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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Optimal Power Flow (OPF) is a nonlinear and highly constrained optimization problem. This research 
presents a hybrid metaheuristic based optimization method, Dragonfly Algorithm (DA) with Aging Particle Swarm 
Optimization (APSO) for handling OPF problem. The proposed hybrid algorithm is implemented to rectify OPF 
problem and to obtain the optimal values of power system control variables. The fuel cost minimization, voltage 
profile deviation and power loss minimization are the major objectives of OPF problem. The effectiveness of 
proposed hybrid algorithm is experimented in IEEE 30-bus system. The output obtained is tested using wind energy 
system by power loss constraints. The major difficulties of conventional methods are they required linearization, 
slow in operation and prediction of optimum point of operation. The proposed method is compared with the existing 
algorithms and the simulation yields better results. 
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1. Introduction 

Optimal Power Flow (OPF) problem is a decisive challenge in power system. OPF is the task of controlling and 
planning secure operation of renewable energy resources [1]. The OPF plays a vital role in minimization of cost 
factor for providing efficient power system operation. In recent years, renewable energy system has the challenge of 
erratic amount of power generation system. The key objective of OPF is to determine the finest way to 
instantaneously operate a power system. The optimum solution denotes the minimization of operating cost of power 
system. The OPF solution methods are classified into two types. They are predictable and artificial intelligence 
method. Some of the conventional OPF techniques are linear programming, Gradient Methods, Quadratic 
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programming, Newton-Raphson, Non Linear programming and Interior point. The conventional methods faced 
various drawbacks [3]. They required linearization, less convergence, weak in handling qualitative aspects and it was 
found that slow operation was carried out when there was large number of variables.  

 
The traditional methods were struck at prediction of optimal minimum point of operation. To overcome the 

drawbacks of prevailing methods of solving OPF, non-deterministic or Artificial Intelligence (AI) method was 
introduced. AI method optimizes the global or near-global optimal solution. The major advantages of these methods 
are i) tackling several qualitative constraints ii) many optimal solutions in one execution iii) solving multi-objective 
optimization problems and iv) global optimum solution [4]. The met heuristic algorithms are being employed as a 
sub optimal solution to optimization problem. There are Tabu search [2], simulated annealing, Evolutionary 
computation, Ant colony optimization, etc. [5].OPF based on Bat optimization algorithm was developed to 
determine the optimal values of control variables involved in OPF including both inequality and equality constraints. 
Bat algorithm operates on the principle of echolocation of bats which is utilized to update their location. 
Echolocation is a sequence of high-sounding ultrasound waves emanated to generate echoes. Such echoes are 
reflected with latency and altered sound limit that aids bats to locate a prey [6]. OPF based on Ant Colony 
Optimization (ACO) works on the basis of behavior of ants’ which utilize a strange communication using 
pheromone dropped on the path. This approach helps other ants to follow the same shortest path [7, 8].Dragonfly 
Algorithm (DA) was proposed for OPF which deals with swarming behavior of dragonflies. It is based on 
separation, alignment and cohesion, desirability to food and diversion from adversaries. The exploration and 
exploitation parameters were designed to predict global optimization. The average fitness of dragonflies was applied 
to find the progress of fitness of the entire swarm in optimization. DA algorithm was used to solve both the binary 
and multi-objective problems [11]. Newton Raphson oriented hybrid Particle Swarm Optimization (PSO) was 
developed to handle nonlinear problems with continuous variables and finding out the optimal groupings ofcontrol 
variables. PSO is a metaheuristic algorithm that makes few assumptions based on the problem to be optimized and 
probably searches huge spaces of candidate solutions. The objective function is the total generation cost function 
with generator constraints comprising active and reactive power generation ranges along with valve loading effects 
[10].  

In this paper, the hybrid Dragonfly Algorithm (DA) with Aging Particle Swarm Optimization (APSO) is deployed 
which is based on fixed swarm behavior of flies while exploring food. APSO cover more uncertain space in reduced 
time of computation to explore possible solution and improve the selection of leader to attract swarm towards better 
optimum solutions. 

2. Problem Formulation 

In power system the vital role of OPF is to minimize the particular objective function which satisfies the 
equality and inequality constraints 
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Where f (a,b) is the objective function, E(a, b) denotes equality constraints of the ith generator, IE(a,b)
represents inequality constraints and EuI , El

I are the higher and lower levels of inequality constraints of the ith  

generator. 

2.1. Objective Functions 

The major objective function to mitigate OPF problem is given as follows. 
 
 

i) Reduction of fuel cost 
 
The G1 represents the total fuel cost and the minimization of fuel cost is expressed as, 
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Where ibf represents the fuel cost of generator i. 
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ik , il and ib are the cost coefficients of ith generator 
 
ii) Voltage profile deviation 
 
The total voltage deviations reduction in all PQ buses is the major objective of voltage profile deviation [5]. The 
two-fold objective function has been considered that is related to both fuel cost minimization and voltage profile 
improvement is given by as, 
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where, 
G2(u,v) is total profile deviations 
fi is the fuel of the ith generator 

1V is suitable weighing factor chosen by user. 
 
iii) Power loss minimization  
 
The P1 represents the Overall power loss is evaluated as follows, 
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1N denotes the transmission lines count, kr is the resistance and kx  is the reactance of kth transmission line that 
relates ith and jth bus, 

iV , 
jV  are the voltage magnitudes and 

i , 
j are the voltage angles for the bus i and j. 

Without wind power constraints, the objective function is given defined by ( )i if d which is the minimum cost 
function of the DA-APSO algorithm. The wind power is used to reduce the power demand. The proposed algorithm 
is tested in wind energy system to attain performance effects of the hybrid algorithm. The major objective is to 
optimize the power flow and reduce power loss produced in both fuel and wind energy constraints. 

( ) ( )
dN

i i
i

f d f d B T                                                                          (6) 
Where B and T are the loss coefficients of the generator 
 
2.2 Dragonfly Algorithm 
 
Dragonfly forms a small group and fly towards different direction covering vast area in search of food known as 
exploration phase and shifts to other places known as exploitation phase. Five steps that are followed in dragonfly 
behaviour are separation, alignment, cohesion, attraction towards food and distraction towards enemy. Separation 
alludes to stationary collision prevention of flies from others in the neighbouring region. Alignment refers to speed 
coordination of flies among others in neighbouring area. Cohesion is inclination of individuals towards the focal 
point of the mass of the area. In order to survive, every individual will move in the direction of food as well as divert 
away from enemies. Based on these five factors, various exploration and exploitation behaviors can be obtained in 
optimization. 
 
2.3 Aging Particle Swarm Optimization (APSO) 
 
According to APSO the swarm leader ages within a particular lifespan period. The lifespan is extended with respect 
to leader’s leading capability. Newly generated particles are replaced as leaders when lifetime of the swarm leader is 
exhausted [13]. The swarm leader is represented by 
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leader leader leader leaderx x x x                                                                 (7) 

This algorithm is useful in handling the premature convergence and provides rapid converging characteristics of 
PSO. The steps involved in this algorithm are (i) initialization which sets the particle positions and velocity in search 
space, (ii) leader updating is done if performance of new particle is higher than the current leader, (iii) regulating the 
life span of leader based on leading capability, (iv) new particle creation when the current leader’s life is over, (v) 
estimating the new particle performance against the current leader’s leading capability and (vi) Finding the best 
solution. The leader denotes the best solution created by particles throughout the lifetime of the leader. 
 
3. Hybrid DA-APSO 
 
The APSO decides and challenges the leader when its life span is exhausted. The DA provides exploration and 
exploitation phase. By combining the new velocity and position vectors decided by APSO with exploration and 
exploitation phase of DA the targeted optimum solution could be attained. The hybrid algorithm for OPF using DA-
APSO is given by as, 
Step 1: Read power system data  
Step 2: By setting iteration count, initialize population of ‘n’ dragonflies  
Step 3: Initialize step vector and set iteration count as 1 
Step 4: Objective functions are evaluated and food and enemy source are identified. 
Step 5: Update and compute values of a,b,c,d,e by equations as 
Separation ‘ ia ’ is given as, 
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x denotes the location of present individual, jx is the location of individual in the neighbouring region and N is 
the count of individuals in the neighbouring region. 
Alignment ‘ ib ’ is expressed as, 
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jV - Velocity of jth neighbouring individual 
Cohesion is given by as, 

1

N
i

i
j

xc x
N

 
         (10)

 

Attraction towards food ‘ id ’ is evaluated by, 

id x x                                                                                                          (11) 
x , x  represents the location of present individual and food  

Distraction towards enemy is given as ‘ ie ’ as, 

ie x x                                                                                                                 (12) 

x , x - represents the location of present individual and enemy 
The step vector and position vector is given by as, 
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If no neighbouring solution, the dragonfly position is updated by levy flight. 

1 ( )*f f fX X levy d X                                                                               (14) 
Step 6: With respect to at least one neighbourhood the velocity and position vector calculated by new velocity and 
position vector equation of APSO. Else update position vector using levy lift equation. 
Step 7: After new positions are decided, set iter = iter+1. If iter value is less than maximum iter value then go to 
step 4. Else stop process. 
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4.  Performance evaluations 
The hybrid DA-APSO algorithm has been employed in IEEE 30 bus test system. It contains 6 generators at 

bus 1, 2, 5, 8, 11, 13 and 4 transformers with tap ratios. In bus 10, 12, 15, 17, 20, 21, 23, 24 and 29 shunt VAR 
compensation has been provided. Bus 1 acts as slack bus. The bus voltage is confined within the range of 0.95-1.05 
per unit. Number of trails considered in DA-APSO was 20. The parameters chosen for optimization were power loss 
minimization, fuel cost minimization and voltage deviation. In Table 1, the proposed method and the traditional 
methods are compared in terms of cost of fuel and it is less for DA-APSO than other methods. Table 2 lists the 
values obtained from the IEEE 30 bus system considering its constraints and also compared the cost of fuel of DA-
APSO method with other conventional metaheuristic methods.     

Table 1.Evaluation of fuel cost of different optimization methods. 

Methods Fuel cost 
DA-APSO 802.63 

DA[12] 803.65 
APSO[13] 803.6 

ABC[9] 803.78 
TLBO[2] 804.78 

 

Table 2. IEEE 30 bus system results. 

Control 
variables in p.u. 

Improved 
GA [17] 

PSO[16] DA-APSO 

PG-1     1.775094 1.7695 1.7453 
 PG-2     0.48722 0.4783 0.4873 
PG-5     0.21454 0.2120 0.2027 
PG-8     0.20954 0.2178 0.2110 
PG-11     0.11768 0.1192 0.1235 
PG-13     0.12052 0.1092 0.1133 
V1 0.081 1.0937 1.023 
V2 1.063 1.0703 1.023 
V5 1.034 1.0692 1.037 
V8 1.038 1.0302 0.0912 
V11 1.100 1.0293 1.0092 
V13 1.055 1.0116 0.982 
T6-9 1.000 1.0982 0.9112 
T6-10 0.975 0.0452 0.0112 
T4-12 0.975 0.0122 0.0311 
T28-27 1.000 0.0456 0.0342 
Qc-10 0.001 0.0356 0.0124 
Qc-12 0.007 0.0498 0.0311 
Qc-15 0.019 0.0145 0.0300 
Qc-17 0.024 0.0582 0.0101 
Qc-20 0.015 0.0489 0.067 
Qc-21 0.022 0.0239 0.051 
Qc-23 0.047 0.0111 0.032 
Qc-24 0.047 0.032 0.0144 
Qc-29 0.024 0.052 0.012 

Fuel cost($/h) 805.805 805.65 802.63 
 

 
Table 3 highlights the cost of fuel and voltage deviation and two fold objective function value of the proposed 
method and the traditional methods. The cost of fuel and voltage deviation and two fold objective function of DA-
APSO are lesser than other methods.  
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Table 3. Fuel cost and voltage deviation of proposed and existing methods. 

Methods Fuel cost Voltage deviation Two fold objective 
function 

DA-APSO 802.63 0.1164 812.4526 
DA[12] 803.65 0.1272 816.4527 

APSO[13] 803.6 0.0891 825.2893 
ABC[9] 803.78 0.1243 822.3452 
DE[14] 805.26 0.1357 818.8319 

TLBO[15] 803.78 0.0945 813.2345 
 

4.1. Fuel cost minimization 
It was considered that the cost function for all 6 generators in quadratic form. A provided minimum total 

fuel cost of 800.6594 $/h.  Figure 1 depicts the fuel cost minimization of DS-APSO and the existing techniques and 
it is evident that DA-APSO provides better fuel cost minimization 

 

Fig. 1. Fuel cost minimization of DA-APS  

4.2. Power loss minimization 
The mean total active power loss of DA methods was 3.1455 MW, with high total active loss. Figure 2 

illustrates the power loss minimization of DA-APSO and other methods. In the proposed method, the active power 
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Table 3. Fuel cost and voltage deviation of proposed and existing methods. 

Methods Fuel cost Voltage deviation Two fold objective 
function 

DA-APSO 802.63 0.1164 812.4526 
DA[12] 803.65 0.1272 816.4527 

APSO[13] 803.6 0.0891 825.2893 
ABC[9] 803.78 0.1243 822.3452 
DE[14] 805.26 0.1357 818.8319 

TLBO[15] 803.78 0.0945 813.2345 
 

4.1. Fuel cost minimization 
It was considered that the cost function for all 6 generators in quadratic form. A provided minimum total 

fuel cost of 800.6594 $/h.  Figure 1 depicts the fuel cost minimization of DS-APSO and the existing techniques and 
it is evident that DA-APSO provides better fuel cost minimization 
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4.2. Power loss minimization 
The mean total active power loss of DA methods was 3.1455 MW, with high total active loss. Figure 2 

illustrates the power loss minimization of DA-APSO and other methods. In the proposed method, the active power 
loss is reduced to 3.003 MW. 
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4.3. Voltage deviation  
 

Figure 3 depicts the performance of the proposed DA-APSO and the existing methods for voltage 
deviation. The power loss is reduced to about 3.003 MW using proposed method. By comparing with appropriate 
wind energy test system and considering active power loss of proposed method, deploying wind energy system in 
the proposed method further reduces the power loss by 3.002 MW which is given in figure 4.  
 
  

 

Fig. 3.  Voltage deviation of DA-APSO and existing methods 

 
 

Fig. 4. Power loss in DA-APSO with wind energy system. 
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5. Conclusion 
By using hybrid DA-APSO algorithm the OPF problem has been reduced. The minimization of cost, loss of 

power and progress of voltage profile is performed and tested in IEEE 30 bus test system. The simulation of 
outcomes reveals that DA-APSO performs better than the existing optimization techniques. The power loss occurred 
in proposed method was tested by comparing with wind energy system. The future scope of this study is 
advancement of proposed algorithm by alternate test system like IEEE 118 test system and adapting renewable 
energy resources for further fuel cost reduction.   
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