom, if an a is inserted by rule r1.1 after the marker #, then in C2, another a is inserted after 
the marker $ and the string is sent back to C1. Similarly, if r1.2 is applied, this will introduce a b after # and in C3, one 
b is inserted after $. This process can be repeated and the non-terminals are deleted by rules r1.3 and r2.2. One can note 
that # and $ are used as markers that will help introduce the symbols at their right place. During the derivation, if r2.2 is 
applied just after r1.2, then it is possible to apply r1.3; the resultant string will however be in C2 which is not the target 
component. Hence, to successfully terminate, rules r1.3 and r2.2 have to be applied at the end. Let us explain a possible 
derivation by using the notation for configurations in the following:

(#$)1 ⇒ (#a$)2 ⇒ (#a$a)1 ⇒ (#ba$a)3 ⇒ (#ba$ba)1 ⇒′ (#bba$bba)1 ⇒′ (bbabba)1

In general, by induction one can find that (#$)1 ⇒′
∗ (#w$w)1 ⇒′ (ww)1 for any w ∈ {a, b}∗ . ✷

In [20], it is shown that the language {ba}+ cannot be generated using ins–del systems with size (1, 1, 0; 1, 1, 1) which 
is same as GCID(1; 1, 1, 0; 1, 1, 1). The example below shows that two components are more powerful than one for systems 
of size (1, y, z; 1, 1, 1) with y + z ≤ 1.
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Example 4. Consider the regular language L2 = {ba}+ . L2 is generated by the graph-controlled ins–del system �2 =

(2, {$, a, b}, {a, b}, {$ba}, {r1.1, r1.2, r2.1},1,1, R), where the rules of R are: r1.1 : (1, ($, a, λ)ins, 2), r1.2 : (1, (λ, $, λ)del, 1), 
and r2.1 : (2, ($, b, λ)ins, 1). �2 is a GCID system of size (2; 1, 1, 0; 1, 0, 0). ✷

In [31], the following example is mentioned.

Example 5. Consider the linear language L3 = {w ∈ {a, b}∗ : |w|a = |w|b}. L3 can be generated by the graph-controlled 
ins–del system �3 = (2, {a, b}, {a, b}, {λ}, {r1.1, r2.2}, 1, 1, R), where the rules of R are: r1.1 : (1, (λ, a, λ)ins, 2) and r2.1 :
(2, (λ, b, λ)ins, 1). �3 is a GCID system of size (2; 1, 0, 0; 0, 0, 0). ✷

The (underlying) control graph of a graph-controlled insertion–deletion system � with k components is defined to be a 
graph with k nodes labeled C1 through Ck. There exists a directed edge from a node Ci to node C j if and only if there 
exists a rule of the form (i, r, j) in R of �. We also associate a simple undirected graph on k nodes to a GCID system of 
k components as follows: There is an undirected edge from a node Ci to C j (i �= j) if and only if there exists a rule of the 
form (i, r1, j) or ( j, r2, i) in R of �. If this underlying undirected simple graph has a tree (for instance, a linear) structure, 
then � can be viewed as an insertion–deletion P system (see [9]). Let us call a returning GCID system with k components 
strictly linear if its underlying simple undirected control graph has the edge set {(Ci,C(i + 1))} | i ∈ [1 . . .k − 1]}. Notice that 
this means that the corresponding directed control graph may contain arcs like (Ci, C(i + 1)), (C(i + 1), Ci), as well as 
loops (Ci, Ci). Notice that the control graph of �1 from Example 3 is not strictly linear, although �1 is returning and the 
underlying undirected control graph is a path. Conversely, the two Examples 4 and 5 show strictly linear GCID systems, 
because in fact any returning GCID system with two components only is strictly linear.

Slightly abusing notation, the language class generateable by GCID systems of size at most σ is denoted by GCID(σ ). In 
particular, for k = 1, GCID(1; n, i′, i′′; m, j′, j′′) = ID(n, i′, i′′; m, j′, j′′). The language class generateable by strictly linear GCID 
systems of size σ is denoted by GCIDL(σ ).

2.3. Stitching and overlaying

We consider a type-0 grammar G in Special Geffert Normal Form (SGNF) as described in Definition 1, carrying over 
the notation introduced there. So, G contains context-free rules of the three forms X → bY , X → Yb, S ′ → λ and the 
two non-context-free rules AB → λ, CD → λ. We first show how to simulate the non-context-free rules by GCID parts of 
certain sizes and then independently show how to simulate the context-free rules by GCID parts of certain other (possibly 
different) sizes. With these pieces in hand, we stitch together a simulation of non-context-free rules (say with size σcs) with 
a simulation of context-free rules (say with size σcf ), to obtain a simulation of the SGNF rules by a GCID system of size 
max{σcs, σcf }, where the maximum is applied for all respective parameters. The idea behind the stitching is as follows.

Suppose we simulate the context-free rule types p : X → bY , q : X → Yb and h : S ′ → λ of SGNF by a returning GCID 
part with k components (C1, C2, . . . , Ck), with initial component C1. Similarly, suppose we simulate the non-context-free 
rules f : AB → λ and g : CD → λ of SGNF by a returning GCID part with j components (C1, C(k + 1), . . . , C(k + j − 1)) and 
the same C1 as the initial component. Then we may simulate all the SGNF rules by a GCID system of k + j components 
with C1 as start and final component by the following steps:

1. Start at C1.
2. Traverse through C1, C2, . . . , Ck to simulate the CF rules.
3. Come back to C1, as this is the final component.

4. Starting off from C1, traverse through C1, C(k + 1), . . . , C(k + j − 1) to simulate the non-CF rules.
5. Come back to C1, as this is the final component.

This will correctly simulate any type-0 grammar in SGNF, so that we can describe all of RE by such systems, assuming 
that the rules put together in C1 do not interfere with each other, but we aim at decreasing the number of components. 
A detailed note on this is given in Sec. 5. To achieve such savings in the number of components, we overlay the com-

ponents of the two types of simulations. More formally, this overlay operation means the following. Let �1, �2 , where 
� j = (k j, V j, T , A j, H j, i0, i f , R j) for j = 1, 2, be two GCID systems (or parts thereof), then the overlay of �1 and �2 , 
written �1 ∪ �2 for short, is given by the GCID system � = (k, V , T , A, H, i0, i f , R), where k = max{k1, k2}, V = V1 ∪ V2 , 
A = A1 ∪ A2 , R = R1 ∪ R2 , and H = H1 ∪ H2 (preserving the association of labels to rules in R1 and R2). Notice that this 
operation is defined only if the initial and final component and the terminal alphabet are identical in both �1 and �2 , 
which is in particular true for returning systems. We will call the systems �1, �2 where �1 ∪ �2 is defined, overlayable.

Observe that the overlay of two GCID systems basically corresponds to merging the rules associated to their components 
in a straightforward manner. By definition, if �1 and �2 are overlayable, then

L(�1) ∪ L(�2) ⊆ L(�1 ∪ �2) .
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We will use this operation mainly to produce a complete GCID system simulating a type-0 grammar in SGNF, based on the 
parts simulating the non-context-free rules and the context-free rules. The set of axioms is then (always) a singleton set, 
consisting of the starting symbol S of the simulated grammar.

When providing simulation results, in our case, explaining how a GCID system � can be constructed that simulates a 
given type-0 grammar G in SGNF, it is usually relatively easy to prove that L(G) ⊆ L(�) holds, as this proof just follows the 
intended simulation, but it is more complicated to prove that the reverse inclusion L(G) ⊇ L(�) is also true. This means 
that we have to show that there is no way to derive a word in T ∗ \ L(G) by � from any axiom. In other words, we have to 
rule out malicious derivations.

In order to be sure that no malicious derivations occur due to overlaying, we assume that the rules in P are labeled
injectively with labels from the set [1 . . . |P |]. We introduce a new rule marker (symbol) for each rule in order to tell which 
of the rules we are simulating. For clarity, we use the notation p : ζ → ξ for a rule ζ → ξ ∈ P with label p. Usually, the rule 
marker is introduced in C1. So, when going to the next component, this marker is present and can guard the application of 
rules. For instance, if C2 is the component to which the string is sent, a rule (2, (λ, Y , p)ins, 3) can be only applied if the 
rule marker p is present and this shall introduce the symbol Y that is associated with the p rule (p : X → bY ). Therefore, we 
call rules that use rule markers as a context or that delete rule markers also guarded rules. Moreover, we often use derived 
rule markers, mostly primed rule markers like p′ or p′′ , that are introduced by guarded rules and can hence be also used to 
guard (other) rules. Using guarded rules makes it easy to argue that no malicious derivations are possible in the simulating 
ins–del system. This is in particular true if we can prove that no derivable string ever contains more than one rule marker. 
This useful property will be satisfied by all simulations using rule markers but the ones used in Theorems 28 and 30. In 
that case, we show, in addition, that any configuration (w)1 with one rule marker in w cannot derive a terminal string w ′

in C1. We further extend the use of rule markers by sometimes requiring both a rule marker p and its primed version p′

be present in the string sent to a particular component, by checking their presence in double-guarded rules. This proves in 
particular that two rules (introducing these two symbols) have been applied before. This idea is useful when insertions are 
context-free.

Another useful trick is that of a dummy symbol � that we sometimes introduce in order to be check the vicinity of 
symbols using deletions. To compare the work of the simulating ins–del system with that of the simulated type-0 grammar, 
we then use a homomorphism φ� that keeps all symbols unchanged but � which is deleted. Sometimes, the rules related to 
dummy symbol help us to obtain a linear structure of the underlying control graph which otherwise is not easy to achieve.

Also, the separated treatment of the simulations of the context-free and non-context-free rules facilitates our arguments, 
as we can separately (and hence more clearly) argue why no malicious derivations are possible in the combined system 
produced by overlay.

3. Auxiliary results

It has been proved in [28] that an ins–del system ID(n, i′, i′′; 0, 0, 0) with no deletions cannot generate more that CS. It 
is clear that the same holds true for graph-controlled ins–del systems, as well (since without deletion rules, the rules are 
monotone). As a counterpart, we show below that if there is no insertion, then the (graph-controlled) ins–del system cannot 
generate more than the family of finite languages.

Theorem 6. FIN = GCID(k; 0, i′, i′′; m, j′, j′′) for k ≥ 1; i′, i′′, j′, j′′, m ≥ 0.

Proof. Any finite language can be represented with the axiom set alone. Conversely, as long as the insertion string length 
fixed to be 0, rules can only shorten words in a derivation, so starting out from any finite language (the axiom set), we can 
only describe finite languages. ✷

To get some more interesting results, we assume in the following that the insertion and deletion lengths (n and m, 
respectively) are at least one.

Further, in order to simplify the proofs of some of our main results in the subsequent sections, the following observations 
are helpful.

Theorem 7. For all non-negative integers k, n, i′, i′′, m, j, j′′ , we have that

GCID(k;n, i′, i′′;m, j′, j′′) = [GCID(k;n, i′′, i′;m, j′′, j′)]R .

Proof. To an ins–del rule (x, y, z)μ with μ ∈ {ins, del}, we associate the reversed rule ρ(r) = (zR , yR , xR)μ . Let � =
(k, V , T , A, H, i0, i f , R) be a graph-controlled insertion–deletion system with k components. Map a rule l : (i, r, j) ∈ � to 
l : (i, ρ(r), j) in ρ(R). Define �R = (k, V , T , AR , H, i0, i f , ρ(R)). Then, an easy inductive argument shows that L(�R) =
(L(�))R . Observing the sizes of the system now shows the claim. ✷

Corollary 8. Let L be a language class that is closed under reversal. Then, for all non-negative integers k, n, i′, i′′, m, j′, j′′ , we conclude 
that
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f 1.1 : (1, (λ, f , λ)ins,2)

f 2.1 : (2, ( f , A, λ)del,3) f 2.2 : (2, (λ, f , λ)del,1)

f 3.1 : (3, ( f , B, λ)del,2)

Fig. 1. Simulation of f : AB → λ by GCID rules of size (3;1,0,0;1,1,0).

1. L = GCID(k; n, i′, i′′; m, j′, j′′) iff L = GCID(k; n, i′′, i′; m, j′′, j′);
2. L ⊆ GCID(k; n, i′, i′′; m, j′, j′′) iff L ⊆ GCID(k; n, i′′, i′; m, j′′, j′).

All the above results are also true for the family of insertion–deletion languages also, as ins–del grammar systems are 
special case of graph-controlled ins–del grammar systems when k = 1. A very important special case will be L = RE, as 
RE is closed under reversal and we are mostly interested in obtaining computational completeness results. To this end, the 
following proposition is also important to know.

Proposition 9. If L can be generated by some GCID system, then L ∈ RE.

Proof. (Sketch) As the applicability of each rule of a GCID system can be easily checked by a Turing machine, it is straight-
forward but tedious to develop a Turing machine that, given the description of some GCID system, enumerates all words of 
the corresponding language L by dovetailing. ✷

Having the previous result in mind, from now on we only need to show how to simulate Turing machines, or equivalently 
type-0 grammars in SGNF, by using certain types of GCID systems in order to show that these systems characterize the class 
RE of recursively enumerable languages.

4. Simulation of the SGNF rules in pieces

In this section, we provide different simulations of (first) the non-context-free rules and (then) the context-free rules of 
a type-0 grammar in SGNF. We chose this sequence of presentation, as the simulation of the non-context-free rules tend to 
be easier than the simulations of the context-free ones.

4.1. Simulation of non-context-free rules

Recall that in a type-0 grammar in SGNF, the non-context-free rules are of the form f : AB → λ and g : CD → λ, where 
A, B, C, D ∈ N ′′ . In the following lemmas, we will only present the simulation of the rule f : AB → λ by GCID rules of the 
specified sizes. A GCID part � of size σ j that simulates these non-context-free rules is denoted by �

σ j

cs and the size σ j

is sometimes also denoted as σ j
cs in Sec. 5.1. The simulation of g : CD → λ is similar to the simulation of the f rule and 

hence omitted. For simplicity, we abbreviate (⇒ f ∪ ⇒g) as ⇒ f ,g . As all our simulations start by introducing a rule marker 
symbol in C1, we do not mention this explicitly in the following.

Lemma 10. The non-context-free rules of a grammar G in SGNF can be simulated by a returning GCID part � = �
σ1
cs of size σ1 =

(3; 1, 0, 0; 1, 1, 0).
Let w, w ′ ∈ (N ∪ T )∗ . If w ⇒ f ,g w ′ in G, then (w)1 ⇒′ (w ′)1 in �. Moreover, if (w)1 ⇒′ (w ′)1 in �, then w ⇒∗

f ,g
w ′ .

Proof. The simulation of f : AB → λ is presented in Fig. 1.
We will see how the simulation works. Consider the string αABβ in C1. We introduce a marker f as a rule marker 

before A and move to C2. Now there is a choice of applying rule f 2.1 or f 2.2. In the latter case, we will delete the just 
inserted marker f and end up with αABβ in C1 (the starting point). Hence, we have to choose rule f 2.1 eventually to 
move on. In this case, there is a unique sequence of rule applications in � as follows.

(αABβ)1
⇒ f 1.1
⇐ f 2.2(α f ABβ)2 ⇒ f 2.1 (α f Bβ)3 ⇒ f 3.1 (α f β)2 ⇒ f 2.2 (αβ)1

There is only one little caveat here: It could be that we may choose to apply f 2.1 instead of f 2.2 in the last step. 
As this corresponds to first applying f 2.2 and then immediately applying f 1.1 again (re-inserting f in the same place), 
no harm can be done. Also, if (w)1 ⇒ (w ′)1 , then by induction (and observing the previous derivation possibilities), this 
means that w ′ was obtained from w by repeatedly removing (contiguous) substrings AB or CD . In particular, observe that 
introducing f into a position such that AB is not immediately following renders further derivation steps infeasible, apart 
from f 2.2 which simply undoes this choice of inserting f . Also, observe how using the rule markers f and g easily avoid 
any malicious derivations, as all rules in C2 and C3 are guarded. ✷

Remark 11. The control graph underlying the graph-controlled insertion–deletion rules from Lemma 10 is shown in Fig. 2. 
Its linear structure (a path on 3 vertices) is clearly visible. The labels of the edges refer to the rules as in Fig. 1. It is 
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Fig. 2. Control graph corresponding to Lemma 10: Simulation of non-CF rules by GCID rules of size (3;1,0,0;1,1,0).

f 1.1 : (1, (λ, f , λ)ins,2)

f 2.1 : (2, (λ, B, f )del,3) f 2.2 : (2, (λ, f , λ)del,1)

f 3.1 : (3, (λ, A, f )del,2)

Fig. 3. Simulation of f : AB → λ by GCID rules of size (3;1,0,0;1,0,1).

f 1.1 : (1, (λ, f , A)ins,2)

f 2.1 : (2, (λ, A, λ)del,3) f 2.2 : (2, (λ, f ′′, λ)del,1)

f 3.1 : (3, (B, f ′′, λ)ins,4) f 3.2 : (3, (λ, f ′, λ)del,2)

f 4.1 : (4, (λ, B, λ)del,5) f 4.2 : (4, (λ, f , λ)del,3)

f 5.1 : (5, ( f , f ′, f ′′)ins,4)

Fig. 4. Simulation of f : AB → λ by GCID rules of size (5;1,1,1;1,0,0).

understood that whenever an edge has label f i. j, then the label is read as f i. j, gi. j, since the simulation of g rules, though 
similar to the f rules, should also be taken care of. This convention is followed in all our control graphs. ✷

Lemma 12. The non-context-free rules of a grammar G in SGNF can be simulated by a returning GCID part � = �
σ2
cs of size σ2 =

(3; 1, 0, 0; 1, 0, 1).
Let w, w ′ ∈ (N ∪ T )∗ . If w ⇒ f ,g w ′ in G, then (w)1 ⇒′ (w ′)1 in �. Moreover, if (w)1 ⇒′ (w ′)1 in �, then w ⇒∗

f ,g
w ′ .

Proof. The rules of the GCID system is symmetrical to the simulating rules given in Fig. 1. However, the rules are made 
explicit in Fig. 3. ✷

Again, the underlying control graph structure is isomorphic to the graph shown in Fig. 2 and hence is linear.
While all previous non-trivial simulations were done by rules that either introduced rule markers or were guarded, this is 

no longer true in the following simulation. It is relatively hard to get rid of any context in the insertions or deletions. Hence 
it seems to be necessary to allow for more components. We require these many components and (primed/double-primed) 
markers to prevent these non-context free deletion rules from interfering or being interfered by the simulation of the 
corresponding context-free rules of SGNF while overlaying. We will even use triple- and quadruple-primed markers in some 
constructions that follow.

Lemma 13. The non-context-free rules of a grammar G in SGNF can be simulated by a returning GCID part � = �
σ3
cs of size σ3 =

(5; 1, 1, 1; 1, 0, 0).
Let w, w ′ ∈ (N ∪ T )∗ . Then w ⇒ f ,g w ′ iff (w)1 ⇒′ (w ′)1 in �.

Proof. The simulation of f : AB → λ is presented in Fig. 4. We now focus on explaining the simulation. C1 is the component 
where the simulation begins and ends. Assume that we need to process the string αABβ . In C1, the marker f is introduced 
on the left of A and the string moves to C2. In C2, the rule f 2.2 cannot be applied now as there is no double-primed 
marker f ′′ . Thus, in C2, the rule f 2.1 is applied which will delete an occurrence of A from the string. In C3, the rule f 3.2
cannot be used now as there is no f ′ in the string, thus the rule f 3.1 only can be applied which will introduce a marker f ′′

on the right of (some) B and the string moves to C4. In C2 and in C4 the marked A and B are (expected to be) deleted and 
the string moves to C5. If the correct occurrences of A and B are deleted, then the string will be of the form α f f ′′β and 
therefore, we can insert f ′ in between f and f ′′ using the rule f 5.1. In other words, we can only apply f 5.1 successfully 
if we had started the whole derivation like

(αABβ)1 ⇒ (α f ABβ)2 ⇒ (α f Bβ)3 ⇒ (α f B f ′′β)4 ⇒ (α f f ′′β)5 ⇒ (α f f ′ f ′′β)4 .

Now, we remove the markers f , f ′ and f ′′ using the rules f 4.2, f 3.2 and f .2.2 in order and obtain the string αβ in C1. 
More precisely, we get

(α f f ′ f ′′β)4 ⇒ (α f ′ f ′′β)3 ⇒ (α f ′′β)2 ⇒ (αβ)1 .

Note that, if f 4.2 is applied instead of f 4.1 in the configuration (α f B f ′′β)4 , then (αB f ′′β)3 ⇒ f 3.1 (αB f ′′ f ′′β)4 ⇒ f 4.1

(α f ′′ f ′′β)5 is enforced, but we cannot make any progress in C5, as the marker f is lost now and the derivation will be 
stuck in C5. If f 4.1 is applied in configuration (α f f ′ f ′′β)4 , then no rule in C5 is applicable and the derivation is stuck there 
again. Similarly, in configuration (α f ′ f ′′β)3 , we could now wrongly apply f 3.1 and move a string with one occurrence of 
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Fig. 5. Control graph corresponding to Lemma 13: Simulation of non-CF rules by GCID rules of size (5;1,1,1;1,0,0).

f 1.1 : (1, (λ, f , λ)ins,2)

f 2.1 : (2, (λ, f ′, λ)ins,3) f 2.2 : (2, (λ, f ′′, λ)del,1)

f 3.1 : (3, ( f , B, f ′)del,4) f 3.2 : (3, ( f ′′, f ′, λ)del,2)

f 4.1 : (4, (λ, f ′′, λ)ins,5) f 4.2 : (4, ( f ′′, f , f ′)del,3)

f 5.1 : (5, ( f ′′, A, f )del,4)

Fig. 6. Simulation of f : AB → λ by GCID rules of size (5;1,0,0;1,1,1).

f ′ and two occurrences of f ′′ into C4, where some B has to be deleted using f 4.1. The resulting string is moved into C5
and gets stuck there, as no occurrence of f is found. Finally, in configuration (α f ′′β)2 , we might apply f 2.1, followed by 
f 3.1 and f 4.1 (both enforced). As the resulting string that is sent to C5 contains no occurrence of f , the derivation is stuck 
again in C5. The crucial check that verifies the positions of the previously introduced markers f and f ′ is performed by an 
insertion operation in C5.

Thus, with the details provided above, we can see that AB is deleted correctly and the string αβ is sent back to C1.
We introduce similar rules to simulate g : CD → λ with size (5; 1, 1, 1; 1, 0, 0). As in C1, always a rule marker is in-

troduced, and this is needed to process C5, there is no way in which both simulations can interfere. In particular, if for 
example g4.1 was used instead of f 4.1 in a derivation that otherwise simulates the f -rule, then f 5.1 is not applicable, so 
that the derivation is stuck in C5. ✷

Remark 14. The control graph underlying the graph-controlled insertion–deletion rules from Lemma 13 is shown in Fig. 5. 
Its linear structure (a path on 5 vertices) is clearly visible. The labels of the edges refer to the rules as in Fig. 4. ✷

Although this is not clear at this point of the paper, there are situations where a more complicated, seemingly weaker 
simulation seems to be necessary. The specific property that we later need is that we have to guarantee that both a rule 
from C1 (actually, in this case, there is only one rule per simulating rule in C1) and other specific marker-introducing 
rules from C2 have to be introduced before being able to successfully apply any rule from C3, as can be seen in the 
next simulation. To underline these properties, we say that the rules in C3 are double-guarded. In other words, a rule is 
double-guarded when two markers are contexts in the rule.

Lemma 15. The non-context-free rules of a grammar G in SGNF can be simulated by a returning GCID part � = �
σ4
cs of size σ4 =

(5; 1, 0, 0; 1, 1, 1).
Let w, w ′ ∈ w ∈ (N ∪ T )∗ . Then w ⇒ f ,g w ′ iff (w)1 ⇒′ (w ′)1 in �.

Proof. The simulation of f : AB → λ is presented in Fig. 6 which begins at C1. Consider the string αABβ at C1. The 
intended sequence of simulating derivations is shown below.

(αABβ)1 ⇒ f 1.1 (αA f Bβ)2 ⇒ f 2.1 (αA f B f ′β)3 ⇒ f 3.1

(αA f f ′β)4 ⇒ f 4.1 (α f ′′A f f ′β)3 ⇒ f 5.1 (α f ′′ f f ′β)4 ⇒ f 4.2

(α f ′′ f ′β)3 ⇒ f 3.2 (α f ′′β)2 ⇒ f 2.2 (αβ)1

Let us now discuss the situation (w)1 ⇒′ (w ′)1 in � for w ∈ (N ∪ T )∗ . On applying the rule f 1.1, we introduce a 
marker f into the string and move the resulting string w1 to C2. The rule f 2.2 cannot be applied, since there is no f ′′

in w1 . Hence, on applying f 2.1, another marker f ′ is introduced and the resulting string w2 is moved to C3. In C3, due 
to the absence of double-primed markers in w and hence in w2 , the only applicable rule is f 3.1 which takes care of the 
positions of the markers f and f ′: f and f ′ are to the left and right of some occurrence of B , respectively. On deleting the 
sandwiched B , the resulting string w3 is moved to C4. Let us describe this derivation (enforced so far) more formally now. 
According to what we said above, w = α′Bβ ′ for some α′β ′ ∈ (N ∪ T )∗ .

(α′Bβ ′

︸ ︷︷ ︸

w

)1 ⇒ f 1.1 (α′ f Bβ ′

︸ ︷︷ ︸

w1

)2 ⇒ f 2.1 (α′ f B f ′β ′

︸ ︷︷ ︸

w2

)3 ⇒ f 3.1 (α′ f f ′β ′

︸ ︷︷ ︸

w3

)4

On applying the only applicable rule f 4.1, a new marker f ′′ is introduced randomly and the resulting string w4 is 
moved to C5. One may note that at this point there are three markers f , f ′, f ′′ in the string such that f ′ is placed after 
f and f ′′ is randomly placed. Now in C5, f 5.1 can be applied only if the previously introduced f ′′ was placed to the left 
of some A, which is now deleted. Moreover, this A that is deleted was situated left to the marker f , so that this produces 
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p1.1 : (1, (λ, p, X)ins,2)

p2.1 : (2, (p, X, λ)del,3) p2.2 : (2, (p,b, p′)ins,2) p2.3 : (2, (b, Y , p′)ins,2)

p2.4 : (2, (λ, p, λ)del,3) p2.5 : (2, (Y , p′, λ)del,2) p2.6 : (2, (Y , p′′, λ)del,1)

p3.1 : (3, (p, p′, λ)ins,2) p3.2 : (3, (p′, p′′, λ)ins,2)

(a) Simulation of p : X → bY

q1.1 : (1, (λ,q, X)ins,2)

q2.1 : (2, (q, X, λ)del,3) q2.2 : (2, (q, Y ,q′)ins,2) q2.3 : (2, (Y ,b,q′)ins,2)

q2.4 : (2, (λ,q, λ)del,3) q2.5 : (2, (b,q′, λ)del,2) q2.6 : (2, (b,q′′, λ)del,1)

q3.1 : (3, (q,q′, λ)ins,2) q3.2 : (3, (q′,q′′, λ)ins,2)

(b) Simulation of q : X → Yb

Fig. 7. Simulation of context-free rules of SGNF by GCID rules of size (3;1,1,1;1,1,0).

the string w6 = α′′ f ′′ f f ′β ′ , where α′ = α′′A which is moved to C4. If we now applied f 4.1 again, then the derivation 
is stuck in C5, as f ′′ is immediately to the left of f . So, we have to apply f 4.2 to continue. This produces the string 
w7 = α′′ f ′′ f ′β ′ that is moved to C3. As there is no marker f anymore in the string, f 3.2 has to be applied, producing the 
configuration (α′′ f ′′β ′)2 . In C2, only f 2.2 is applicable, leading us to (α′′β ′)1 . In other words, we showed that inevitably 
(w)1 = (α′′ABβ ′)1 ⇒′ (α′′β ′)1 , which corresponds to a rule application like AB → λ. A similar reasoning applies to the 
simulation of CD → λ. Finally, as rule applications are guarded, there is no danger of messing up derivations that simulate 
rules f and g . ✷

4.2. Simulation of context-free rules

Recall that in a type-0 grammar in SGNF, there are three forms of context-free rules: (i) p : X → bY , (ii) q : X → Yb and 
(iii) h : S ′ → λ, where S ′, X, Y ∈ N ′, X �= Y and b ∈ T ∪ N ′′ . One can simulate the rule S ′ → λ directly by (1, (λ, S ′, λ)del, 1). 
So, (iii) will no longer be explicitly mentioned in the following. In the following lemmas, we will therefore only simulate 
the p and q rules by GCID rules of the specified sizes. A GCID part � of size σi that simulates these context-free rules is 

denoted by �
σ ′
i

cf
and the size σ ′

i is sometimes also denoted as σ i
c f

in Sec. 5.1. It is important to note that the initial and 
final component in our GCID parts is again C1. For simplicity, we write ⇒cf to denote a derivation step of G due to one 
of the context-free rules. Apart from (1, (λ, S ′, λ)del, 1), all rules in C1 introduce a rule marker, which will therefore not be 
mentioned henceforth.

Lemma 16. The context-free rules of a type-0 grammar G in SGNF can be simulated by a returning GCID part � = �
σ ′
1

cf
of size 

σ ′
1 = (3; 1, 1, 1; 1, 1, 0).
Let w ∈ (N ′′ ∪ T )∗N ′(N ′′ ∪ T )∗ and w ′ ∈ (N ′′ ∪ T )∗(N ′ ∪ {λ})(N ′′ ∪ T )∗ . Then, w ⇒cf w ′ iff (w)1 ⇒′ (w ′)1 in �.

Proof. We simulate the context-free rules of a type-0 grammar G in SGNF by the rules listed in Figs. 7(a) and 7(b).

We now explain how the simulation of the rules p and q work and why no other malicious derivations are possible.

Simulation of p : X → bY : Consider the string w = αXβ in C1, with α, β ∈ (N ′′ ∪ T )∗ and X ∈ N ′ in C1. By p1.1, a p is 
introduced to the left of X and in C2, the X is deleted. In C2, we can see that no other rule can be applied except p2.4
and if p2.4 is applied, then in C3, no rules can be applied as no marker is present in the string. Thus, after applying p2.1, 
in C3 the rule p3.1 is applied which will introduce a p′ after p, sending the string αpp′β to C2. If p2.4 is applied before 
applying p2.2 and p2.3, the string will be stuck in C2 after applying p3.2 in C3, as Y is not yet introduced. Thus, in C2, the 
rules p2.2 and p2.3 are applied before applying p2.4, which will introduce b and Y in the string and result to (αpbYp′β)2 . 
As the insertion rules p2.2 and p2.3 have double-sided contexts, they cannot be applied again even if the string remains to 
be in C2. In C2, p is deleted by p2.4 and the string is sent to C3 where p′′ is introduced on the right of p′ by p3.2 and 
the resultant string αbYp′p′′β is sent to C2. In C2, in order to apply the rule p2.6, first the rule p2.5 is applied which will 
delete p′ and then p′′ is deleted by p2.6.

With the details provided, we can see that the rule p : X → bY is simulated and the string αbYβ is obtained in C1. The 
simulation is given by the following sequence of rule applications.

(αXβ)1
⇒p1.1
⇐p2.4(αpXβ)2 ⇒p2.1 (αpβ)3 ⇒p3.1 (αpp′β)2 ⇒p2.2

(αpbp′β)2 ⇒p2.3 (αpbYp′β)2 ⇒p2.4 (αbYp′β)3 ⇒p3.2

(αbYp′p′′β)2 ⇒p2.5 (αbYp′′β)2 ⇒p2.6 (αbYβ)1

Simulation of q : X → Yb: The simulation is very similar to the p-type rule simulation and hence, its explicit explanation is 
omitted. ✷

Remark 17. The control graph underlying the GCID rules from Lemma 16 is shown in Fig. 8. Its linear structure is evident. 
The labels of the edges refer to the rules as in Figs. 7(a) and 7(b). The labels of the edges refer to the rules as in Fig. 7(a). 
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Fig. 8. A linear control graph corresponding to Lemma 16: Simulating CF rules by GCID rules of size (3;1,1,1;1,1,0).

p1.1 : (1, (X, p, λ)ins,3) p1.2 : (1, (p, p′, λ)ins,2) p1.3 : (1, (p′, Y , λ)ins,2)

p2.1 : (2, (p,b, λ)ins,3) p2.2 : (2, (λ, p′, λ)del,1)

p3.1 : (3, (λ, X, λ)del,1) p3.2 : (3, (λ, p, λ)del,1)

(a) Simulation of p : X → bY

q1.1 : (1, (X,q, λ)ins,3) q1.2 : (1, (q,b, λ)ins,2) q1.3 : (1, (q′, Y , λ)ins,2)

q2.1 : (2, (q,q′, λ)ins,3) q2.2 : (2, (λ,q′, λ)del,1)

q3.1 : (3, (λ, X, λ)del,1) q3.2 : (3, (λ,q, λ)del,1)

(b) Simulation of q : X → Yb

Fig. 9. Simulation of context-free rules of SGNF by GCID rules of size (3;1,1,0;1,0,0).

It is understood that whenever an edge has label pi. j, then the label is read as pi. j, qi. j, since the simulation of q rules, 
though similar to the p rules, should also be taken care of. This convention is followed in all control graphs. ✷

In the following lemma, we reduce the size of the simulating GCID part from (3; 1, 1, 1; 1, 1, 0) or (3; 1, 1, 0; 1, 1, 1) to 
(3; 1, 1, 0; 1, 0, 0), however, compromising the linear structure of the underlying control graph.

Lemma 18. The context-free rules of a type-0 grammar G in SGNF can be simulated by a returning GCID part � = �
σ ′
3

cf
of size 

σ ′
3 = (3; 1, 1, 0; 1, 0, 0).
If w ⇒cf w ′ , then (w)1 ⇒′

∗ (w ′)1 in �.

Ignoring the context-free deletion rule, if (w)1 ⇒′ (w ′)1 ⇒′ (w ′′)1 ⇒′ (w ′′′)1 in � for some w ∈ (N ′′ ∪ T )∗N ′(N ′′ ∪ T )∗ , then 
w ⇒cf w ′′′ . Moreover, then w ′, w ′′ do not contain any occurrence of N ′, but a (derived) rule marker instead.

Proof. The simulations of p : X → bY and q : X → Yb are presented in Figs. 9(a) and 9(b), respectively. We now focus on 
explaining the simulations.

Simulation of p : X → bY : Consider the string αXβ in C1. On applying rule p1.1, we insert p after X and get αXpβ in C3. 
At this point, we have a choice of applying rule p3.1 or p3.2. In the latter case, the marker p will be deleted and we move 
back to the starting point. Hence we have to use rule p3.1 eventually to proceed. In this case, X is deleted and we move to 
C1 with αpβ , where p′ is inserted after p and the string moves to C2 with αpp′β . In C2, we can apply the rules p2.1 or 
p2.2. On applying p2.2, p′ is deleted and the string αpβ will be in C1 and we are back to the previous step. This forces us 
to eventually apply the rule p2.1. With these arguments, we simulate the rule X → bY as follows:

(αXβ)1
⇒p1.1
⇐p3.2(αXpβ)3 ⇒p3.1 (αpβ)1

⇒p1.2
⇐p2.2(αpp′β)2 ⇒p2.1 (αpbp′β)3

⇒p3.2 (αbp′β)1 ⇒p1.3 (αbp′Yβ)2 ⇒p2.2 (αbYβ)1.

Simulation of q : X → Yb: This is done very similarly to the case of p-type rules. We only show the intended derivation 
below.

(αXβ)1
⇒q1.1
⇐q3.2(αXqβ)3 ⇒q3.1 (αqβ)1 ⇒q1.2 (αqbβ)2 ⇒q2.1 (αqq′bβ)3

⇒q3.2 (αq′bβ)1 ⇒q1.3 (αq′Ybβ)2 ⇒q2.2 (αYbβ)1.

It might be a tempting idea to have a derivation that employs rules from the set of p and q rules in a mixed fashion. But, 
once the rule marker is introduced in C1 next to its corresponding N ′ symbol, then this N ′ symbol gets deleted, so that 
no other simulation can start in C1. In fact, any occurrence of N ′ is introduced only in C1 again, so that no interference of 
different simulations is possible. Our discussion also shows the remaining statements of the lemma. ✷

Remark 19. The control graph of the preceding simulation is displayed in Fig. 10. The graph is non-linear due to the arc 
from C3 to C1. ✷
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Fig. 10. Non-linear control graph corresponding to Lemma 18; Simulation of context-free rules by GCID rules of size (3;1,1,0;1,0,0).

p1.1 : (1, (λ, p, X)ins,2)

p2.1 : (2, (X, p′, λ)ins,3) p2.2 : (2, (λ, p, λ)del,1)

p3.1 : (3, (λ, X, λ)del,4) p3.2 : (3, (λ, p′, λ)del,2)

p4.1 : (4, (p,b, p′)ins,4) p4.2 : (4, (b, Y , p′)ins,3)

(a) Simulation of p : X → bY

q1.1 : (1, (λ,q, X)ins,2)

q2.1 : (2, (X,q′, λ)ins,3) q2.2 : (2, (λ,q, λ)del,1)

q3.1 : (3, (λ, X, λ)del,4) q3.2 : (3, (λ,q′, λ)del,2)

q4.1 : (4, (q, Y ,q′)ins,4) q4.2 : (4, (Y ,b,q′)ins,3)

(b) Simulation of q : X → Yb

Fig. 11. Simulation of context-free rules of SGNF by GCID rules of size (4;1,1,1;1,0,0).

In the following lemma, it seems to be necessary to allow for one more component, since it is relatively hard to get rid 
of any context in the deletions.

Lemma 20. The context-free rules of a type-0 grammar G in SGNF can be simulated by a returning GCID part � = �
σ ′
4

cf
of size 

σ ′
4 = (4; 1, 1, 1; 1, 0, 0).
Let w ∈ (N ′′ ∪ T )∗N ′(N ′′ ∪ T )∗ , w ′ ∈ (N ′′ ∪ T )∗(N ′ ∪ {λ})(N ′′ ∪ T )∗ .

Then, w ⇒cf w ′ iff (w)1 ⇒′ (w ′)1 in �.

Proof. The rules p : X → bY and q : X → Yb are simulated by the rules shown in Figs. 11(a) and 11(b). We now explain the 
simulation.

Simulation of p : X → bY : Consider the string w = αXβ in C1. Applying the rule p1.1 will introduce p to the left of X and 
the resultant string is sent to C2. In C2, both the rules are possible to apply and applying p2.2 will delete the previously 
introduced p and thus the original string w is sent back to C1. Hence, the rule p2.1 should be applied at some point of 
time which will introduce p′; thus the string αpXp′β is sent to C3. In C3, if the rule p3.2 is applied, then the string will 
have no change again as the introduced marker p′ is deleted and the string is sent back to C2. Thus, X will be eventually 
deleted by the rule p3.1 and the resultant string αpp′β is sent to C4. In C4, the only applicable rule is p4.1, as to apply 
p4.2, there should be a nonterminal from N ′ , in particular, Y ∈ N ′ and the corresponding marker p′ should be present in 
the string. The application of the rule p4.1 will introduce a b in between p, p′ and the resultant string αpbp′β shall remain 
in C4 and the rule cannot be applied again, because p is no longer immediately preceding p′ . Now, the rule p4.2 can be 
applied, which will introduce a Y in between b, p′ and the string αpbYp′β is sent to C3, where p′ is deleted using the rule 
p3.2. In C3, if r3.1 is applied, for some other rule like r : Y → Zb′ , Z ∈ N ′, b′ ∈ N ′′ ∪ T , then the derivation is now oscillating 
between C4 and C3, because the substring pp′ is no longer available, so that p4.1 is not applicable, but p4.2 is, which 
would re-introduce the N ′-symbol Y that got previously deleted by r3.1.

So, in C3 only the rule p3.2 should finally be applied which will delete p′ and the resultant string αYbp′β is sent to 
C2. In C2, the marker p is meant to be deleted by the rule p2.2 and the resultant string αYbβ is sent to C1. Should we, 
instead, apply r2.1, for some other rule like r : Y → Zb′ , Z ∈ N ′, b′ ∈ N ′′ ∪ T , then the string αpY r′bβ would be sent to C3; 
moving now αpYbβ back to C2 (applying r3.2) would not change the flow of our argument. However, sending αpr′bβ to 
C4 (applying r3.1) will make the derivation stuck in C4.

Thus, the rule p : X → Yb is simulated correctly and the intended derivation is given below.

(αXβ)1 ⇒p1.1 (αpXβ)2 ⇒p2.1 (αpXp′β)3 ⇒p3.1 (αpp′β)4 ⇒p4.1 (αpbp′β)4

⇒p4.2 (αpbYp′β)3 ⇒p3.2 (αpbYβ)2 ⇒p2.2 (αbYβ)1.

Simulation of q : X → Yb: This is very similar to the simulation of the p-type rule and we omit explanatory details, except 
one detail. When arriving in the configuration (αqYbq′β)3 , passing into C4 by some rule deleting Y will immediately get 
stuck.



112 H. Fernau et al. / Theoretical Computer Science 682 (2017) 100–121

Fig. 12. A control graph corresponding to Lemma 20: Simulation of CF rules by GCID rules of size (4;1,1,1;1,0,0).

p1.1 : (1, (λ, p, λ)ins,2) p1.2 : (1, (λ,�,λ)ins,1)

p2.1 : (2, (λ, p′, λ)ins,3) p2.2 : (2, (λ, p′,b)del,1)

p3.1 : (3, (p′, X, p)del,4) p3.2 : (3, (b, p, Y )del,2)

p4.1 : (4, (λ, Y , λ)ins,5) p4.2 : (4, (λ,b, λ)ins,3)

p5.1 : (5, (p,�, Y )del,4)

(a) Simulation of p : X → bY

q1.1 : (1, (λ,q, λ)ins,2) q1.2 : (1, (λ,�,λ)ins,1)

q2.1 : (2, (λ,q′, λ)ins,3) q2.2 : (2, (b,q′, λ)del,1)

q3.1 : (3, (q, X,q′)del,4) q3.2 : (3, (Y ,q,b)del,2)

q4.1 : (4, (λ, Y , λ)ins,5) q4.2 : (4, (λ,b, λ)ins,3)

q5.1 : (5, (Y ,�,q)del,4)

(b) Simulation of q : X → Yb

Fig. 13. Simulation of context-free rules of SGNF by GCID rules of size (5;1,0,0;1,1,1).

Finally, observe that due to the introduction of different rule markers in C1, no confusion between the two kinds of 
rule simulations is possible. More precisely, consider two rules of the form p : X → bY and q : X ′ → Y ′b′ with X ′ = X . By 
symmetry, we will only discuss about starting the derivation with p1.1. Arguments about starting the derivation with q1.1
follow similarly. Consider a string w = αXβ . Applying p1.1 on w , we get w1 = αpXβ . Deviating from the usual application 
of p2.1 or p2.2, we apply q2.1 on w1 which yields w2 = αpXq′β at C3. At this point, there is a choice of applying either 
p3.1 = q3.1 or q3.2 on w2 . In the former case, the nonterminal X is deleted and the resultant string w3 = αpq′β enters 
C4. No rule of C4 is applicable due to the absence of a nonterminal and of p′, q. In the latter case, the marker q′ is deleted 
in w2 which yields αpXβ = w1 . Hence, mixed derivations either get stuck up at C4 or get back to some string present in 
the intended derivation sequence. ✷

Remark 21. The control graph of the preceding simulation is shown in Fig. 12. Its corresponding underlying undirected 
simple graph is a path on four nodes and hence linear. ✷

We now present a symmetric simulation of context-free insertion however with one more extra component (of size 
(5; 1, 0, 0; 1, 1, 1)). It is a bit tricky in the sense that we make use of a dummy symbol �, as discussed in Sec. 2.

Lemma 22. The context-free rules of a type-0 grammar G in SGNF can be simulated by a returning GCID part � = �
σ ′
5

cf
of size 

σ ′
5 = (5; 1, 0, 0; 1, 1, 1).
If w ⇒cf w ′ , then (w)1 ⇒′ (w ′)1 in �.

If (w)1 ⇒′ (w ′)1 ⇒′ (w ′′)1 in � for some w ∈ (N ′′ ∪ T )∗N ′(N ′′ ∪ T )∗ with 
∣
∣{w, w ′, w ′′}

∣
∣ = 3, then w = φ�(w ′), and w ⇒cf w ′′

or w = φ�(w ′′).

Proof. The simulation of p : X → bY and q : X → Yb is presented in Figs. 13(a) and 13(b), respectively.
We now focus on explaining the simulations.

Simulation of the rule p : X → Yb: Consider the string w = αXβ in C1. In the beginning, we apply p1.1 or p1.2. Assume 
that p1.2 is applied some times which will randomly introduce some � in the string. Later, we will see that the most 
useful thing is to introduce one � immediately after X . Then, the rule p1.1 is applied which will introduce a p anywhere 
in the string and the string is then moved to C2. The rule p2.2 cannot be applied as there is no p′ present. Thus, in C2, an 
application of the rule p2.1 will introduce a p′ in the string and the string is moved to C3. As we will later understand, the 
string that can survive future derivation steps is now w ′ = αp′Xp�β , with possibly more occurrences of � inserted into 
the string.

In C3, an application of p3.2 on w ′ would possibly delete p (think of having introduced some r in C1 corresponding 
to a rule with left-hand side Y , this marker r can now be deleted, or, alternatively, think of having started with v = α′Yβ ′

instead of w); now, applying p2.2 would bring us back to our origin in C1 with the same string we started with, possibly 
decorated with some additional occurrences of �. However, if we now apply p2.1 (or any other such rule r2.1), then we 
are stuck in C3, as we have now two occurrences of primed rule labels, but no occurrence of an un-primed rule label, so 
that neither p3.1 nor p3.2 are applicable.
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Fig. 14. Control graph corresponding to Lemma 22: Simulating the CF rules by GCID rules of size (5;1,0,0;1,1,1).

This results in the application of p3.1 on w ′ which ensures that the previously introduced p and p′ are actually placed 
to the side of X and the X ∈ N ′ is deleted. With the resultant string αp′p�β (following previous discussions), in C4, if p4.2
is applied before the rule p4.1 is applied, then in C3, no rule will be applicable, as there is no nonterminal in the string. 
Thus, in C4 with the string αp′p�β , the Y corresponding to the p-rule is introduced by p4.1. In C5, the rule p5.1 can be 
applied only if the dummy symbol � has been introduced by p1.2 and is placed after p.

The deletion of � ensures that the previously introduced Y is placed after p�. The deletion of � will bring the string 
αp′pYβ to C4 and if p4.1 is applied again, then the string will be stuck in C5 as after p, the nonterminal Y is present and 
� cannot be found to delete it.

This means that if � has been introduced, say, twice by p1.2, then this additional � is placed somewhere else and not 
between p and Y . Thus, in C4, p4.2 must be applied to the configuration (αp′pYβ)4 . This will introduce a b and the rule 
p3.2 ensures that the previously introduced b corresponds to this p rule and is placed after the primed label p′ , preceding 
the rule marker p. This will enable to delete p and in C2, p′ is also deleted by p2.2.

It is possible that we can have several copies of the dummy symbol � in the string which can be removed later when 
calling some rule r5.1 again, simulating a context-free rule r, or the derivation will not terminate, which is of course 
innocuous, as it would have been possible to generate the correct number of � in C1 in another derivation.

Simulation of q : X → Yb: The simulation of this rule is similar to the simulation of the p-type rule explained above, and 
hence we are not discussing it here. We only provide the intended simulation:

(α�Xβ)1 ⇒q1.1 (α�qXβ)2 ⇒q2.1 (α�qXq′β)3
⇒q3.1 (α�qq′β)4 ⇒p4.1 (αY�qq′β)5 ⇒p5.1 (αYqq′β)4
⇒q4.2 (αYqbq′β)3 ⇒q3.2 (αYbq′β)2 ⇒q2.2 (αYbβ)1

There is also no way to start a derivation with a p-type rule simulation and then switch to the q-type rule simulation, 
or vice versa, in any terminating derivation of �, as the rules in C3 that allow to pass to C4 are double-guarded and the 
correct introductions of Y and b (by the context-free insertions in C4) are later checked by guarded deletions.

Finally consider the situation (w)1 ⇒′ (w ′)1 ⇒′ (w ′′)1 in � for some w ∈ (N ′′ ∪ T )∗N ′(N ′′ ∪ T )∗ with 
∣
∣{w, w ′, w ′′}

∣
∣ = 3. 

By our previous considerations, we cannot first apply some rule r1.1, as such a derivation is stuck, and we cannot move a 
string w ′ into C1 again. So, we need to apply some rule r1.2 once or twice in the beginning. If we apply it once, then w ′

and w only differ by one occurrence of � in w ′ , but φ�(w ′) = w . If we apply r1.2 a second time, then φ�(w ′′) = w holds. 
Otherwise, we apply r1.1 to w ′ , follow the simulation as described above, in particular deleting the only occurrence of �
with r5.1, so that w ′′ satisfies w ⇒cf w ′′ . ✷

Remark 23. The control graph of the simulation rules given in Figs. 13(a) and 13(b) is shown in Fig. 14. ✷

Remark 24. A GCID system of size as specified in the previous Lemmas (16 through 22) simulates the rules p : X → bY , 
q : X → Yb and h : S ′ → λ where X, Y , S ′ ∈ N ′ and b ∈ T ∪ N ′′ . In particular, if b ∈ T , then the GCID system will simulate 
linear rules. So, LIN � GCID(α) where α is one of the sizes specified in Lemmas 16 through 22. The strictness of the 
containment follows from Example 5. ✷

5. Computational completeness of GCID systems

In this section, we prove several computational completeness results for graph-controlled ins–del systems of size 
(k; 1, i′, i′′; 1, j′, j′′) for all values in the range i′, i′′, j′, j′′ ∈ {0, 1}, with k ∈ {3, 4, 5} components. S. Ivanov and S. Verlan 
[13] have conjectured that such GCID systems with only two components are no better than ins–del systems to characterize 
RE, as two components do not provide sufficient control. We were also unable to find any computational completeness 
results for such GCID systems with two components only. However, it would be very interesting to prove the mentioned 
conjecture, as it would automatically imply that our results for 3 components are optimal.

We achieve the computational completeness results of GCID systems with 3 to 5 components by stitching together the 
ingredients that we explained in Sec. 4. In order to be more parsimonious regarding the overall number of components, we 
will overlay the components defined above for the non-context-free and for the context-free rules. At this point, the reader 
may refer to Sec. 2.3 to recall the concept of overlaying. Further, the strict linearity of the control graph is preserved by 
overlaying. Formally, this yields the following proposition.

Proposition 25. Let �1 and �2 be two strictly linear overlayable GCID systems. Then, �1 ∪ �2 is also strictly linear.
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Table 1

The stitching components (simulations of context-free and non-context-free rules) and resulting sizes of GCID systems yielding RE.
σ i
c f

GCID(σ i
c f

)

can simulate 
CF rules of 
SGNF:

σ
j
cs GCID(σ

j
cs)

can simulate 
non-CF rules 
of SGNF:

Size δi j of 
resulting GCID 
system, where 
δi j := σ i

c f
⊕ σ

j
cs

Why does RE 
equal 
GCID(δi j)?

Control 
graph 
is 
linear?

σ 1
c f

Lemma 16 σ 1
cs Lemma 10 (3; 1, 1, 1; 1, 1, 0) Theorem 27 Yes

σ 2
c f

Lemma 18 σ 1
cs Lemma 10 (3; 1, 1, 0; 1, 1, 0) Theorem 28 No

σ 2
c f

Lemma 18 σ 2
cs Lemma 12 (3; 1, 1, 0; 1, 0, 1) Theorem 30 No

σ 3
c f

Lemma 20 σ 3
cs Lemma 13 (5; 1, 1, 1; 1, 0, 0) Theorem 33 Yes

σ 4
c f

Lemma 22 σ 4
cs Lemma 15 (5; 1, 0, 0; 1, 1, 1) Theorem 34 Yes

5.1. RE results

From Lemmas 16 through 22, we notice that the context-free rules p : X → bY , q : X → Yb and h : S ′ → λ of SGNF are 
simulated by GCID rules of the following sizes:

σ 1
c f

= (3;1,1,1;1,1,0) σ 2
c f

= (3;1,1,0;1,0,0)

σ 3
c f

= (4;1,1,1;1,0,0) σ 4
c f

= (5;1,0,0;1,1,1)

We note that the sizes σ 1
cf

and σ 3
cf

are weaker than σ 2
cf
. However, the underlying control graph of a GCID part of the 

first two sizes that simulates the context-free rules of SGNF has a linear structure, this is not so with the GCID of size σ 2
cf
.

From Lemmas 10 through 13, we notice that the deletion rules f : AB → λ and g : CD → λ of SGNF are simulated by 
GCID rules of the following sizes:

σ 1
cs = (3;1,0,0;1,1,0) σ 2

cs = (3;1,0,0;1,0,1)

σ 3
cs = (5;1,1,1;1,0,0) σ 4

cs = (5;1,0,0;1,1,1)

We now define a map ⊕ as follows: Let s1 = (k1; n1, i′1, i
′′
1; m1, j′1, j

′′
1) and s2 = (k2; n2, i′2, i

′′
2; m1, j′2, j

′′
2) be two sizes of 

GCID system (parts), then define s1 ⊕ s2 := (k; n, i′, i′′; m, j′, j′′) where

k = max{k1,k2} n = max{n1,n2} i′ = max{i′1, i
′
2} i′′ = max{i′′1, i

′′
2}

m = max{m1,m2} j′ = max{ j′1, j
′
2} j′′ = max{ j′′1, j

′′
2}

We choose a σ i
c f

(1 ≤ i ≤ 4) and a σ j
cs (1 ≤ j ≤ 4) and we prove in the following theorems that GCID(σ i

c f
⊕ σ

j
cs) equals RE. 

In Table 1, we explicitly specify which σ i
c f

and σ j
cs go into the stitching of the Theorems 27 through 34.

Since we stitch together the two parts by overlay, the following observation is important.

Proposition 26. Let �1 and �2 be two overlayable GCID systems of sizes s1 and s2 , respectively. Then, �1 ∪ �2 has size s1 ⊕ s2 .

We are now ready to prove our main results. The salient points in the proof of all our following RE results are as follows.

• We consider a type-0 grammar G = (N, T , S, P ) in SGNF.
• The rules of P are uniquely labeled with [1 . . . |P |], which will be used as markers. Sometimes, we also use primed or 

double-primed markers.

• In order to prove that RE = GCID(δi j) with k components where δi j = σ i
c f

⊕ σ
j
cs , we construct a graph-controlled 

insertion–deletion system � = (k, V , T , {S}, H, 1, 1, R) such that L(�) = L(G) as follows.

– Build the GCID part �
σ j

cs where σ j = σ
j
cs , according to the Lemma cited against σ j

cs .

– Build the GCID part �
σ ′
i

cf
where σ ′

i
= σ i

c f
, according to the Lemma cited against σ i

c f
.

– Set � := �
σ ′
i

cf
∪ �

σ j

cs by overlay.

– By Proposition 26, � is of size σ i
c f

⊕ σ
j
cs = δi j .

• The alphabet of � satisfies V ⊂ N∪ T ∪{p, p′, p′′ : p ∈ [1 . . . |P |]}. The exact definition of the alphabet V will individually 
follow by the descriptions of the rules.

• The set of rules R (of �) can be seen as the union of the GCID rules simulating (i) the context-free rules, (ii) the 
context-free deletion rule and (iii) the non-context-free rules.

• It is known that any word w ∈ T ∗ derivable in G can be derived in two phases: first, only context-free rules are 
applied, starting with S and yielding w ′ (the first phase ends by simulating S ′ → λ) and then, only non-context-free 
rules are applied. By the appropriate Lemmas showing the simulation of the stitching components, we know that 
(S)1 ⇒′

∗ (w ′)1 ⇒′
∗ (w)1 . This proves that L(G) ⊆ L(�).
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Component C1 Component C2 Component C3

p1.1 : (1, (λ, p, X)ins,2) p2.1 : (2, (p, X, λ)del,3) p3.1 : (3, (p, p′, λ)ins,2)

p2.2 : (2, (p,b, p′)ins,2) p3.2 : (3, (p′, p′′, λ)ins,2)

p2.3 : (2, (b, Y , p′)ins,2)

p2.4 : (2, (λ, p, λ)del,3)

p2.5 : (2, (Y , p′, λ)del,2)

p2.6 : (2, (Y , p′′, λ)del,1)

q1.1 : (1, (λ,q, X)ins,2) q2.1 : (2, (q, X, λ)del,3) q3.1 : (3, (q,q′, λ)ins,2)

q2.2 : (2, (q, Y ,q′)ins,2) q3.2 : (3, (q′,q′′, λ)ins,2)

q2.3 : (2, (Y ,b,q′)ins,2)

q2.4 : (2, (λ,q, λ)del,3)

q2.5 : (2, (b,q′, λ)del,2)

q2.6 : (2, (b,q′′, λ)del,1)

f 1.1 : (1, (λ, f , λ)ins,2) f 2.1 : (2, ( f , A, λ)del,3) f 3.1 : (3, ( f , B, λ)del,2)

f 2.2 : (2, (λ, f , λ)del,1)

Fig. 15. GCID rules of size (3;1,1,1;1,1,0) characterizing RE; see Figs. 7(a), 7(b) and 1.

• To prove the converse (L(�) ⊆ L(G)), we consider some derivation (S)1 ⇒′
∗ (w)1 in � and show the following.

– Decompose the above derivation into (w i)1 ⇒′ (w i+1)1 , such that S = w0 , w = wm , i.e., the chosen derivation moves 
exactly the strings w0 , . . . , wm into component C1.

– Markers are attached when applying rules in C1, apart from the (only) context-free deletion rule h1.1.
– The h rule (context-free deletion) simulation cannot be mixed-up with other symbols as S ′ is a unique symbol 

from N ′ .

– The introduction of rule markers was the reason why the simulations of two non-context-free deletion rules could 
not interfere with each other in the rules of �

σ j

cs .

– Similarly, rule markers are also used in the context-free case to avoid the interference with each other in the rules 

of �
σ ′
i

cf
.

– Mixed derivations (derivations that use the rules of context-free simulation and non-context-free simulation in a mixed 
fashion) do not produce any unintended/malicious strings.

• In each of the following theorems, we just present the overlay table showing the rules of R in � and only discuss why 
mixed derivations (do not) yield (un)intended strings. The correctness of the derivations using just the (non-)context-

free rules of �
σ ′
i

cf
(�

σ j

cs ) are shown in the respective lemmas.

We will use the features described in the previous items in the proofs presented in the following without further men-

tioning. To clarify our constructions, we will however always summarize the different ins–del rules in a table. As the rules 
simulating f : AB → λ and g : CD → λ are identical up to (uniquely) renaming f (and primed versions thereof) by g , A by 
C and B by D , we will not list the rules for g; nor, we will list the simulation rule for h : S ′ → λ, as it is always the same.

Theorem 27. GCIDL(3; 1, 1, 1; 1, 1, 0) = GCIDL(3; 1, 1, 1; 1, 0, 1) = RE.

This result is already proved in [7]; however, the proof was not approached with the concept of stitching and overlaying. 
Besides, most importantly, some of the rules discussed in [7] are modified here in view of guarding them. Thus, the proof 
of the following result is different from the proof discussed in [7].

Notice that this theorem will be further improved in Theorem 28. However, this result is also useful, as the under-
lying control graph has a linear structure and hence this result can be interpreted in terms of P systems. Recall that 
GCID(1; 1, 1, 1; 1, 1, 1) equals RE; see [29]. If one desires to have one-sided context for deletion in this system, then this is 
achieved with three components in this theorem.

Proof. The rules of �σ1

cf
and �σ1

cs given in Figs. 7(a), 7(b) and 1 are stitched together along with h1.1 : (1, (λ, S ′, λ)del, 1) and 
the overlay table showing the stitched rules is presented in Fig. 15.

As said earlier, we now only discuss why mixed derivation do not yield bad strings. Every rule in C2 and C3 can be 
applied only if the appropriate marker is present. Also, all rules in C3 are double guarded. In other words, once the context-
free rule simulation has started, it cannot continue with C2-rules stemming from the non-context-free rule simulation and 
vice versa. This shows that no malicious derivations are possible, so that each derivation (sub)sequence of (w i)1 ⇒′ (w i+1)1
corresponds either to a non-context-free or to a context-free rule application according to Lemmas 16 and 10.

Corollary 8 shows that also GCID systems of size (3; 1, 1, 1; 1, 0, 1) are computationally complete. From the rules given 
in Fig. 15, one may verify that the underlying control graph of the above simulation is isomorphic to the graph shown in 
Fig. 8 which is linear. This fact agrees with Proposition 25. ✷

Up to now, all rules that we used to show computational completeness results were guarded. This was even true (some-

how) in the rather complicated simulation of the previous theorem, as the rules r2.1 and r3.1 (from simulating context-free 
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Component C1 Component C2 Component C3

p1.1 : (1, (X, p, λ)ins,3) p2.1 : (2, (p,b, λ)ins,3) p3.1 : (3, (λ, X, λ)del,1)

p1.2 : (1, (p, p′, λ)ins,2) p2.2 : (2, (λ, p′, λ)del,1) p3.2 : (3, (λ, p, λ)del,1)

p1.3 : (1, (p′, Y , λ)ins,2)

q1.1 : (1, (X,q, λ)ins,3) q2.1 : (2, (q,q′, λ)ins,3) q3.1 : (3, (λ, X, λ)del,1)

q1.2 : (1, (q,b, λ)ins,2) q2.2 : (2, (λ,q′, λ)del,1) q3.2 : (3, (λ,q, λ)del,1)

q1.3 : (1, (q′, Y , λ)ins,2)

f 1.1 : (1, (λ, f , λ)ins,2) f 2.1 : (2, ( f , A, λ)del,3) f 3.1 : (3, ( f , B, λ)del,2)

f 2.2 : (2, (λ, f , λ)del,1)

Fig. 16. GCID rules of size (3;1,1,0;1,1,0) characterizing RE; see Figs. 9(a), 9(b) and 1.

rules r) could only be successfully applied when matched with the rule marker r in C4. This will change in the following 
simulations. For clarity, we will indicate dangerous unguarded rules by framing them. The following two theorem improves 
the result of Theorem 27 by further making the context of insertion one-sided.

Theorem 28. GCID(3; 1, 1, 0; 1, 1, 0) = GCID(3; 1, 0, 1; 1, 0, 1) = RE.

This result improves a result of [9] where 4 components were used in a GCID system of size (1, 1, 0; 1, 1, 0) to character-
ize RE and a result of [13]: GCID(3; 1, 2, 0; 1, 1, 0) = RE and GCID(3; 1, 1, 0; 1, 2, 0) = RE. However, now we no longer obtain 
a linear structure of the control graph.

Proof. The set of rules R (of �) is defined as the union of the GCID rules simulating the context-free rules as explained in 
Fig. 9(a) and Fig. 9(b), as well as the context-free deletion rule, plus the non-context-free rules listed in Fig. 1. We collect 
all the rules of R in Fig. 16.

We now discuss the correctness of the rules. No rule in C2 can be applied if the appropriate marker is not present, 
because all rules are guarded. This also shows that, once the context-free rule simulation has started, it cannot continue 
with C2-rules stemming from the non-context-free rule simulation, nor vice versa. In C3, the framed deletion rules p3.1
or q3.1 could be applied while simulating a non-context-free rule. Namely, they are the only rules that are not guarded. 
However, there is no way to continue such a derivation, because in C1, we will be left-out with the marker f which cannot 
be erased. Note that f 2.2 cannot be used to remove such left-over rule markers, because, in order to be able to apply this 
rule, the system has to apply first apply f 1.1, which introduces one more rule marker. Also, once (the only) occurrence of 
a symbol from N ′ was deleted from the string (by an unintended use of p3.1 or q3.1), the rules simulating context-free 
rules are no longer applicable. This shows that no malicious derivations are possible, so that each derivation (sub)sequence 
of (w i)1 ⇒′

∗ (w i+1)1 corresponds either to a non-context-free or to (parts of) a context-free rule application according to 
Lemmas 18 and 10.

The second part, GCID(3; 1, 0, 1; 1, 0, 1) = RE, follows from Corollary 8. ✷

Remark 29. The underlying graph of the previous simulation is not linear, since the graph underlying the simulation of its 
context-free rules is not linear (see Remark 19). ✷

Theorem 30. GCID(3; 1, 1, 0; 1, 0, 1) = GCID(3; 1, 0, 1; 1, 1, 0) = RE.

This result improves a result of [9] where 4 components were used in a GCID system of size (1, 1, 0; 1, 0, 1) to charac-
terize RE.

Proof. The set of rules R (of �) is the union of the GCID rules simulating the context-free rules as explained in Fig. 9(a) 
and Fig. 9(b), as well as the context-free deletion rule, plus the non-context-free rules listed in Fig. 3. We collect all rules in 
Fig. 17.

As the formal reasoning is completely analogous to the one given in the proof of Theorem 28, we omit it here. ✷

Remark 31. As in the previous case, the underlying graph of the previous simulation is not linear (also see Remark 19).

Combining Theorems 28 and 30, we have the following.

Corollary 32. GCID(3; 1, i′, i′′; 1, j′, j′′) = RE for all i′, i′′, j′, j′′ ∈ {0, 1} with i′ + i′′ = 1 and j′ + j′′ = 1.

It is known that GCID(1; 1, 1, 1; 1, 1, 1) = RE (by [29]). If one desires to have context-free deletions only, then this is 
achieved using 5 components in the following theorem. In the subsequent theorem (Theorem 34), we prove that even if 
one desires to have a context-free insertion instead of deletion, then 5 components can be used to achieve this. These 
results indicate that characterizing RE with context-free deletion/insertion is highly non-trivial.
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Component C1 Component C2 Component C3

p1.1 : (1, (X, p, λ)ins,3) p2.1 : (2, (p,b, λ)ins,3) p3.1 : (3, (λ, X, λ)del,1)

p1.2 : (1, (p, p′, λ)ins,2) p2.2 : (2, (λ, p′, λ)del,1) p3.2 : (3, (λ, p, λ)del,1)

p1.3 : (1, (p′, Y , λ)ins,2)

q1.1 : (1, (X,q, λ)ins,3) q2.1 : (2, (q,q′, λ)ins,3) q3.1 : (3, (λ, X, λ)del,1)

q1.2 : (1, (q,b, λ)ins,2) q2.2 : (2, (λ,q′, λ)del,1) q3.2 : (3, (λ,q, λ)del,1)

q1.3 : (1, (q′, Y , λ)ins,2)

f 1.1 : (1, (λ, f , λ)ins,2) f 2.1 : (2, (λ, B, f )del,3) f 3.1 : (3, (λ, A, f )del,2)

f 2.2 : (2, (λ, f , λ)del,1)

Fig. 17. GCID rules of size (3;1,1,0;1,0,1) characterizing RE; see Figs. 9(a), 9(b) and 3.

Component C1 Component C2 Component C3

p1.1 : (1, (λ, p, X)ins,2) p2.1 : (2, (X, p′, λ)ins,3) p3.1 : (3, (λ, X, λ)del,4)

p2.2 : (2, (λ, p, λ)del,1) p3.2 : (3, (λ, p′, λ)del,2)

q1.1 : (1, (λ,q, X)ins,2) q2.1 : (2, (X,q′, λ)ins,3) q3.1 : (3, (λ, X, λ)del,4)

q2.2 : (2, (λ,q, λ)del,1) q3.2 : (3, (λ,q′, λ)del,2)

f 1.1 : (1, (λ, f , A)ins,2) f 2.1 : (2, (λ, A, λ)del,3) f 3.1 : (3, (B, f ′′, λ)ins,4)

f 2.2 : (2, (λ, f ′′, λ)del,1) f 3.2 : (3, (λ, f ′, λ)del,2)

Component C4 Component C5

p4.1 : (4, (p,b, p′)ins,4)

p4.2 : (4, (b, Y , p′)ins,3)

q4.1 : (4, (q, Y ,q′)ins,4)

q4.2 : (4, (Y ,b,q′)ins,3)

f 4.1 : (4, (λ, B, λ)del,5) f 5.1 : (5, ( f , f ′, f ′′)ins,4)

f 4.2 : (4, (λ, f , λ)del,3)

Fig. 18. GCID rules of size (5;1,1,1;1,0,0) characterizing RE; see Figs. 11(a), 11(b) and 4.

Fig. 19. A control graph corresponding to Theorem 33: RE = GCIDL(5;1,1,1;1,0,0).

Theorem 33. GCIDL(5; 1, 1, 1; 1, 0, 0) = RE.

Proof. The set of rules R (of �) is the union of the GCID rules simulating the context-free rules as explained in Fig. 11(a) 
and Fig. 11(b), as well as the context-free deletion rule, plus the non-context-free rules listed in Fig. 4, see Fig. 18 for a 
summary.

In the following we discuss only about the mixed derivations and why it cannot produce terminal strings. Once a rule 
in C1 is applied (except h1.1), one can continue the derivation with the sequence of rules f .2.1, p3.1 and f 4.1. If this 
happens during the process of simulating the context-free rules, when the resultant string reaches C5, there will be no f
or f ′′ marker to apply the rule f 5.1 and the string will be stuck in C5.

If such a sequence of rules is applied during the simulation of non-context-free deletion rules, then the resultant string 
will again be stuck in C5, as there is no double-primed marker f ′′ present in the string. Note that the introduction of 
a double-primed marker is only possible in C3 with the rules f 3.1 but, instead the rule p3.1 or q3.1 has been applied. 
Thus, we can see that the simulation of context-free rules and non-context-free rules are non-interfering. This shows that 
no malicious derivations are possible, so that each derivation (sub)sequence of (w i)1 ⇒′ (w i+1)1 corresponds either to a 
non-context-free or to a context-free rule application according to Lemmas 20 and 13.

The underlying graph of the above simulation is as shown in Fig. 19. Note that the label responsible for an edge in the 
graph is not indicated to avoid cumbersome texts. The corresponding underlying undirected simple graph is a path on 5
vertices, a linear structure. ✷

Theorem 34. GCIDL(5; 1, 0, 0; 1, 1, 1) = RE.
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Component C1 Component C2 Component C3

p1.1 : (1, (λ, p, λ)ins,2) p2.1 : (2, (λ, p′, λ)ins,3) p3.1 : (3, (p′, X, p)del,4)

p1.2 : (1, (λ,�,λ)ins,1) p2.2 : (2, (λ, p′,b)del,1) p3.2 : (3, (b, p, Y )del,2)

q1.1 : (1, (λ,q, λ)ins,2) q2.1 : (2, (λ,q′, λ)ins,3) q3.1 : (3, (q, X,q′)ins,4)

q1.2 : (1, (λ,�,λ)ins,1) q2.2 : (2, (b,q′, λ)del,1) q3.2 : (3, (Y ,q,b)del,2)

f 1.1 : (1, (λ, f , λ)ins,2) f 2.1 : (2, (λ, f ′, λ)ins,3) f 3.1 : (3, ( f , B, f ′)del,4)

f 2.2 : (2, (λ, f ′′, λ)del,1) f 3.2 : (3, ( f ′′, f ′, λ)del,2)

Component C4 Component C5

p4.1 : (4, (λ, Y , λ)ins,5) p5.1 : (5, (p,�, Y )del,4)

p4.2 : (4, (λ,b, λ)ins,3)

q4.1 : (4, (λ, Y , λ)ins,5) q5.1 : (5, (Y ,�,q)del,4)

q4.2 : (4, (λ,b, λ)ins,3)

f 4.1 : (4, (λ, f ′′, λ)ins,5) f 5.1 : (5, ( f ′′, A, f )del,4)

f 4.2 : (4, ( f ′′, f , f ′)del,3)

Fig. 20. GCID rules of size (5;1,0,0;1,1,1) characterizing RE; see Figs. 13(a), 13(b) and 6.

Proof. The set of rules R (of �) is the union of the GCID rules simulating the context-free rules as explained in Fig. 13(a) 
and Fig. 13(b), as well as the context-free deletion rule, plus the non-context-free rules listed in Fig. 6. These rules are 
collected in Fig. 20.

Notice that according to Lemma 22, especially the last statement, quite a number of dummy symbols can be present in 
some string (w i)1 , but this fact would not interfere at all with derivations simulating the context-free rules.

There is one caveat here. The introduction of the primed rule marker in r2.1 for a context-free rule r is free of context. 
However, as all rules introducing a primed marker lead to component C3 and there, only double-guarded rules are used, 
we cannot continue beyond C3 if we had started (say) with f 1.1 and had continued (say) with p2.1.

The reader might have wondered why we do not run into problems with the (framed) unguarded rules in this simulation. 
However, notice that the only way to get into C4 or C5 is via C3. As these rules are double-guarded, they require a previous 
application of the according rules in C1 and C2. Assume first that we had started a simulation of a context-free rule, say, 
of type p, hence introducing the markers p and p′ , but neither f nor f ′ , into the string that is moved to C4. Clearly, f 4.2
is not applicable now. If we use f 4.1, then we are stuck in C5, as X �= Y , so that p5.1 is not applicable. Secondly, if we 
had started a simulation of a non-context-free rule, say, rule f , we would have introduced the markers f and f ′ , but no 
markers of context-free rules. If we now used, say, p4.1 instead of f 4.1, then we cannot continue in C5, as the symbols p
and f ′′ required in the rules of C5 are not present. Likewise, if we applied p4.2, then we are back to C3, where all rules 
are double-guarded, which means that none of the rules is applicable to our current string.

This shows that no malicious derivations are possible, so that each derivation (sub)sequence of (w i)1 ⇒′ (w i+1)1 corre-

sponds either to a non-context-free or to (part of) a context-free rule application according to Lemmas 22 and 15. ✷

Remark 35. For all i, 1 ≤ i ≤ 5, we have LIN� GCID(σ i
c f

) by Remark 24. Further, from the theorems proved in this section, 

we may note that the system GCID(σ i
c f

) will itself generate RE (i.e., far beyond LIN) if i = 1, 2, 5. We achieved this by 

providing some σcs weaker than σ i
c f

such that σcs ⊕ σ i
c f

= σ i
c f
. Whether this is possible for the other cases remains open. 

In particular, from Remark 24, it is clear that we can simulate LIN using GCID(σ 3
cf

) (see proposition below), but we were 
unable to characterize RE with this size. ✷

Proposition 36. LIN� GCID(3; 1, 1, 0; 1, 0, 0) ∩ GCID(3; 1, 0, 1; 1, 0, 0).

Proof. According to Lemma 18 and Remark 36, GCID systems of size (3; 1, 1, 0; 1, 0, 0) generate more than LIN, thus proving 
the first part of the statement. The second part follows from Corollary 8, as LIN is closed under reversal. ✷

6. Computational completeness of ins–del P systems

In this section, we connect our obtained results in Sec. 5.1 with ins–del P systems. We use ELSPk(INS
i′,i′′

n DEL
j′, j′′

m ) (as 
used by Gh. Păun in [26]) to represent the family of languages generated by ins–del P systems of k membranes and size 
(n, i′, i′′, m, j′, j′′), where the size parameters have the same meaning as in GCID systems. At this point, we recall that if the 
underlying undirected simple graph of a GCID system establishes a tree (or in particular a linear) structure, then this GCID 
system can also be seen as an ins–del P system. On the other hand, in a P system, there is no specific initial membrane 
where the computation begins since the membranes evolve in a maximally parallel way. But artificially, if we make the 
axiom in each membrane (except one) to be empty, then this exceptional membrane can be viewed as a initial membrane 
to begin with and such a system works in the same way as a GCID system where the membranes of a P system correspond 
to the components of a GCID system. It is known that the following ins–del P systems are computationally complete.
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Table 2

Analysis of the generative power of GCID system of sizes (k; 1, i′, i′′; 1, j′, j′′).
ω Size of the system 

(k; 1, i′, i′′; 1, j′, j′′)
Value 
of k

Language 
class 
relation

Reference Remark Control 
graph 
linear?

2 (k; 1, 0, 0; 1, 0, 0) 1 � REG [30,19]

2 (k; 1, 0, 0; 1, 0, 0) ≥ 2 ⊆ MAT [2] MAT� RE

3 (k; 1, 0, 0; 1, 1, 0) – OPEN –

3 (k; 1, 0, 0; 1, 0, 1) – OPEN –

4 (k; 1, 0, 0; 1, 1, 1) 5 = RE Theorem 34 Yes

3 (k; 1, 1, 0; 1, 0, 0) 3 � LIN Proposition 36 No

4 (k; 1, 1, 0; 1, 1, 0) 3 = RE Theorem 28 Improves [9,13] No

4 (k; 1, 1, 0; 1, 0, 1) 3 = RE Theorem 30 Improves [9] No

5 (k; 1, 1, 0; 1, 1, 1) 3 = RE Theorem 28 �= RE if k = 1 [19] No

3 (k; 1, 0, 1; 1, 0, 0) 3 � LIN Proposition 36 No

4 (k; 1, 0, 1; 1, 1, 0) 3 = RE Theorem 30 No

4 (k; 1, 0, 1; 1, 0, 1) 3 = RE Theorem 28 No

5 (k; 1, 0, 1; 1, 1, 1) 3 = RE Theorem 28 No

4 (k; 1, 1, 1; 1, 0, 0) 5 = RE Theorem 33 Yes

5 (k; 1, 1, 1; 1, 1, 0) 3 = RE Theorem 28 �= RE if k = 1 [19] Yes

5 (k; 1, 1, 1; 1, 0, 1) 3 = RE Theorem 28 Yes

6 (k; 1, 1, 1; 1, 1, 1) 1 = RE [29] Yes

• [9] ELSP4(INS
1,0
1 DEL

0,0
2 ), ELSP4(INS

0,0
2 DEL

1,0
1 )

• [13] ELSP3(INS
2,0
1 DEL

1,0
1 ), ELSP3(INS

1,0
1 DEL

2,0
1 )

From Table 1, one may note that the underlying control graph of the GCID systems (characterizing RE) of Theorems 27, 
33 and 34 has a linear structure. In other words, we have the following proposition.

Proposition 37. The results of the Theorems 27, 33 and 34 correspond, respectively, to the following computational completeness 
results of ins–del P systems.

1. ELSP3(INS
1,1
1 DEL

j′, j′′

1 ) = RE for j′, j′′ ∈ {0, 1} and j′ + j′′ = 1,

2. ELSP5(INS
1,1
1 DEL

0,0
1 ) = RE,

3. ELSP5(INS
0,0
1 DEL

1,1
1 ) = RE.

Remark 38. In a P system, the output membrane is either the elementary membrane (i.e., one of the innermost membranes) 
or the out-of-skin membrane (i.e., the environment). If we restrict the output membrane to be the same as the initial 
membrane (the membrane where the computation starts), then such a P system may correspond to returning GCID systems 
discussed throughout this paper. This observation might lead to more investigations on linear P systems in the future; also 
see [1].

7. Conclusions and open problems

In this article, we have investigated the computational completeness of graph-controlled insertion–deletion systems of 
size (k; 1, i′, i′′; 1, j′, j′′) for all values of i′, i′′, j′, j′′ ∈ {0, 1}, with k ∈ {3, 5}. We have collected our results in Table 2. The 
following points can be easily observed from the table.

• Out of these 16 types of GCID systems, it is found that 11 types characterize RE, one is weaker than REG

((1; 1, 0, 0; 1, 0, 0)) and two contain LIN. The power of other remaining 2 system types (namely (k; 1, 0, 0; 1, 1, 0) and 
(k; 1, 0, 0; 1, 0, 1)) is left open. Note that (if the simulated family is closed under reversal) the generative power of the 
former will tell something about the generative power of the latter and vice versa, by Corollary 8.

• Comparing ω = n + i′ + i′′ +m + j′ + j′′ (specified in the first column) and k (the number of components) given in the 
third column, we may observe the following points.
– For ω = 2, the according GCID systems either characterize the class of finite languages (for the non-binary size 

(0, 0, 0; 2, 0, 0)), or are only capable of generating context-sensitive languages (for the size (2, 0, 0; 0, 0, 0)), or are 
included in the class MAT of languages that can be described by context-free matrix grammars without appearance 
checking (according to [2, Theorem 4], for the size (1, 0, 0; 1, 0, 0)). Hence, in no case, such GCID systems can be 
computationally complete, nor is the class of languages that can be described by any GCID systems of weight two 
equal to RE.

– If ω = 3, then whether a GCID system with weight ω characterizes RE is still open.
– If ω = 4 and if the contexts of the insertion/deletion are one-sided, then GCID systems require 3 components to 

describe RE, assuming that the mentioned conjecture of S. Ivanov and S. Verlan [13] is correct, as this implies that 
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such systems with only two components are not computationally complete. Under this conjecture, our results are 
hence best possible for this type of GCID systems.

– If ω = 4 and if the insertion/deletion are performed in a context-free manner, then GCID systems need 5 components 
to describe RE in our simulations with underlying control graph being linear.

– If ω = 5 and if the insertion/deletion context is one-sided, then GCID systems require 3 components to describe RE, 
assuming that the mentioned conjecture of S. Ivanov and S. Verlan [13] is correct. Under this conjecture, our results 
are hence optimal for this type of GCID systems. If deletion is one-sided, then underlying control graph is linear. 
However it is not the case when insertion is one-sided.

From this, note that k does not decrease if we increase ω or vice versa. The results of this paper do not provide 
any relationship between ω and k. Instead of looking at the total weight, we believe that comparing individual size 
parameters to the number of components could shed even more light upon the contribution of graph control to the 
power of insertion and deletion.

It might be interesting to note that the classical definition of a grammar controlled by a bicolored digraph, see [5], differs 
in one aspect from the graph-controlled insertion–deletion systems as considered here: namely, the latter systems allow 
individual transitions to the next components, while in the former grammars, these transitions are given by the edges of the 
control graph, so that all rules in one node (component) have to transit to the same next node. It is therefore interesting to 
study correspondingly defined insertion–deletion systems controlled by a bicolored digraph. This is also discussed in [6,12].

As matrix insertion–deletion system is a particular case of graph-controlled insertion–deletion system and already some 
computationally completeness results of the former has been discussed in literature (see, for example, [8,27]), it would be 
interesting to study (in an approach similar to Sec. 6) what descriptional complexity results of GCID systems correspond to 
matrix ins–del systems and vice versa.

We are currently studying two aspects of GCID ins–del systems:

• What is the power of these systems if we insist on linear or tree structures of the control graph?
• In the case that we cannot prove that GCID systems of certain sizes characterize RE, can we say more about their power 

by comparing them with other language families known from the literature?
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