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Abstract

Objective: Spatial Modulation (SM) is proposed for next generation green communications due its high spectral and 
energy efficiency. SM is incorporated with massive MIMO structures to leverage its high potential in the application 
for future generation wireless networks. Methods/statistical Analysis: The optimal ML detector for SM-MIMO sys-
tems requires enormous computational complexity, which makes the implementation infeasible in practice. However, 
the greedy low complexity detectors suffer from inferior performance and have huge performance gap from the opti-
mal detectors. In this paper we propose new transmission schemes and detector structures for SM-MIMO systems. 
Findings: In particular the transmitter imposes certain structures, known as joint sparse, and the receiver exploits the 
information in detecting the symbols. We have shown that our proposed detector performs better than other greedy al-
gorithms in the literature and performs close to the ML solution. We establish theoretical recovery guarantees for our 
proposed approach and compare the performance in theoretical and simulation results. Improvements: The theoretical 
characterization shows significant improvement in the detection performance compared to the conventional schemes. 
It is shown in simulation that the proposed algorithm achieves a gain of 4 dB compared to the conventional detectors.  

*Author for correspondence

1. Introduction
Spatial Modulation (SM)1,2 is the technique of convey-
ing the information through the index of the antenna 
used to transmit the information. In SM, the informa-
tion is transmitted via both the symbol being transmitted 
and the antenna used to transmit the symbol. In par-
ticular SM incorporated with Multi Input Multi Output 
(MIMO) systems to get larger spectral gains from the 
additional degrees of freedom available in antenna 
index. SM-MIMO can be classified as, small-scale 
SM-MIMO, which provides limited gain in the spec-
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tral efficiency and massive SM-MIMO, which is the one 
that of major interest in recent research directions for 
future green communications. Since the RF chains used 
in the transmitter consumes most of the power, in mas-
sive SM-MIMO only a single or few of the many transmit 
antennas used to transmit the information and thereby 
reducing the number of RF chains participating in the 
transmission. The transmitter employs many low cost 
antennas and the receiver structures are proposed to get 
spatial diversity with significantly low correlated channel. 
Massive SM-MIMO offers dramatic energy efficiency by a 
large number of transmits antennas and the conventional 
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linear detectors converge to be the optimal detectors3. 
Though, the large transmit antennas in the conventional 
MIMO systems offer higher throughput they suffer from 
the increased energy consumption due to increased num-
ber of RF chains at the transmitter, which surpasses the 
benefit of massive MIMO structures. To overcome this 
issue, it is proposed in massive SM-MIMO that to acti-
vate one or a subset of transmit antennas to transmit the 
information. Further, additional information is conveyed 
by the indices of the transmit antennas being used to 
transmit the symbol. The receivers of SM-MIMO4, not 
only detect the information symbols transmitted but also 
the subset of the antennas used to transmit the symbol by 
prior knowledge of the channels between the each pair 
of individual transmit antennas and receiver antennas. 
Compressive sensing deals with the recovery of unknown 
vectors from underdetermined linear measurements. The 
number of measurements is far less than the dimension 
of the unknown vector. The key idea behind the unique 
recovery of the high dimensional unknown vector for the 
low dimensional measurement vector lies on the ground 
of two key aspects.

•	 The vector to be recovered is sparse, that is the 
number of non zero elements is far less than the 
dimension of the vector. 

•	 The matrix used to measure the unknown vector 
known as sensing matrix, should possess certain 
properties.

There were several works proposed in the literature 
of compressive sensing which address the recovery of 
sparse vectors from compressed measurements. A set of 
signals is said to be jointly sparse5, if the support (location 
of the non zero elements) is same in all the vectors. Some 
of the works related to recovery of joint sparse signals in 
compressive sensing can be seen in the literature6. In this 
paper, we propose a transmission scheme which collects 
the transmission in groups. In each group the same set of 
antennas are activated to convey the spatial constellation 
symbol. As the number of transmit antennas is quite large 
compared to the number of antennas that are activated, 
the transmission vector contains sparse structures and 
contain non zero values at the indices corresponding to 
transmit antennas. Further, as the same set of antennas 

are activated in each group, the non zero elements appear 
at similar locations in all the transmission vectors. Hence, 
the set of transmitted vectors in each group become jointly 
sparse signals.  In7 the receiver, we propose low complex-
ity greedy algorithms to detect the information symbols 
along with the indices of active antennas in the frame-
work of compressive sensing. In particular, we apply the 
principles joint sparse recovery in compressive sensing in 
the detection process at the receiver and establish their 
recovery guarantees. We also compare the performance of 
our proposed approach with the conventional techniques 
in the literature. Further, we establish the closeness of our 
theoretical development with the simulation results.

Notation:
Matrices/vectors are denoted by bold uppercase/low-

ercase letters,  for 2 norm,  norm by , Frobenius 
norm by F  transpose by (.)t,  hermitian by $(.)*$, col-
umn space of matrix A by R(A) , sets by A, cardinality of 
the set by , and set minus operation by A\B.

2.  Sytem Model and Problem 
Statement

Let us consider an Nt x Nr MIMO system, i.e., the trans-
mitter has Nt antennas and the receiver has Nr antennas. 
Let the transmit vector be and each of the 
transmit symbol of , { i, i = 1, …, Nt } is drawn from 
M-ary constellation. The observation or received vector is 
denoted as . In essence,

      (1)

Where H is the channel matrix of size Nr Nt and 
each of the element of , hij denotes the channel from jth 
transmit antenna to ith receive antenna. The additive noise 

 is . We consider the MIMO system 
to be spatially modulated as follows. In the transmitter, 
only Na (out of Nt) number of antennas activated at any 
given time. The information is conveyed by means of both 
the transmitted symbol and the set of active antennas. As 
there are NtC Na combinations are there to choose a set of 



Aravindan Madhavan and Neelakandan Rajamohan

Indian Journal of Science and Technology 3Vol 9 (36) | September 2016 | www.indjst.org

Na antennas out of Nt, the number of bits that can be con-

veyed through the antenna indices is the 
. The information bits that are conveyed via the set of 
active antennas form the spatial constellation symbols 
and the M-ary symbols that are actually transmitted from 
the transmit constellation symbol. The following Figure 
1 shows the systematic flow of how SM-MIMO works.  
Further, we consider the massive MIMO system where 
the number of transmit antennas is very large compared 
to the number of receive antennas and number of active 
antennas, i.e., Nt>>Nr>Na. As the number of active anten-
nas if far less than total number of transmit antennas, the 
transmit vector  contains the sparse structure, since the 
number of non zero elements in  is quite low compared 
to the dimension of . Hence, the problem becomes 

recovery of sparse signals from underdetermined linear 
measurements, i.e., recovery of sparse  given  from 
the underdetermined and can be solved in compressive 
sensing framework.

3.  Detector Structure
In this section we apply the Orthogonal Matching Pursuit 
(OMP)8 algorithm in the compressive sensing literature 
to the system model. Let us interpret the channel matrix 
as

   (2)

   (3)
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Figure 1. Spatial modulation schematic diagram.



Optimum Detector for Spatial Modulation using Sparsity Recovery in Compressive Sensing

Indian Journal of Science and TechnologyVol 9 (36) | September 2016 | www.indjst.org4

In essence, the ith column of channel matrix con-
tains the channel gains from ith transmit antenna to all the 
receive antennas. Further, the observation vector y at the 
receiver can be interpreted as,

  (4)

Where, the transmit vector . 
As only Na antennas are active out of Nt antennas at the 
transmitter, the observation vector y becomes the linear 
combination of Na vectors out of Nt column vectors in 
. The OMP algorithm[] is modified to the spatial modu-
lated OMP (SM-OMP) as follows.  

Step 1. Initialize t = 1, Â = ø, Ф=[ ],  .

Step 2. Find the antenna index at at the tth iteration 

such that at = arg 
 
Step 3. Update the detected active antenna index  ←

 at

 Step 4. Compute the least squares estimate of the  
at the tth iteration as follows. 

Фt=[ Фt-1 hat]

=

Step 5. From the estimated detect the transmitted 
symbol from the M-ary constellation using the minimum 
distance decoder as follows. 

 Step 6. Update the residual vector  and 

Step 7. Repeat until all the Na active antennas and 
their transmit symbols are detected.

 

If go to Step 2 else STOP. 
 
To summarize, the SM-OMP chooses the transmit 

antenna index that is most likely by correlating all the 
columns in the channel matrix in Step 2. At each itera-
tion the detected components are estimated using least 
squares in Step 4. It should be noted that the main differ-
ence between the conventional OMP and SM-OMP stems 
from the fact that in conventional OMP the least squares 
estimated component is removed from the observation as 

given in Step 6. But in the case of SM-MIMO, the val-

ues or entries of the transmit vector  is from a finite 
alphabet constellation symbols. Hence, the detected val-

ues of the vector  are replaced by their closest symbol 
in the transmit constellation using a minimum distance 
decoder9,10 as given in Step 5. This drastically improves 
the detection performance of SM-OMP than directly 
applying the conventional OMP to the system model in. 
Before proceeding to characterizing the perfect recovery 
of spatial constellation, let us define the following impor-
tant parameter which is related to the correlation11,12 of 
the channel and hence to the spatial diversity. 

Definition 1. The channel correlation of a given 
MIMO system is defined as the minimum angle between 
any two columns of its channel matrix. 

 
    (5)

As the value of approaches zero, the system achieves 
full spatial diversity13–15. The following theorem charac-
terizes the recovery guarantee of the spatial constellation 
symbol and symbol error rate for the spatially detection 
performance. 

Theorem 1.
 The spatial modulated OMP (SM-OMP) algo-

rithm perfectly recovers the spatial constellation symbols 
with the additive noise being zero mean Gaussian with 
variance σ2 if

       
      6)
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and the probability of spatial constellation symbol 
error $P_{\text{SER}}$ is given by 

 
                            

      7)

Where is the mini-
mum 2 norm of the columns of the channel matrix  and 

} is the minimum power of the transmit constel-
lation symbols. 

Proof: See Appendix
The following inferences can be made from the above 

theorem. 

•	 It can be seen from (26) that the error free recov-
ery of spatial constellation symbol depends on 
the channel correlation and in turn on the spatial 
diversity.

•	 Further, the spatial symbol error rate depends on 
the probability that the channel gain crosses below 
a particular threshold, which is generally referred 
as the deep fade event.

•	 The transmit power is same for all symbols in the 
case of M-ary phase shift keying signals and differ-
ent for M-ary QAM signals (except M = 4 as 4-ary 
QAM is nothing but QPSK) and the maximum 
power of the transmit symbols plays an important 
role in the probability of symbol error rate.

•	 The symbol error rate is lesser for the M-ary 
PSK signals than M-ary QAM signals used for 
SM-MIMO systems while all other parameters are 
fixed. 

4. Simulation Results
In this section we evaluate the performance of our 
proposed algorithm using Monte-Carlo simulations. 
We compare the performance of SM-OMP algorithm 
with traditional Linear Minimum Mean Square Error 

Figure 2. Performance of various detectors in Rayleigh fading channels. 
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Figure 3. BER comparison of various detectors.

Figure 4. Performance of various detectors in different spatial constellation.
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(LMMSE)16,17 detector and conventional OMP18 algorithm 
directly applied to our system model. Also we compare 
the performances of the optimal ML detector to gauge 
the performance of our proposed approach with the best 
possible detector. We consider Rayleigh fading MIMO 
channel and number of transmit antenna to be Nt = 64, 
number of receive antenna Nr = 8. The number of active 
antennas Na = 4. We simulate the detection performance 
for two different transmit constellations, 8-PSK and 

16-QAM. The additive noise is considered to be Gaussian 

with zero mean and variance  and independent of the 
channel and transmit symbols. 

In Figure 2, we compare the performance of all spa-
tial constellation symbols for the following algorithms, 
1. LMMSE, 2. Conventional OMP 3. Our proposed 
SM-OMP and 4. Optimal ML detector. It can be seen that 
the perfect detection rate of our proposed approach per-
forms significantly better than the conventional OMP and 
LMMSE detectors. Further, SM-OMP algorithm performs 
closely to the optimal detector. In Figure 3, we plot the 
symbol error rate performance of our proposed SM-OMP 
and the conventional OMP directly applied to the system 
model. It can be seen that as the SNR increases, the sym-
bol error rate performance of our proposed approach 
significantly outperforms the other algorithms and per-
form similar to the optimal ML detector.  In Figure 4, we 
simulate the performance for 8-PSK and 8-QAM signal 
constellations. As discussed in the Theorem 1, the symbol 
error rate performance is better in the case of PSK con-
stellations than the QAM constellations. As the transmit 
power is equal for all the transmit symbols in the case of 
PSK constellations, the symbol error rate is low compared 
to the QAM constellation as the transmit power vary for 
different symbols.

5. Conclusion
We proposed a new SM-OMP algorithm for spatial mod-
ulation and characterized its theoretical performance in 
terms of the successful recovery of all the spatial constel-
lation symbols and the probability of symbol error rate. 
Also, we compared the performance of our proposed 
approach with the conventional OMP algorithm directly 
applied to the SM-MIMO systems and showed the out-

performance of our proposed approach. Further, we have 
shown that our proposed approach performs close to the 
optimal ML detector.
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Appendix

Without loss of generality let us assume the following. 

First Na antennas are active in the transmit vector, i.e. the set of active antenna indices 
The gains of the channel matrix  can be ordered as
Thus the observation vector can be written as,

𝒚=                   ……………..(8)
In the first iteration the SM-OMP will correctly identify the first antenna index if 

                   ……………..(9)

The inner product on the left hand side of the above condition can be bounded as, 

….(10)

……(11)

By triangle inequality the above term can be lower bounded as, 

 ……(12)

….(13)
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 ….(14)

From the definition of the channel correlation  given in (5)

    …………(15)

since it is assumed without loss of generality that . Further, the product 
can be bounded as

 ……….(16)
by applying the Schawarz inequality and noting the fact that gain of the channel cannot exceed 
1. Moreover, the noise vector  is Gaussian with zero mean and variance . Therefore using the 
sigma rule for Gaussian, the 2 norm of the vector  is upper bounded by with very high 
probability. Therefore, 

    ………..(17)

Applying the results on the bounds obtained in (15) and (17) in (14) we get, 

    ….(18)

Similarly, the right hand side of the condition in (9) can be bounded as follows. 

  …….(19)

   ….(20)

Using the bounds in (15) and (17) in the above inequality, we obtain,

    ……(21)

By using the results in (18) and (21) in the recovery condition given in (9), the correct antenna index or 
the spatial constellation symbol is detected in the first iteration by SM-OMP if, 
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    ….(22)

…..(23)

   ….(24)

  ……….(25)

The same argument can be carried out to show the condition in (25) is sufficient for the detection of 
correct spatial symbol in each iteration. Since, the detected columns of the channel matrix  are 
estimated and removed from the residual as given in Step 6 of SM-OMP, any column or any spatial 
information symbol to get detected twice. Thus considering the worst condition of all the iterations, SM-
OMP perfectly detects the spatial constellation symbol if, 

   ……..(26)

Which is the condition for perfect recovery of spatial constellation symbols given in (6)By rearranging 
equation (26),

….(27)

……..(28)

…….(29)

As the condition (29) is sufficient but not necessary, the entire spatial constellation symbol error
probability is upper bounded as given in (7).


