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Abstract

The packing chromatic number χρ(G) of a graph G is the smallest integer k for which there exists a mapping π : V (G) −→

{1, 2, . . . , k} such that any two vertices of color i are at distance at least i + 1. In this paper, we compute the packing chromatic
number for certain fan and wheel related graphs.
c⃝ 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Let G be a connected graph and k be an integer, k ≥ 1. A packing k-coloring of a graph G is a mapping
π : V (G) −→ {1, 2, . . . , k} such that any two vertices of color i are at distance at least i + 1. The packing chromatic
number χρ(G) of G is the smallest integer k for which G has packing k-coloring. The concept of packing coloring
comes from the area of frequency assignment in wireless networks and was introduced by Goddard et al. [1] under
the name broadcast coloring. It has several applications, such as, in resource placement and biological diversity. The
term packing chromatic number was introduced by Brešar et al. [2].

Goddard et al. [1] proved that the packing coloring problem is NP-complete for general graphs and Fiala and
Golovach [3] proved that it is NP-complete even for trees. It is proved that the packing coloring problem is solvable in
polynomial time for graphs whose treewidth and diameter are both bounded [3] and for cographs and split graphs [1].
Sloper [4] studied a special type of packing coloring, called eccentric coloring and proved that the infinite 3-regular
tree has packing chromatic number 7. For the infinite planar square lattice Z2, 10 ≤ χρ(Z2) ≤ 17 [5,6]. The packing
coloring of distance graphs was studied in [7,8]. For the infinite hexagonal lattice H, χρ(H) = 7 [2].

Argiroffo et al. [9,10] proved that the packing coloring problem is solvable in polynomial time for the class of
(q, q − 4) graphs, partner limited graphs and for an infinite subclass of lobsters, including caterpillars. It is proved
in [11,12] that the infinite, planar triangular lattice and the three dimensional square lattice have unbounded packing
chromatic number. In this paper, we study the packing chromatic number of certain fan and wheel related graphs.
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2. Main results

Let G1 and G2 be vertex disjoint graphs with |V (G1)| = n1, |E(G1)| = m1, |V (G2)| = n2 and |E(G2)| = m2.

Definition 2.1. The union of G1 and G2 is the graph with vertex set V1 ∪ V2 and edge set E1 ∪ E2. It is denoted by
G1 ∪ G2. So, G1 ∪ G2 has n1 + n2 vertices and m1 + m2 edges.

Definition 2.2. The sum or join of G1 and G2 is the graph obtained from G1 ∪ G2 by joining every vertex of G1 with
G2. It is denoted by G1 + G2. So, G1 + G2 has n1 + n2 vertices and m1 + m2 + n1n2 edges.

Definition 2.3. A Fan graph Fn is defined as the graph K1 + Pn , where K1 is the singleton graph and Pn is the path
on n vertices.

Definition 2.4. The wheel Wn+1 is defined as the graph K1 + Cn , where K1 is the singleton graph and Cn is the cycle
graph on n vertices.

Definition 2.5 ([13]). A uniform n-fan split graph SFr
n contains a star Sn+1 with hub at x such that the deletion of

the n edges of Sn+1 partitions the graph into n independent fans F i
r = P i

r + K1, 1 ≤ i ≤ n and an isolated vertex. See
Fig. 1.

Theorem 2.6. For the uniform n-fan split graph SFr
n , n ≥ 4, r ≥ 5, we have χρ(SFr

n ) ≥ 3 + n[r − ⌈
r
2⌉ − 1].

Proof. Let F i
r , 1 ≤ i ≤ n be the fans of SFr

n . Let V (SFr
n ) = {wi

j , wi , x : 1 ≤ i ≤ n, 1 ≤ j ≤ r}, where wi is the

hub of F i
r and x is the hub of Sn+1. Since the diameter of SFr

n is 4, colors greater than 3 can be assigned to only one
vertex of SFr

n .

Fact 1: If color 3 is assigned to vertex x , no other vertex of SFr
n can receive color 3 because d(x, wi

j ) = 2 and
d(x, wi ) = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ r . Similarly, if color 3 is assigned to any vertex wi , no other vertex of SFr

n can
receive color 3. And also, if color 3 is assigned to any vertex wi

j of any F i
r and since diam(F i

r ) = 2, no other vertex

of chosen F i
r can receive 3. There are n fans in SFr

n . Since d(wi
j , w

l
m) = 4, i ≠ l, 1 ≤ i, l ≤ n, 1 ≤ j, m ≤ r , at most

n vertices receive color 3. Thus, the maximum number of vertices that can receive color 3 is n.

Fact 2: Since d(wi
j , w

l
m) = 4, i ≠ l, 1 ≤ i, l ≤ n, 1 ≤ j, m ≤ r and d(wi , w

l
m) = 3, i ≠ l, 1 ≤ i, l ≤ n, 1 ≤ m ≤ r ,

assigning color 2 to a vertex wi
j or wi , at most n vertices can receive 2. Thus, the maximum number of vertices that

can receive color 2 is n.

Fact 3: If color 1 is assigned to any vertex wi , at most (n −1)⌈ r
2⌉+1 vertices can receive 1. But, if color 1 is assigned

to vertex x and alternative vertices of F i
r with 1, at most n⌈

r
2⌉ + 1 vertices can receive 1. Thus, the maximum number

of vertices that can receive color 1 is n⌈
r
2⌉ + 1.

There are nr + n + 1 vertices in SFr
n and at most n⌈

r
2⌉ + 1 + n + n vertices receive color 1, 2 and 3. Thus, at

least nr + n + 1 − [n + n + n⌈
r
2⌉ + 1] = n[r − ⌈

r
2⌉ − 1] vertices should receive distinct colors starting from 4 to

3 + n[r − ⌈
r
2⌉ − 1]. Thus, χρ(SFr

n ) ≥ 3 + n[r − ⌈
r
2⌉ − 1].

We give an algorithm to color the uniform n-fan split graph SFr
n and prove that the bound is sharp.

Procedure PACKING COLORING SFr
n , n ≥ 4, r ≥ 5

Input: A uniform n-fan split graph SFr
n

Algorithm:
Step 1: Color the vertices wi

2 j−1, 1 ≤ i ≤ n, 1 ≤ j ≤ ⌈
r
2⌉ of F i

r by 1.

Step 2: Color the vertices wi
2 j , 1 ≤ i ≤ n, 1 ≤ j ≤ 2 of F i

r by (1 + j).
Step 3: Color the hub vertex x by 1.
Step 4: Color remaining vertices of SFr

n with distinct colors starting from 4 to 3 + n[r − ⌈
r
2⌉ − 1].

Output: A packing 3 + n[r − ⌈
r
2⌉ − 1]-coloring of SFr

n .
Proof of Correctness: The diameter of F i

r is 2. Coloring the vertices wi
2 j−1, 1 ≤ i ≤ n, 1 ≤ j ≤ ⌈

r
2⌉ of any F i

r by

1, at most ⌈
r
2⌉ vertices receive color 1. There are n fans in SFr

n and since d(wi
j , w

l
m) = 4, i ≠ l, 1 ≤ i, l ≤ n, 1 ≤

j, m ≤ r , at most n⌈
r
2⌉ vertices receive color 1. Since diam(F i

r ) = 2, colors greater than 1 cannot be used more than
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Fig. 1. A packing 15-coloring of SF9
4 .

once in F i
r , so that remaining vertices of F i

r receive distinct colors greater than 1. Therefore, at most n[r−⌈
r
2⌉] vertices

receive distinct colors. Since diam(SFr
n ) = 4 and d(wi

j , w
l
m) = 4, i ≠ l, 1 ≤ i, l ≤ n, 1 ≤ j, m ≤ r , coloring vertices

wi
2 j , 1 ≤ i ≤ n, 1 ≤ j ≤ 2 of any F i

r at most two vertices receive colors 2 and 3. There are n fans in SFr
n . Therefore

2n vertices receive colors 2 and 3. Thus n[r − ⌈
r
2⌉ − 2] vertices receive distinct colors greater than 3. By the coloring

of F i
r by 1, the vertex x receives color 1. There are n hub vertices wi in SFr

n . Thus, n[r −⌈
r
2⌉−2]+n = n[r −⌈

r
2⌉−1]

vertices receive distinct colors from 4 to 3 + n[r − ⌈
r
2⌉ − 1]. Hence χρ(SFr

n ) = 3 + n[r − ⌈
r
2⌉ − 1]. �

Definition 2.7 ([13]). Let ui , 1 ≤ i ≤ n be the vertices of the complete graph Kn . Let W i
r+1 = C i

r + K1 be the wheels
with hubs wi , 1 ≤ i ≤ n respectively. Let uiw

i , 1 ≤ i ≤ n be an edge. The graph constructed is called uniform
n-wheel split graph and denoted by K W (n, r).

Remark 2.8. A uniform n-wheel split graph K W (n, r) is a graph in which the deletion of n edges uiw
i , 1 ≤ i ≤ n

partitions the graph into a complete graph and n independent wheels Wr+1. This graph can be thought of as a
generalization of the standard split graph in the sense that the elements of the independent set are replaced by wheels
here. The number of vertices in K W (n, r) is n(r + 2) and the number of edges is n(2r +

n−1
2 + 1). The diameter of

K W (n, r) is 5. See Fig. 2.

Theorem 2.9. For the uniform n-wheel split graph, we have χρ(K W (n, r)) ≥ 4 + n[(r + 1) − ⌊
r
2⌋ − 2] − 1, n ≥

5, r ≥ 6.

Proof. Let W i
r+1, 1 ≤ i ≤ n be the wheels of K W (n, r). Let V (W i

r+1) = {wi
j , w

i
: 1 ≤ i ≤ n, 1 ≤ j ≤ r}, where

wi is the hubs of W i
r+1. Since the diameter of K W (n, r) is 5, colors greater than 4 can be assigned to only one vertex

of K W (n, r).
Fact 1: If color 4 is assigned to any vertex ui of Kn or hub wi , no other vertex of K W (n, r) can receive color 4
because d(ui , w

i
j ) = 2 and d(ui , w

i ) = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ r . Therefore, we color one vertex wi
j of any W i

r+1 by

color 4. Since diam(W i
r+1) = 2, 1 ≤ i ≤ n, 1 ≤ j ≤ r , no other vertex of chosen W i

r+1 can receive color 4. There
are n wheels in K W (n, r) and since d(wi

j , w
l
m) = 5, i ≠ l, 1 ≤ i, l ≤ n, 1 ≤ j, m ≤ r , at most n vertices can receive

color 4. Thus the maximum number of vertices that can receive color 4 is n.
Fact 2: If color 3 is assigned to any vertex ui of Kn , no other vertex of K W (n, r) can receive 3 because d(ui , w

i
j ) = 2

and d(ui , w
i ) = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ r . And also, if color 3 is assigned to any vertex wi or wi

j , at most n vertices
of K W (n, r) can receive color 3. Thus, the maximum number of vertices that can receive color 3 is n.
Fact 3: If color 2 is assigned to any vertex ui or wi or wi

j , at most n vertices can receive 2 because d(wi
j , w

l
m) = 5,

i ≠ l, 1 ≤ i, l ≤ n, 1 ≤ j, m ≤ r and d(wi , wl
m) = 4, i ≠ l, 1 ≤ i, l ≤ n, 1 ≤ m ≤ r and d(ui , w

l
m) = 3,

i ≠ l, 1 ≤ i, l ≤ n, 1 ≤ m ≤ r . Thus, the maximum number of vertices that can receive color 2 is n.
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Fig. 2. A packing 27-coloring of K W (6, 9).

Fact 4: If color 1 is assigned to any vertex wi with 1, at most (n − 1)⌊ r
2⌋ + 2 vertices receive 1. But, if color 1

is assigned to any vertex of ui of Kn or wi
j , at most n⌊

r
2⌋ + 1 vertices of K W (n, r) can receive color 1 because

d(ui , w
i
j ) = 2 and diam(W i

r+1) = 2. Thus, the maximum number of vertices that can receive color 1 is n⌊
r
2⌋ + 1.

There are n[(r + 2)] vertices in K W (n, r) and at most n⌊
r
2⌋+ 1 + n + n + n vertices receive color 1, 2, 3 and 4. Thus,

at least n[(r + 2)] − [n + n + n + n⌊
r
2⌋ + 1] = n[(r + 1) − ⌊

r
2⌋ − 2] − 1 vertices should receive distinct colors.

Thus, χρ(K W (n, r)) ≥ 4 + n[(r + 1) − ⌊
r
2⌋ − 2] − 1.

We give an algorithm to color the uniform n-wheel split graph K W (n, r) and prove that the bound is sharp.

Procedure PACKING COLORING K W (n, r), n ≥ 5, r ≥ 6

Input: A uniform n-wheel split graph K W (n, r)

Algorithm:
Step 1: Color the vertices wi

2 j−1, 1 ≤ i ≤ n, 1 ≤ j ≤ ⌊
r
2⌋ of W i

r+1 by 1.

Step 2: Color the vertices wi
2 j , 1 ≤ i ≤ n, 1 ≤ j ≤ 3 of W i

r+1 by (1 + j).
Step 3: Color any one vertex of Kn in K W (n, r) by 1.
Step 4: Color remaining vertices of K W (n, r) with distinct colors starting from 5 to 4 + n[(r + 1) − ⌊

r
2⌋ − 2] − 1.

Output: A packing 4 + n[(r + 1) − ⌊
r
2⌋ − 2] − 1-coloring of K W (n, r).

Proof of Correctness: The diameter of W i
r+1 is 2. Coloring the vertices wi

2 j−1, 1 ≤ i ≤ n, 1 ≤ j ≤ ⌊
r
2⌋ of

any W i
r+1 by 1, at most ⌊

r
2⌋ vertices receive color 1. There are n wheels in K W (n, r) and since d(wi

j , w
l
m) = 5,

i ≠ l, 1 ≤ i, l ≤ n, 1 ≤ j, m ≤ r , at most n⌊
r
2⌋ vertices receive color 1. Since diam(W i

r+1) = 2, color greater than
1 cannot be used more than once in W i

r+1, so that remaining [(r + 1) − ⌊
r
2⌋] vertices of W i

r+1 receive distinct colors
greater than 1. Therefore, at most n[(r + 1) − ⌊

r
2⌋] vertices receive distinct colors. Since diam(K W (n, r)) = 5 and

d(wi
j , w

l
m) = 5, i ≠ l, 1 ≤ i, l ≤ n, 1 ≤ j, m ≤ r , coloring vertices wi

2 j , 1 ≤ i ≤ n, 1 ≤ j ≤ 3 of any W i
r+1 at

most three vertices receive colors 2, 3 and 4. There are n wheels in K W (n, r). Therefore, 3n vertices receive colors
2, 3 and 4. Thus, n[(r + 1) − ⌊

r
2⌋ − 3] vertices receive distinct colors greater than 4. By the coloring of W i

r+1 by 1,
at most one vertex of Kn receives color 1. The remaining (n − 1) vertices of Kn receive distinct colors in addition to
n[(r + 1) − ⌊

r
2⌋ − 3] vertices. Thus, n[(r + 1) − ⌊

r
2⌋ − 3] + (n − 1) = n[(r + 1) − ⌊

r
2⌋ − 2] − 1 vertices receive

distinct colors from 5 to 4 + n[(r + 1) − ⌊
r
2⌋ − 2] − 1. Hence χρ(K W (n, r)) = 4 + n[(r + 1) − ⌊

r
2⌋ − 2] − 1. �

The proofs of Theorems 2.11, 2.13 and 2.15 are similar to that of Theorems 2.6 and 2.9.

Definition 2.10 ([13]). Let ui , 1 ≤ i ≤ n be the vertices of a star Sn+1 with hub at x . Let uiwi , 1 ≤ i ≤ n be an edge.
Let W i

r+1 = C i
r + K1 be wheels with hubs wi , 1 ≤ i ≤ n. The graph obtained is denoted by SW (n, r).

The number of vertices in SW (n, r) is n(r +2)+1 and the number of edge is 2n(r +1). The diameter of SW (n, r)

is 6. See Fig. 3.
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Fig. 3. A packing 11-coloring of SW (6, 8).

Theorem 2.11. The packing chromatic number of SW (n, r) is given by χρ(SW (n, r)) = 5+n[(r +1)−⌊
r
2⌋−4], n ≥

3, r ≥ 8.

The algorithm to color SW (n, r) is given below:

Procedure PACKING COLORING SW (n, r), n ≥ 3, r ≥ 8

Input: A graph SW (n, r)

Algorithm
Step 1: Color the vertices wi

2 j−1, 1 ≤ i ≤ n, 1 ≤ j ≤ ⌊
r
2⌋ of W i

r+1 by 1.

Step 2: Color the vertices wi
2 j , 1 ≤ i ≤ n, 1 ≤ j ≤ 4 of W i

r+1 by (1 + j).
Step 3: Color the hub vertex x by 2.
Step 4: Color the vertices ui , 1 ≤ i ≤ n by 1.
Step 5: Color remaining vertices of SW (n, r) with distinct colors starting from 6 to 5 + n[(r + 1) − ⌊

r
2⌋ − 4].

Output: A packing 5 + n[(r + 1) − ⌊
r
2⌋ − 4]-coloring of SW (n, r).

Definition 2.12 ([13]). Let xi , 1 ≤ i ≤ n be the vertices of the complete graph Kn . Let W i
r+1 = C i

r + K1 be wheels
with hubs wi , 1 ≤ i ≤ n. Let xiwi , 1 ≤ i ≤ n be an edge. Subdivide each edge xiwi by ui , 1 ≤ i ≤ n. The graph
obtained is denoted by K DW (n, r).

The number of vertices in K DW (n, r) is n(r + 3) and the number of edge is n(2r + 1) + n( n+1
2 ). The diameter of

K DW (n, r) is 7. See Fig. 4.

Theorem 2.13. The packing chromatic number of K DW (n, r) is given by χρ(K DW (n, r)) = 6 + n[(r + 1)−⌊
r
2⌋−

4] − 1, n ≥ 4, r ≥ 10.

The algorithm to color K DW (n, r) is given below:

Procedure PACKING COLORING K DW (n, r), n ≥ 4, r ≥ 10

Input: A graph K DW (n, r)

Algorithm
Step 1: Color the vertices wi

2 j−1, 1 ≤ i ≤ n, 1 ≤ j ≤ ⌊
r
2⌋ of W i

r+1 by 1.

Step 2: Color the vertices wi
2 j , 1 ≤ i ≤ n, 1 ≤ j ≤ 5 of W i

r+1 by (1 + j).
Step 3: Color any one vertex of Kn in K DW (n, r) by 2.
Step 4: Color the vertices ui , 1 ≤ i ≤ n by 1.
Step 5: Color remaining vertices of K DW (n, r) with distinct colors starting from 7 to 6 + n[(r + 1) − ⌊

r
2⌋ − 4] − 1.

Output: A packing 6 + n[(r + 1) − ⌊
r
2⌋ − 4] − 1-coloring of K DW (n, r).

Definition 2.14 ([13]). The graph SW r
n contains a star Sn+1 with hub at x such that the deletion of the n edges of

Sn+1 partitions the graph into n independent wheels W i
r+1 = C i

r + K1, 1 ≤ i ≤ n and an isolated vertex. See Fig. 5.
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Fig. 4. A packing 17-coloring of K DW (6, 10).

Fig. 5. A packing 19-coloring of SW 9
4 .

Theorem 2.15. The packing chromatic number of SW r
n , n ≥ 4, r ≥ 5 is given by χρ(SW r

n ) = 3 + n[r − ⌊
r
2⌋ − 1].

The algorithm to color SW r
n is given below:

Procedure PACKING COLORING SW r
n , n ≥ 4, r ≥ 5

Input: A graph SW r
n

Algorithm
Step 1: Color the vertices wi

2 j−1, 1 ≤ i ≤ n, 1 ≤ j ≤ ⌊
r
2⌋ of W i

r+1 by color 1.

Step 2: Color the vertices wi
2 j , 1 ≤ i ≤ n, 1 ≤ j ≤ 2 of W i

r+1 by color (1 + j).
Step 3: Color the hub vertex x by 1.
Step 4: Color remaining vertices of SW r

n with distinct colors starting from 4 to 3 + n[r − ⌊
r
2⌋ − 1].

Output: A packing 3 + n[r − ⌊
r
2⌋ − 1]-coloring of SW r

n .
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