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Abstract. Let R be a commutative ring with identity and let Nil(R) be the ideal of all

nilpotent elements of R. Let I(R) = {I : I is a non-trivial ideal of R and there exists a

non-trivial ideal J such that IJ ⊆ Nil(R)}. The nil-graph of ideals of R is defined as the

simple undirected graph AGN (R) whose vertex set is I(R) and two distinct vertices I and

J are adjacent if and only if IJ ⊆ Nil(R). In this paper, we study the planarity and genus of

AGN (R). In particular, we have characterized all commutative Artin rings R for which the

genus of AGN (R) is either zero or one.
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1. INTRODUCTION

The study of algebraic structures, using the properties of graphs, became an exciting

research topic in the past twenty years, leading to many fascinating results and questions.

In the literature, there are many papers assigning graphs to rings, groups and semigroups,

see [2,9,12]. The first graph construction from a commutative ring is the zero-divisor graph by

Beck [9]. The zero-divisor graph was later studied by D.D. Anderson et al. [3] and Anderson

et al. [2]. There are several other graphs associated with commutative rings such as the total

graph [1], the annihilator graph [7] and the dot-product graph [8]. These consider the elements

in the commutative ring as vertices. In ring theory, the structure of a ring R is more closely
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tied to its ideals behavior than to its elements, and so it is more appropriate to define a graph

with ideals instead of elements as vertices. Some of the graph constructions with ideals of a

commutative ring as vertices are the annihilating ideal graph [10] and the nil-ideal graph [14].

Several authors [4,5,17–21] studied various properties of these graphs including diameter,

girth, domination and genus. In this paper, we are interested in certain topological properties

of the nil-graph of ideals of commutative rings.

Throughout this paper, R is a commutative ring with identity which is not an integral

domain. An ideal I of R is said to be an annihilating-ideal if there exists a non-zero ideal

J of R such that IJ = (0). We denote the set of non-zero annihilating ideals of R by

A
∗(R). Behboodi et al. [10,11] introduced and investigated the annihilating-ideal graph of

R. The annihilating-ideal graph of R is defined as the simple undirected graph AG(R)
whose vertex set is A

∗(R) and two distinct vertices I and J are adjacent if and only if

IJ = (0). Shaveisi et al. [14] generalized the annihilating-ideal graph of R and introduced

the nil-graph of ideals of R. Let Nil(R) be the ideal of all nilpotent elements of R and

I(R) = {I : I is a non-trivial ideal of R and there exists a non-trivial ideal J such that IJ ⊆
Nil(R)}. The nil-graph of ideals of R is defined as the undirected simple graph AGN (R)
whose vertex set is I(R) and two distinct vertices I and J are adjacent if and only if IJ ⊆
Nil(R). It is easy to see that AG(R) is a subgraph of AGN (R).

By a graph G = (V,E), we mean an undirected simple graph with vertex set V and edge

set E. A graph in which each pair of distinct vertices is joined by an edge is called a complete

graph. We use Kn to denote the complete graph with n vertices. An r-partite graph is one

whose vertex set can be partitioned into r subsets so that no edge has both ends in any one

subset. A complete r-partite graph is one in which each vertex is joined to every vertex that is

not in the same subset. The complete bipartite graph (2-partite graph) with part sizes m and

n is denoted by Km,n. The girth of G is the length of a shortest cycle in G and is denoted by

gr(G). If G has no cycles, we define the girth of G to be infinite. The corona of two graphs

G1 and G2 is the graph G1 ◦ G2 formed from one copy of G1 and |V (G1)| copies of G2,

where the ith vertex of G1 is adjacent to every vertex in the ith copy of G2.

Let Sk denote the sphere with k handles, where k is a non-negative integer, that is, Sk is an

oriented surface with k handles. The genus of a graph G, denoted g(G), is the smallest integer

n such that the graph can be embedded in Sn. Intuitively, G is embedded in a surface if it can

be drawn in the surface so that its edges intersect only at their common vertices. We say that

a graph G is planar if g(G) = 0, and toroidal if g(G) = 1. Note that a planar graph G has

an embedding in the plane. A subdivision of a graph is a graph obtained from it by replacing

edges with pairwise internally-disjoint paths. Kuratowski’s theorem says that a graph G is

planar if and only if it contains no subdivision of K5 or K3,3. Also, if H is a subgraph

of a graph G, then g(H) ≤ g(G). For details about the notion of embedding of a graph

in a surface one can refer to A.T. White [22]. Several authors [6,13,15,16,21] studied the

genus of graphs from commutative rings. In particular several characterizations are obtained

for planar and toroidal nature of graphs from commutative rings. The purpose of this paper

is to study the embeddings of the nil-graph of ideals AGN (R). This paper is organized as

follows.

In Section 2, we characterize all commutative Artin rings R for which the nil-graph of

ideals AGN (R) is planar. In Section 3, we characterize all commutative Artin rings R for

which the nil-graph of ideals AGN (R) is of genus one. Now we state a result which provides

a characterization for AGN (R) to be complete.
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Fig. 1. AGN (Z2 × Z2).

Fig. 2. AGN (Z2 × Z2 × Z2).

Theorem 1.1 ([14]). Let R be a commutative ring. Then AGN (R) is complete if and only if

one of the following conditions holds:

(i) (R,Nil(R)) is a local ring;

(ii) R ∼= F1 × F2, where F1 and F2 are two fields.

2. PLANARITY OF NIL-GRAPH OF IDEALS

In this section, we characterize all commutative Artin rings R for which AGN (R) is

planar. Let us see some examples of nil-graph of ideals.

Example 2.1. Two nil-graph of ideals are given in Figs. 1 and 2.

Now we obtain a characterization for AGN (R) to be planar for some classes of rings R.

Theorem 2.2. Let R = F1 × F2 × · · · × Fn be a commutative ring, where each Fi is a field

and n ≥ 2. Then AGN (R) is planar if and only if n = 2 or 3.

Proof. If n = 2, then AGN (R) ∼= K2(refer to Fig. 1). If n = 3, then AGN (R) ∼=
K3 ◦ K1(refer to Fig. 2). Hence AGN (R) is planar in both cases.

Conversely, assume that AGN (R) is planar. Suppose that n > 3. Consider the non-zero

proper ideals I1 = F1 × (0) × (0) × (0) × · · · × (0), I2 = (0) × F2 × (0) × (0) × · · · × (0),
I3 = F1 × F2 × (0) × (0) × · · · × (0), J1 = (0) × (0) × F3 × (0) × · · · × (0),
J2 = (0) × (0) × (0) × F4 × · · · × (0) and J3 = (0) × (0) × F3 × F4 × · · · × (0) of

R. Note that IiJk = (0) = Nil(R) for all i, k and so K3,3 is a subgraph of AGN (R), a

contradiction to AGN (R) being planar. Hence n = 2 or n = 3. �

Theorem 2.3. Let R = R1 × R2 × · · · × Rn be a commutative ring with identity, where each

(Ri,mi) is a local ring with mi ≠ {0}. Then AGN (R) is planar if and only if R is a local

ring with at most four non-trivial ideals.

Proof. Suppose that R is a local ring with at most four non-trivial ideals. By Theorem 1.1,

AGN (R) is complete and so AGN (R) ∼= Kt, where t ≤ 4. Hence AGN (R) is planar.

Conversely, assume that AGN (R) is planar. Assume that n > 1. Let I1 = R1 × (0) ×
m3 × · · · × mn, I2 = (0) × R2 × m3 × · · · × mn, I3 = m1 × (0) × m3 × · · · × mn,
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Fig. 3. AGN (R1 × F1).

I4 = (0) × m2 × m3 × · · · × mn and I5 = m1 × m2 × m3 × · · · × mn. Then Ii (1 ≤ i ≤ 5)

are non-zero proper ideals in R and IiIj ⊆ Nil(R) for all i ≠ j and so K5 is a subgraph of

AGN (R), a contradiction. Hence n = 1 and so R is a local ring. Since AGN (R) is planar

and by Theorem 1.1, R contains at most four non-trivial ideals. �

Theorem 2.4. Let R = R1 × · · · × Rn × F1 × · · · × Fm be a commutative ring with identity,

where each (Ri,mi) is a local ring with mi ≠ {0} and each Fj is a field, n ≥ 1 and m ≥ 1.

Then AGN (R) is planar if and only if R = R1×F1 and m1 is the only non-trivial ideal in R1.

Proof. If R = R1×F1 and m1 is the only non-trivial ideal in R1, then AGN (R) is isomorphic

to the graph given in Fig. 3. Hence AGN (R) is planar.

Conversely, assume that AGN (R) is planar. Suppose that n ≥ 2. Then I1 = R1 × (0) ×
(0) × · · · × (0), I2 = (0) × R2 × (0) × · · · × (0), I3 = m1 × (0) × (0) × · · · × (0),
I4 = (0) × m2 × (0) × · · · × (0) and I5 = m1 × m2 × (0) × · · · × (0) are non-trivial ideals

in R and IiIj ⊆ Nil(R) for all i ≠ j. From this we get that K5 is a subgraph of AGN (R), a

contradiction. Hence n = 1.

Suppose that m ≥ 2. Now I1 = R1 × (0) × (0) × · · · × (0), I2 = (0) × F1 × (0) × · · · × (0),
I3 = m1 ×F1 ×(0)× · · · ×(0), J1 = (0)×(0)×F2 × · · · ×(0), J2 = m1 ×(0)×F2 × · · · ×(0)
and J3 = m1 × (0) × (0) × · · · × (0) are non-trivial ideals in R with IiJj ⊆ Nil(R) for all

i, j and so K3,3 is a subgraph of AGN (R), a contradiction. Hence m = 1.

Suppose I is any non-trivial ideal in R1. Trivially I ⊂ m1. Consider the non-zero proper

ideals I1 = R1 × (0), I2 = m1 × (0), I3 = I × (0), J1 = (0) × F1, J2 = m1 × F1 and

J3 = I × F1 of R. Then IiJj ⊆ Nil(R) for all i, j and so K3,3 is a subgraph of AGN (R), a

contradiction. Hence m1 is the only non-trivial ideal in R1. �

It is well known that every commutative Artin ring R is isomorphic to the direct product

of finitely many local rings. Using this, we have the following corollary which gives a

characterization for AG(R) to be planar for a commutative Artinian ring R.

Corollary 2.5. Let R be a commutative Artin ring with identity. Then AGN (R) is planar if

and only if one of the following conditions holds:

(i) R is a local ring with at most four non-trivial ideals;

(ii) R ∼= F1 × F2 or R ∼= F1 × F2 × F3, where each Fi is a field;

(iii) R ∼= R1 × F1 and m1 is the only non-trivial ideal in R1, where (R1,m1) is a local ring

and F1 is a field.

An undirected graph is said to be an outerplanar graph if it can be drawn in the plane

without crossings in such a way that all the vertices belong to the unbounded face of
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the drawing. There is a characterization for outerplanar graphs that says that a graph is

outerplanar if and only if it does not contain a subdivision of K4 or K2,3. Note that

every outerplanar graph is planar. Now, let us obtain a characterization for AGN (R) to be

outerplanar.

Theorem 2.6. Let R be a commutative Artin ring with identity. Then AGN (R) is outerplanar

if and only if one of the following conditions holds:

(i) R = F1 × F2 or R = F1 × F2 × F3 where Fi are fields;

(ii) (R,m) is a local ring which contains at most 3 non-trivial ideals;

(iii) R = R1 × F1 where (R1,m1) is a local ring, m1 is the only non-trivial ideal in R1 and

F1 is a field.

Proof. Suppose AGN (R) is outerplanar. Since every outerplanar graph is planar and by

Corollary 2.5(ii) and Figs. 1 and 2, we get R ∼= F1 × F2 or R ∼= F1 × F2 × F3. By

Corollary 2.5(iii) and Fig. 3, R = R1 × F1 where (R1,m1) is a local ring, m1 is the only

non-trivial ideal in R1 and F1 is a field.

Suppose that (R,m) is a local ring which contains at least 4 non-trivial ideals. Then by

Theorem 1.1, AGN (R) ∼= Kt for t ≥ 4 and so AGN (R) is not outerplanar, a contradiction.

Hence R contains at most three non-trivial ideals. �

3. GENUS OF NIL-GRAPH OF IDEALS

In this section, we discuss the genus of the nil-graph of ideals of a commutative ring. In

particular, we characterize all commutative Artin rings R for which AGN (R) has genus one.

The following two results about the genus of a complete graph and a complete bipartite graph

are very useful in the subsequent sections.

Lemma 3.1. Let m, n ≥ 3 be integers and for a real number x, ⌈x⌉ is the least integer that

is greater than or equal to x. Then g(Kn) =


(n−3)(n−4)
12



. In particular, g(Kn) = 1 if

n = 5, 6, 7.

Lemma 3.2. Let m, n ≥ 3 be integers and for a real number x, ⌈x⌉ is the least integer that

is greater than or equal to x. Then g(Km,n) =


(m−2)(n−2)
4



. In particular, g(K4,4) =

g(K3,n) = 1 if n = 3, 4, 5, 6.

Theorem 3.3. Let R = F1 × F2 × · · · × Fn be a commutative ring, where each Fi is a field

and n ≥ 2. Then g(AGN (R)) = 1 if and only if n = 4.

Proof. Assume that g(AGN (R)) = 1. Suppose n ≥ 5. Then I1 = F1 ×(0)×(0)×(0)×(0)×
· · · ×(0), I2 = (0)×F2 ×(0)×(0)×(0)× · · · ×(0), I3 = F1 ×F2 ×(0)×(0)×(0)× · · · ×(0),
J1 = (0) × (0) × F3 × (0) × (0) × · · · × (0), J2 = (0) × (0) × (0) × F4 × (0) × · · · × (0),
J3 = (0) × (0) × (0) × (0) × F5 × · · · × (0), J4 = (0) × (0) × F3 × F4 × (0) × · · · × (0),
J5 = (0) × (0) × F3 × (0) × F5 × · · · × (0), J6 = (0) × (0) × (0) × F4 × F5 × · · · × (0)
and J7 = (0) × (0) × F3 × F4 × F5 × · · · × (0) are non-zero proper ideals in R and IiJj ⊆
Nil(R) for all i, j. From this we have that K3,7 is a subgraph of AGN (R). By Lemma 3.2,

g(AGN (R)) ≥ 2, a contradiction. Hence n ≤ 4 and by Theorem 2.2, n = 4.
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Fig. 4. Torus embedding of AGN (F1 × F2 × F3 × F4).

Conversely, suppose that n = 4. Consider the non-zero proper ideals I1 = F1 × (0) ×
(0) × (0), I2 = (0) × F2 × (0) × (0), I3 = F1 × F2 × (0) × (0), J1 = (0) × (0) × F3 × (0),
J2 = (0) × (0) × (0) × F4, J3 = (0) × (0) × F3 × F4, K1 = F1 × (0) × (0) × F4,

K2 = (0) × F2 × (0) × F4, K3 = F1 × (0) × F3 × (0), K4 = (0) × F2 × F3 × (0),
K5 = (0) × F2 × F3 × F4, K6 = F1 × F2 × (0) × F4, K7 = F1 × F2 × F3 × (0) and

K8 = F1 × (0) × F3 × F4 of R. Then IiJj ⊆ Nil(R) for all i, j and so K3,3 is a subgraph

of AGN (R). Therefore by Lemma 3.2, g(AGN (R)) ≥ 1, whereas an embedding given in

Fig. 4 explicitly shows that g(AGN (R)) = 1. �

Theorem 3.4. Let R = R1 × R2 × · · · × Rn be a commutative ring with identity, where each

(Ri,mi) is a local ring with mi ≠ {0}, 1 ≤ i ≤ n. Then g(AGN (R)) = 1 if and only if one

of the following conditions holds:

(i) R is a local ring with p non-zero proper ideals where 5 ≤ p ≤ 7;
(ii) R = R1 × R2 and m1 and m2 are the only non-trivial ideals in R1 and R2 respectively.

Proof. Assume that g(AGN (R)) = 1. Suppose that n ≥ 3. Consider the non-zero proper

ideals I1 = m1 × (0) × (0) × · · · × (0), I2 = (0) × m2 × (0) × · · · × (0), I3 =
(0) × (0) × m3 × · · · × (0), I4 = m1 × m2 × (0) × · · · × (0), I5 = m1 × (0) × m3 × · · · × (0),
I6 = (0)×m2×m3× · · · ×(0), I7 = m1×m2×m3× · · · ×(0) and I8 = R1×(0)×(0)× · · · ×(0)
of R. Then IiIj ⊆ Nil(R) for all i ≠ j and so K8 is a subgraph of AGN (R). By Lemma 3.1,

g(AGN (R)) ≥ 2, a contradiction. Hence n ≤ 2.

Assume that n = 1. Then R is a local ring and so by Theorem 1.1, AGN (R) is complete

and so AGN (R) ∼= Kp, where p is the number of non-trivial ideals in R. If p ≥ 8,

then by Lemma 3.1, g(AGN (R)) ≥ 2, a contradiction. If p ≤ 4, then by Theorem 2.3,

g(AGN (R)) = 0, a contradiction. Hence 5 ≤ p ≤ 7.

Assume that n = 2. Let ni be the number of non-trivial ideals in Ri, for i = 1, 2. Suppose

that ni ≥ 2 for some i. Without loss of generality, we assume that n2 ≥ 2 and K2 ⊂ m2 is

a non-zero proper ideal of R2. Consider the set Ω of non-zero proper ideals I1 = (0) × m2,

I2 = m1 × (0), I3 = R1 × (0), I4 = (0) × R2, I5 = m1 × m2, I6 = (0) × K2, I7 = m1 × K2,

I8 = m1 × R2 and J = R1 × m2 of R. Then I4I8 ⊈Nil(R) and IiIj , I4J, I8J ⊆ Nil(R)
for all i ≠ j and i, j ≠ 4, 8 and so the subgraph induced by Ω in AGN (R) contains a

subgraph which is isomorphic to a subdivision of K8. By Lemma 3.1, g(AGN (R)) ≥ 2, a

contradiction. Hence ni = 1 for i = 1, 2.
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Fig. 5. Torus embedding of AGN (R1 × R2).

Conversely, suppose that R is a local ring with p non-zero proper ideals where 5 ≤ p ≤ 7.

By Theorem 1.1, AGN (R) ∼= Kp. By Lemma 3.1, g(AGN (R)) = 1.

Suppose that R = R1 × R2 and m1 and m2 are the only non-trivial ideals in R1 and R2

respectively. Then I1 = m1 × (0), I2 = (0) × m2, I3 = m1 × m2, I4 = R1 × (0) and

I5 = (0) × R2 are non-trivial ideals in R with IiIj ⊆ Nil(R) for all i ≠ j and so K5 is a

subgraph of AGN (R). By Lemma 3.1, g(AGN (R)) ≥ 1. An embedding of g(AGN (R)) in

a torus is given in Fig. 5 and hence g(AGN (R)) = 1. �

Theorem 3.5. Let R = R1 × · · · × Rn × F1 × · · · × Fm be a commutative ring with identity,

where each (Ri,mi) is a local ring with mi ≠ {0} and each Fj is a field, n ≥ 1 and m ≥ 1.

Then g(AGN (R)) = 1 if and only if one of the following conditions holds:

(i) R = R1 × F1 × F2 and m1 is the only non-trivial ideal in R1;
(ii) R = R1 × F1 and 2 ≤ n1 ≤ 3 where n1 is the number of non-trivial ideals in R1.

Proof. Assume that g(AGN (R)) = 1. Suppose that n ≥ 2. Consider the non-zero proper

ideals I1 = m1 ×(0)×(0)× · · · ×(0), I2 = R1 ×(0)× · · · ×(0), I3 = (0)×m2 ×(0)× · · · ×(0),
I4 = (0) × R2 × (0) × · · · × (0), J1 = m1 × m2 × (0) × · · · × (0), J2 = m1 × m2 ×
(0) × · · · × (0) × F1 × (0) × · · · × (0), J3 = m1 × (0) × · · · × (0) × F1 × (0) × · · · × (0),
J4 = (0)×m2 ×(0)× · · · ×(0)×F1 × · · · ×(0) and J5 = (0)× · · · ×(0)×F1 ×(0)× · · · ×(0) of

R. Note that IiJj ⊆ Nil(R) for all i, j and so K4,5 is a subgraph of AGN (R). By Lemma 3.2,

g(AGN (R)) ≥ 2, a contradiction. Hence n = 1.

Suppose that m ≥ 3. Consider the non-zero proper ideals I1 = (0) × (0) × (0) × F3 ×
· · · × (0), I2 = m1 × (0) × (0) × F3 × · · · × (0), I3 = m1 × (0) × (0) × (0) × · · · × (0),
I4 = R1 × (0) × (0) × (0) × · · · × (0), J1 = (0) × F1 × (0) × (0) × · · · × (0),
J2 = (0) × (0) × F2 × (0) × · · · × (0), J3 = (0) × F1 × F2 × (0) × · · · × (0),
J4 = m1 × F1 × (0) × (0) × · · · × (0) and J5 = m1 × (0) × F2 × (0) × · · · × (0) of

R. Then IiJj ⊆ Nil(R) for all i, j and so K4,5 is a subgraph of AGN (R). By Lemma 3.2,

g(AGN (R)) ≥ 2, a contradiction. Hence m ≤ 2.
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Fig. 6. Torus embedding of AGN (R1 × F1 × F2).

Assume that m = 2. Suppose that {m1, I} are the non-trivial ideals in R1. Then I ⊂ m1.

Consider the non-zero proper ideals I1 = (0)×F1×(0), I2 = m1×F1×(0), I3 = I ×F1×(0),
I4 = R1 × F1 × (0), J1 = (0) × (0) × F2, J2 = m1 × (0) × F2, J3 = I × (0) × F2,

J4 = I × (0) × (0) and J5 = m1 × (0) × (0) of R. Here we have IiJj ⊆ Nil(R) for all i, j

and so K4,5 is a subgraph of AGN (R). By Lemma 3.2, g(AGN (R)) ≥ 2, a contradiction.

Hence m1 is the only non-trivial ideal in R1.

Assume that m = 1. Suppose that n1 ≥ 4, the number of non-zero proper ideals of R1. Let

{m1, K1, K2, K3} be the distinct non-zero proper ideals in R1. Then Ki ⊂ m1 for i = 1, 2, 3.

Consider the ideals I1 = (0)×F1, I2 = m1 ×F1, I3 = K1 ×F1, I4 = K2 ×F1, I5 = K3 ×F1,

J1 = R1 × (0), J2 = m1 × (0) J3 = K1 × (0), J4 = K2 × (0) and J5 = K3 × (0) of

R. Then IiJj ⊆ Nil(R) for all i, j and so K5,5 is a subgraph of AGN (R). By Lemma 3.2,

g(AGN (R)) ≥ 2, a contradiction. By Theorem 2.4, n1 ≠ 1 and hence 2 ≤ n1 ≤ 3.

Conversely, assume that R = R1 × F1 × F2 and m1 is the only non-trivial ideal in R1.

Let I1 = (0) × F1 × (0), I2 = m1 × F1 × (0), I3 = R1 × F1 × (0), J1 = (0) × (0) × F2,

J2 = m1 × (0) × F2 and J3 = m1 × (0) × (0). Then I1, I2, I3, J1, J2, J3 are non-trivial ideals

in R and IiJj ⊆ Nil(R) for all i, j and so K3,3 is a subgraph of AGN (R). By Lemma 3.2,

g(AGN (R)) ≥ 1. A torus embedding of AGN (R1 × F1 × F2) is given in Fig. 6 and hence

g(AGN (R)) = 1.

Suppose that R = R1 × F1 and n1 = 3. Assume that m1, K1 and K2 are the distinct

non-trivial ideals in R1. Consider the non-zero proper ideals I1 = (0) × F1, I2 = m1 × F1,

I3 = K1 × F1, I4 = K2 × F1, J1 = R1 × (0), J2 = m1 × (0), J3 = K1 × (0) and

J4 = K2 × (0) of R. Then IiJj ⊆ Nil(R) for all i, j and so K4,4 is a subgraph of AGN (R).
By Lemma 3.2, g(AGN (R)) ≥ 1. A torus embedding of AGN (R1 × F1) is given in Fig. 7

and hence g(AGN (R)) = 1.

Suppose that R = R1 × F1 and n1 = 2. Let I1 = (0) × F1, I2 = m1 × F1, I3 = K1 × F1,

J1 = R1 × (0), J2 = m1 × (0) and J3 = K1 × (0). Then IiJj ⊆ Nil(R) for all i, j and so

K3,3 is a subgraph of AGN (R). By Lemma 3.2, g(AGN (R)) ≥ 1. Fig. 8 explicitly gives an

embedding for g(AGN (R)) in a torus and hence g(AGN (R)) = 1.
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Fig. 7. Torus embedding of AGN (R1 × F1).

Fig. 8. Torus embedding of AGN (R1 × F1).
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