Oscillation of Generalized Second-Order Quasi Linear Difference Equations

V.Srimanju ${ }^{1 *}$, Sk.Khadar Babu ${ }^{2}$, V.Chandrasekar ${ }^{3}$
${ }^{1,2}$ Vellore Institute of Technology, Vellore - 632 014, Tamil Nadu, India
${ }^{3}$ Thiruvalluvar University College of Arts and Science, Thennangur - 604 408, Tamil Nadu, India
*Corresponding author E-mail: srimanjushc @gmail.com

Abstract

Authorsipresent sufficienticonditions for theioscillation of the generalizediperturbed quasilinearidifferenceiequation $\Delta_{\ell}\left(a((x-1) \ell+i)\left|\Delta_{\ell} v((x-1) \ell+i)\right|^{\gamma-1} \Delta_{\ell} v((x-1) \ell+i)\right)+F(x \ell+i, v(x \ell+i))=G\left(x \ell+i, v(x \ell+i), \Delta_{\ell} v(x \ell+i)\right)$ where $0<\gamma<1, x \in[0, \infty)$ and $i=x-\left[\frac{x}{\ell}\right] \ell$. Examplesiillustrates the importanceiof our results are alsoiincluded.

Keywords: Generalizedidifference equation; Oscillation; iQuasilinear,

1. Introduction

Difference equations represent captivating mathematical field, has rich field of the applications in such diverse disciplines as population dynamics, operations research, ecology, economics, biology etc. For thelbackgroundlof differencelequations and its applicationslin diverselfields withlexamples, see [1]. The study of difference equations is based on the operator Δ defined as $\Delta u(x)=u(x+1)-u(x), x \in[0, \infty)$.
Thoughlmany authors [1],[16] have discussed the definition of Δ as

$$
\begin{equation*}
\Delta u(x)=u(x+\ell)-u(x), \quad \ell \in(0, \infty) \tag{1}
\end{equation*}
$$

no notable progress have been taken on this line. Butlin [13] the authors took up the definition of Δ as given in (1), and given many important results and applications. They labeled the operator Δ defined by (1) as Δ_{ℓ} and its inversely Δ_{ℓ}^{-1}, many interesting results in number theory were obtained. Qualitativelproperties like rotatory, expanding, lshrinking, spiral and web like were established by extending theory ofl Δ_{ℓ} to complex function, for the solutions of difference equations involving Δ_{ℓ} in [2-15, 17-21].
In the sequel, in this paper we will be considered the generalized perturbed quasi linear difference equation for $x \in[0, \infty)$
$\Delta_{\ell}\left(a((x-1) \ell+i)\left|\Delta_{\ell} v((x-1) \ell+i)\right|^{\gamma-1} \Delta_{\ell} \nu((x-1) \ell+i)\right)$
$+F(x \ell+i, v(x \ell+i))=G\left(x \ell+i, v(x \ell+i), \Delta{ }_{\ell} v(x \ell+i)\right)$
where $0<\gamma<1, a(x \ell+i)$ is an eventually positive real valued function, land Δ_{ℓ} is the generalized forward difference operator
defined as $\Delta_{\ell} v(x \ell+i)=v((x+1) \ell+i)-v(x \ell+i)$.
By alsolution of (2), we mean a nontrivial real valued function $v(x \ell+i)$ satisfying (2) for $x \in[0, \infty)$. A solution $v(x \ell+i)$ is said to be oscillatory if it is neither eventually positive nor negative, and non oscillatory otherwise.

2. Main Results

In this paper we assume that there exist real valued functions $q(x \ell+i), p(x \ell+i)$ andla function $f: R \rightarrow R$ such that
(i). $v f(v)>0$ for all $v \neq 0$;
(ii). $f(v)-f(w)=g(v, w)(v-w)$ for $v, w \neq 0$, where g is a nonnegativelfunction; land
(iii). $\frac{F(x \ell+i, v \ell+i)}{f(v \ell+i)} \geq q(x \ell+i)$,
$\frac{G(x \ell+i, v \ell+j, w \ell+i)}{f(\nu \ell+i)} \leq p(x \ell+i)$ for $v, w \neq 0$.
Thelfollowing conditionslare usedlthroughout thislpaper:

$$
\begin{equation*}
\sum \frac{1}{a^{1 / \gamma}((x-1) \ell+i)}=\infty, \tag{3}
\end{equation*}
$$

$\int_{\theta}^{\infty} \frac{d x}{f(x)^{1 / \gamma}}<\infty, \int_{-\theta}^{-\infty} \frac{d x}{f(x)^{1 / \gamma}}<\infty$ forall $\theta>0$
$\liminf _{x \rightarrow \infty} \sum_{r=x_{0}}^{x}(q(r \ell+i)-p(r \ell+i)) \geq 0$ for all large x_{0},

$$
\begin{equation*}
\int_{0}^{\theta} \frac{d x}{f(x)^{1 / \gamma}}<\infty, \int_{0}^{-\theta} \frac{d x}{f(x)^{1 / \gamma}}<\infty \text { for all } \theta>0, \tag{6}
\end{equation*}
$$

$\sum\left[\frac{N}{a(r \ell+i)}-\frac{1}{a(r \ell+i)} \sum_{s=x_{0}}^{r}(q(s \ell+i)-p(s \ell+i))\right]=-\infty$
forlevery constant $1 N$,
$\limsup _{x \rightarrow \infty} \sum_{r=x_{0}}^{x}(q(r \ell+i)-p(r \ell+i))=\infty$ for allllarge x_{0},
$\underset{x \rightarrow \infty}{\limsup } \sum_{r=x_{0}}^{x} r(q(r \ell+i)-p(r \ell+i))=\infty$ forlall large x_{0},
$\sum(q(x \ell+i)-p(x \ell+i)) R\left(x \ell+i, x_{0} \ell+i\right)=\infty$ where
$R\left(x \ell+i, x_{0} \ell+i\right)=\sum_{r=x_{0}}^{x} \frac{1}{a((r-1) \ell+i)}$,
$\sum \frac{1}{(a(n-1) \ell+i)}<\infty$,
$\sum(q(x \ell+i)-p(x \ell+i)) T\left(x \ell+i, x_{0} \ell+i\right)=\infty$ where
$T\left(x \ell+i, x_{0} \ell+i\right)=R\left((x-1) \ell+i, x_{0} \ell+i\right)=\sum_{r=x_{0}}^{x-1} \frac{1}{a((r-1) \ell+i)}$,
$\sum \frac{1}{a((x-1) \ell+i)}=\infty$,
$\frac{a(x \ell+i)}{a((x-1) \ell+i)} \leq 1$ for $x \geq 1$.

Theorem 1 Supposal $\gamma \geq 1$ and (5)-(7) hold. Then, all solutions of (2) are oscillatory.

Proof. Suppose that $v(x \ell+i)$ is alnonoscillatory solution of (2), say, $v(x \ell+i)>0$ for $k \geq k_{0} \geq 1$. Since (5) holds, $\Delta_{\ell} v(x \ell+i)$ does not oscillate. Welbegin withlthe followinglidentity
$\Delta_{\ell}\left[\frac{a((x-1) \ell+i)\left|\Delta_{\ell} v((x-1) \ell+i)\right|^{\gamma-1} \Delta_{\ell} v((x-1) \ell+i)}{f(v((x-1) \ell+i))}\right]$
$=\frac{G(x \ell+i, v(x \ell+i), \Delta f(v(x \ell+i)))}{f(v(x \ell+i))}-\frac{F(x \ell+i, v(x \ell+i))}{f(v(x \ell+i))}$
$-\frac{a((x-1) \ell+i) g(v(x \ell+i), v((x-1) \ell+i))\left(\Delta_{\ell} v((x-1) \ell+i)\right)^{2}}{f(v((x-1) \ell+i)) f(v(x \ell+i))}$
$\times\left|\Delta_{\ell} v((x-1) \ell+i)\right|^{\gamma-1}$
whichlimplies
$\Delta_{\ell}\left[\frac{a((x-1) \ell+i)\left|\Delta_{\ell} v((x-1) \ell+i)\right|^{\gamma-1} \Delta_{\ell} v((x-1) \ell+i)}{f(v((x-1) \ell+i))}\right]$
$\leq p(x \ell+i)-q(x \ell+i)$.
Case 1. Suppose that $\Delta_{\ell} v(x \ell+i) \geq 0$ for $x \geq x_{1} \geq x_{0}$. Summing (16) from $\left(x_{1}+1\right)$ to x gives
$\frac{a(x \ell+i)\left|\Delta_{\ell} v(x \ell+i)\right|^{\gamma-1} \Delta_{\ell} v(x \ell+i)}{f(v(x \ell+i))}$
$\leq \frac{a\left(x_{1} \ell+i\right)\left|\Delta_{\ell} v\left(x_{1} \ell+i\right)\right|^{\gamma-1} \Delta_{\ell} v\left(x_{1} \ell+i\right)}{f\left(v\left(x_{1} \ell+i\right)\right)}$
$-\sum_{r=x_{1}+1}^{x}(q(r \ell+i)-p(r \ell+i))$
$\frac{\left|\Delta_{\ell} v(x \ell+i)\right|^{\gamma-1} \Delta_{\ell} v(x \ell+i)}{f(v(x \ell+i))} \leq \frac{N}{a(x \ell+i)}$
$-\frac{1}{a(x \ell+i)} \sum_{r=x_{1}+1}^{x}(q(r \ell+i)-p(r \ell+i))$
where $X=a\left(x_{1} \ell+i\right)\left|\Delta_{\ell} v\left(x_{1} \ell+i\right)\right|^{\gamma-1} \Delta_{\ell} v\left(x_{1} \ell+i\right) / f\left(v\left(x_{1} \ell+i\right)\right)$.
Again we sum (17) from $\left(k_{1}+1\right)$ to k, to obtain
$\sum_{r=x_{1}+1}^{x} \frac{\left|\Delta_{\ell} v(r \ell+i)\right|^{\gamma-1} \Delta_{\ell} v(r \ell+i)}{f(v(r \ell+i))}$
$\leq \sum_{s=x_{1}+1}^{x}\left[\frac{N}{a(r \ell+i)}-\frac{1}{a(r \ell+i)} \sum_{s=x_{1}+1}^{r}(q(s \ell+i)-p(s \ell+i))\right]$.
By (7), the right side of (18) tends to $-\infty$ as $x \rightarrow \infty$ where as the left side is nonnegative.
Case 2. Suppose that $\Delta_{\ell} v(x \ell+i)<0$ for $x \geq x_{1} \geq x_{0}$. Then, lfrom (18) welfind
$-\sum_{r=x_{1}+1}^{x}\left[\frac{N}{a(r \ell+i)}-\frac{1}{a(r \ell+i)} \sum_{s=x_{1}+1}^{r}(q(s \ell+i)-p(s \ell+i))\right]$
$\leq \sum_{r=x_{1}+1}^{x} \frac{\left|\Delta_{\ell} v(r \ell+i)\right|^{r}}{f(v(r \ell+i))}$
$\leq\left[\sum_{r=x_{1}+1}^{x} \frac{\left|\Delta_{\ell} v(r \ell+i)\right|}{f(v(r \ell+i))^{1 / \gamma}}\right]^{\gamma}$
$\leq\left[\int_{v(x+1)}^{v\left(x_{1}+1\right)} \frac{d u}{f(u)^{1 / \gamma}}\right]^{\gamma}$
$\leq\left[\int_{0}^{v\left(x_{1}+1\right)} \frac{d u}{f(u)^{1 / \gamma}}\right]^{\gamma}$.
By (7), the left side of (20) tends to ∞ asl $x \rightarrow \infty$ where as the right side is finite by (6).

Theorem 2 Suppose $a((x-1) \ell+i) \equiv 1, \gamma \geq 1$ land (4), (5), (9) hold. Then all solutions of (2) are oscillatory.
Proof. Assume that $v(x \ell+i)$ is a nonsocial atory solution of (2), say, $v(x \ell+i)>0$ for $x \geq x_{0} \geq 1$. Since (5) holds, we see that $\Delta_{\ell} v(x \ell+i)$ does not oscillate.
Welbegin withlthe followinglidentity
$\Delta_{\ell}\left[\frac{(x \ell+i)\left|\Delta_{\ell} v((x-1) \ell+i)\right|^{\gamma-1} \Delta_{\ell} v((x-1) \ell+i)}{f(v(x \ell+i))}\right]$
$=\frac{(x \ell+i) G(x \ell+i, v(x \ell+i), \Delta f(v(x \ell+i)))}{f(v(x \ell+i))}$
$-\frac{(x \ell+i) F(x \ell+i, v(x \ell+i))}{f(v(x \ell+i))}+\frac{\left|\Delta_{\ell} v(x \ell+i)\right|^{\gamma-1} \Delta_{\ell} v(x \ell+i)}{f(v((x+1) \ell+i))}$
$-\frac{(x \ell+i) g(v((x+1) \ell+i), v(x \ell+i))\left(\Delta_{\ell} v(x \ell+i)\right)^{2}}{f(v(x \ell+i))}$
$\times \frac{\left|\Delta_{\ell} v(x \ell+i)\right|^{\gamma^{-1}}}{f(v((x+1) \ell+i))}$
Which give rise to
$\Delta_{\ell}\left[\frac{(x \ell+i)\left|\Delta_{\ell} v((x-1) \ell+i)\right|^{\gamma-1} \Delta_{\ell} v((x-1) \ell+i)}{f(v(x \ell+i))}\right]$
$\leq(x \ell+i)(p(x \ell+i)-q(x \ell+i))+\frac{\left|\Delta_{\ell} v(x \ell+i)\right|^{\gamma-1} \Delta_{\ell} v(x \ell+i)}{f(v((x+1) \ell+i))}$.

Case 1. Suppose that $\Delta_{\ell} v(x \ell+i) \geq 0$ for $x \geq x_{1} \geq x_{0}$. Summing (21) from $\left(x_{1}+1\right)$ to x gives
$\sum_{r=x_{1}+1}^{x}(r \ell+i)(q(r \ell+i)-p(r \ell+i)) \leq \frac{\left(\left(x_{1}+1\right) \ell+i\right)\left(\Delta_{\ell} v\left(x_{1} \ell+i\right)\right)^{\gamma}}{f\left(v\left(\left(x_{1}+1\right) \ell+i\right)\right)}$
$-\frac{((x+1) \ell+i)\left(\Delta_{\ell} v(x \ell+i)\right)^{\gamma}}{f(v((x+1) \ell+i))}+\sum_{r=x_{1}+1}^{x} \frac{\left(\Delta_{\ell} v(r \ell+i)\right)^{\gamma}}{f(v((r+1) \ell+i))}$
$\leq \frac{\left(\left(x_{1}+1\right) \ell+i\right)\left(\Delta_{\ell} v\left(x_{1} \ell+i\right)\right)^{\gamma}}{f\left(v\left(\left(x_{1}+1\right) \ell+i\right)\right)}+\sum_{r=x_{1}+1}^{x} \frac{\left(\Delta_{\ell} v\left(r_{1} \ell+i\right)\right)^{\gamma}}{f(v((r+1) \ell+i))}$
$\leq \frac{\left(\left(x_{1}+1\right) \ell+i\right)\left(\Delta_{\ell} v\left(x_{1} \ell+i\right)\right)^{\gamma}}{f\left(v\left(\left(x_{1}+1\right) \ell+i\right)\right)}+\left[\sum_{r=x_{1}+1}^{x} \frac{\Delta_{\ell} v(r \ell+i)}{f(v((r+1) \ell+i))^{1 / \gamma}}\right]^{\gamma}$
$\leq \frac{\left(\left(x_{1}+1\right) \ell+i\right)\left(\Delta_{\ell} v\left(x_{1} \ell+i\right)\right)^{\gamma}}{f\left(v\left(\left(x_{1}+1\right) \ell+i\right)\right)}+\left[\int_{v\left(x_{1}+1\right)}^{v(x+1)} \frac{d u}{f(u)^{1 / \gamma}}\right]^{\gamma}$.
By (9), the left side of (22) tends to ∞ as $x \rightarrow \infty$ whereas the right side is finite by (4).
Case 2. Suppose that $\Delta_{\ell} v(x \ell+i)<0$ for $k \geq k_{1} \geq k_{0}$. Condition
(21) implies the existence of an integer $x_{2} \geq x_{1}$ such that
$\sum_{r=x_{1}+1}^{x}(r \ell+i)(q(r \ell+i)-p(r \ell+i)) \geq 0, x \geq x_{2}+1$.

Multiplying 1 (2) by $x \ell+i$ land using 1 (iii), welobtain $(x \ell+i)\left(\left|\Delta_{\ell} v((x-1) \ell+i)\right|^{\gamma-1} \Delta_{\ell} v((x-1) \ell+i)\right)$ $\leq(x \ell+i) f(v(x \ell+i))(p(x \ell+i)-q(x \ell+i))$
Which on summing by parts from $\left(x_{2}+1\right)$ to x provides
$((x+1) \ell+i)\left|\Delta_{\ell} v(x \ell+i)\right|^{\gamma-1} \Delta_{\ell} v(x \ell+i)$
$\leq\left(\left(x_{2}+1\right) \ell+i\right)\left|\Delta_{\ell} v\left(x_{2} \ell+i\right)\right|^{\gamma-1} \Delta_{\ell} v\left(x_{2} \ell+i\right)$
$+\sum_{r=x_{1}+1}^{x}\left|\Delta_{\ell} v(r \ell+i)\right|^{\gamma-1} \Delta_{\ell} v(r \ell+i)$
$-\sum_{r=x_{1}+1}^{x}(r \ell+i)(q(r \ell+i)-p(r \ell+i))$
$=\left(\left(x_{2}+1\right) \ell+i\right)\left|\Delta_{\ell} v\left(x_{2} \ell+i\right)\right|^{\gamma-1} \Delta_{\ell} v\left(x_{2} \ell+i\right)$
$+\sum_{r=x_{1}+1}^{x}\left|\Delta_{\ell} v(r \ell+i)\right|^{\gamma-1} \Delta_{\ell} v(r \ell+i)-f(v((x+1) \ell+i))$
$\times \sum_{r=x_{1}+1}^{x}(r \ell+i)(q(r \ell+i)-p(r \ell+i))$
$+\sum_{r=x_{1}+1}^{x} \Delta_{\ell} f(v(r \ell+i))\left[\sum_{s=x_{1}+1}^{r}(s \ell+i)(q(s \ell+i)-p(s \ell+i))\right]$
$=\left(\left(x_{2}+1\right) \ell+i\right)\left|\Delta_{\ell} v\left(x_{2} \ell+i\right)\right|^{\gamma-1} \Delta_{\ell} v\left(x_{2} \ell+i\right)$
$+\sum_{r=x_{1}+1}^{x}\left|\Delta_{\ell} v(r \ell+i)\right|^{\gamma-1} \Delta_{\ell} v(r \ell+i)$
$-f(v((x+1) \ell+i)) \sum_{r=x_{1}+1}^{x}(r \ell+i)(q(r \ell+i)-p(r \ell+i))$
$+\sum_{r=x_{1}+1}^{x} g(v((r+1) \ell+i), v(r \ell+i)) \Delta_{\ell} v(r \ell+i)$
$\times\left[\sum_{s=x_{1}+1}^{r}(s \ell+i)(q(s \ell+i)-p(s \ell+i))\right]$
$\leq\left(\left(x_{2}+1\right) \ell+i\right)\left|\Delta_{\ell} v\left(x_{2} \ell+i\right)\right|^{\gamma-1} \Delta_{\ell} v\left(x_{2} \ell+i\right)$
Where we have also used (23) in the last inequality. It followslthat
$\Delta_{\ell} v(x \ell+i) \leq \frac{-\left(\left(x_{2}+1\right) \ell+i\right)^{1 / \gamma}\left|\Delta_{\ell} v\left(x_{2} \ell+i\right)\right|}{((x+1) \ell+i)^{1 / \gamma}}$,

For $x \geq x_{2}+1$. Once again we sum (24) from $\left(x_{2}+1\right)$ to x to get

$$
\begin{align*}
& v((x+1) \ell+i) \leq v\left(\left(x_{2}+1\right) \ell+i\right) \\
& -\left(\left(x_{2}+1\right) \ell+i\right)^{1 / \gamma}\left|\Delta_{\ell} v\left(x_{2} \ell+i\right)\right| \sum_{r=x_{2}+1}^{x} \frac{1}{((r+1) \ell+i)^{1 / \gamma}} \tag{25}
\end{align*}
$$

The right side of (25) tends to $-\infty$ as $x \rightarrow \infty$, this contradicts the assumption that $v(x \ell+i)$ is eventually positive.

References

[1] Agarwal RP, Difference Equations and Inequalities, Marcel Dekker, New York (2000).
[2] Benevatho Jaison A, Khadar Babu Sk (2016), Oscillation for generalized first order nonlinear difference equations. Global Journal of Pure and Applied Mathematics 12(1), 51-54.
[3] Benevatho Jaison A, Khadar Babu Sk (2016), Kamenev-type oscillation criteria for second order generalized delay difference equations. International Journal of Control Theory and Applications 9(28), 463-469.
[4] Benevatho Jaison A, Khadar Babu Sk (2016), Oscillation for generalized first order nonlinear a-difference equations. International Journal of Pure and Applied Mathematics 109(7), 67-74.
[5] Benevatho Jaison A, Khadar Babu Sk (2017), Oscillation theorems for generalized second-order nonlinear delay difference equations. International Journal of Pure and Applied Mathematics 113(9), 8492.
[6] Benevatho Jaison A, Khadar Babu Sk (2017), Oscillation theorems for generalized second kind nonlinear delay difference equations. International Journal of Pure and Applied Mathematics 115(9), 2536.
[7] Benevatho Jaison A, Khadar Babu Sk (2017), Oscillatory behavior of generalized nonlinear difference equations. Global Journal of Pure and Applied Mathematics 13(1), 205-209.
[8] Benevatho Jaison A, Khadar Babu Sk (2017), Oscillatory behavior of generalized Nonlinear difference equations. Global Journal of Pure and Applied Mathematics 13(2), 415-423.
[9] Benevatho Jaison A, Khadar Babu Sk (2018), Kamenev-type oscillation criteria for generalized sublinear delay difference equations. International Journal of Pure and Applied Mathematics 118(10), 135-145.
[10] Benevatho Jaison A, Khadar Babu Sk (2018), Oscillation for generalized second kind nonlinear delay a-difference equations. International Journal of Pure and Applied Mathematics 118(23), 507-515.
[11] Chandrasekar V, Srimanju V (2016), Oscillation for generalized second order sublinear neutral delay alpha difference equations. Global Journal of Pure and Applied Mathematics 12(1), 55-59.
[12] Chandrasekar V, Srimanju V (2016), Qualitative properties of discrete version of generalized kneser's and arzela-ascoli's theorems. International Journal of Control Theory and Applications 9(28), 549-554.
[13] Maria Susai Manuel M, Britto Antony Xavier G, Thandapani E (2006), Theory of generalized difference operator and its applications. Far East Journal of Mathematical Sciences 20(2), 163-171.
[14] Maria Susai Manuel M, Chandrasekar V, Britto Antony Xavier G (2007), Generalized bernoulli polynomials through weighted pochhammer symbols. Journal of Modern Methods in Numerical Mathematics 26(3), 321-333.
[15] Maria Susai Manuel M, George Maria Selvam A, Britto Antony Xavier (2006), Rotatory and boundedness of solutions of certain class of difference equations. International Journal of Pure and Applied Mathematics 33(3), 333-343.
[16] Ronald E. Mickens, Difference Equations, Van Nostrand Reinhold Company, New York (1990).
[17] Srimanju V, Khadar Babu Sk (2017), Oscillatory criteria for generalized second-order quasilinear neutral delay difference equations. International Journal of Pure and Applied Mathematics 113(9), 7583.
[18] Srimanju V, Khadar Babu Sk (2017), Oscillation of generalized quasilinear difference equations. International Journal of Pure and Applied Mathematics 115(9), 37-45.
[19] Srimanju V, Khadar Babu Sk (2017), Oscillation criteria for generalized quasi-linear difference equations. Global Journal of Pure and Applied Mathematics 13(1), 210-216.
[20] Srimanju V, Khadar Babu Sk (2017), Oscillation criteria for generalized second kind quasi-linear neutral a-difference equations. Global Journal of Pure and Applied Mathematics 13(2), 544-551.
[21] Srimanju V, Khadar Babu Sk (2018), Oscillatory properties of third-order quasilinear generalized difference equations. International Journal of Pure and Applied Mathematics 118(10), 155-165.
[22] Srimanju V, Khadar Babu Sk (2018), Oscillation of generalized quasilinear a-difference equations. International Journal of Pure and Applied Mathematics 118(23), 497-505.

