Packing chromatic number of certain fan and wheel related graphs

S. Roy
VIT University, Department of Mathematics, School of Advanced Sciences, 632014 Vellore, India

Received 17 June 2015; accepted 20 May 2016

Available online xxxx

Abstract

The packing chromatic number $\chi_{\rho}(G)$ of a graph G is the smallest integer k for which there exists a mapping $\pi: V(G) \longrightarrow$ $\{1,2, \ldots, k\}$ such that any two vertices of color i are at distance at least $i+1$. In this paper, we compute the packing chromatic number for certain fan and wheel related graphs. © 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Packing chromatic number; Uniform n-fan split graph; Uniform n-wheel split graph

1. Introduction

Let G be a connected graph and k be an integer, $k \geq 1$. A packing k-coloring of a graph G is a mapping $\pi: V(G) \longrightarrow\{1,2, \ldots, k\}$ such that any two vertices of color i are at distance at least $i+1$. The packing chromatic number $\chi_{\rho}(G)$ of G is the smallest integer k for which G has packing k-coloring. The concept of packing coloring comes from the area of frequency assignment in wireless networks and was introduced by Goddard et al. [1] under the name broadcast coloring. It has several applications, such as, in resource placement and biological diversity. The term packing chromatic number was introduced by Brešar et al. [2].

Goddard et al. [1] proved that the packing coloring problem is NP-complete for general graphs and Fiala and Golovach [3] proved that it is NP-complete even for trees. It is proved that the packing coloring problem is solvable in polynomial time for graphs whose treewidth and diameter are both bounded [3] and for cographs and split graphs [1]. Sloper [4] studied a special type of packing coloring, called eccentric coloring and proved that the infinite 3-regular tree has packing chromatic number 7 . For the infinite planar square lattice $\mathbb{Z}^{2}, 10 \leq \chi_{\rho}\left(\mathbb{Z}^{2}\right) \leq 17$ [5,6]. The packing coloring of distance graphs was studied in [7,8]. For the infinite hexagonal lattice $\mathbb{H}, \chi_{\rho}(\mathbb{H})=7$ [2].

Argiroffo et al. [9,10] proved that the packing coloring problem is solvable in polynomial time for the class of $(q, q-4)$ graphs, partner limited graphs and for an infinite subclass of lobsters, including caterpillars. It is proved in $[11,12]$ that the infinite, planar triangular lattice and the three dimensional square lattice have unbounded packing chromatic number. In this paper, we study the packing chromatic number of certain fan and wheel related graphs.

[^0]
2. Main results

Let G_{1} and G_{2} be vertex disjoint graphs with $\left|V\left(G_{1}\right)\right|=n_{1},\left|E\left(G_{1}\right)\right|=m_{1},\left|V\left(G_{2}\right)\right|=n_{2}$ and $\left|E\left(G_{2}\right)\right|=m_{2}$.
Definition 2.1. The union of G_{1} and G_{2} is the graph with vertex set $V_{1} \cup V_{2}$ and edge set $E_{1} \cup E_{2}$. It is denoted by $G_{1} \cup G_{2}$. So, $G_{1} \cup G_{2}$ has $n_{1}+n_{2}$ vertices and $m_{1}+m_{2}$ edges.

Definition 2.2. The sum or join of G_{1} and G_{2} is the graph obtained from $G_{1} \cup G_{2}$ by joining every vertex of G_{1} with G_{2}. It is denoted by $G_{1}+G_{2}$. So, $G_{1}+G_{2}$ has $n_{1}+n_{2}$ vertices and $m_{1}+m_{2}+n_{1} n_{2}$ edges.

Definition 2.3. A Fan graph F_{n} is defined as the graph $K_{1}+P_{n}$, where K_{1} is the singleton graph and P_{n} is the path on n vertices.

Definition 2.4. The wheel W_{n+1} is defined as the graph $K_{1}+C_{n}$, where K_{1} is the singleton graph and C_{n} is the cycle graph on n vertices.

Definition 2.5 ([13]). A uniform n-fan split graph $S F_{n}^{r}$ contains a star S_{n+1} with hub at x such that the deletion of the n edges of S_{n+1} partitions the graph into n independent fans $F_{r}^{i}=P_{r}^{i}+K_{1}, 1 \leq i \leq n$ and an isolated vertex. See Fig. 1.

Theorem 2.6. For the uniform n-fan split graph $S F_{n}^{r}, n \geq 4, r \geq 5$, we have $\chi_{\rho}\left(S F_{n}^{r}\right) \geq 3+n\left[r-\left\lceil\frac{r}{2}\right\rceil-1\right]$.
Proof. Let $F_{r}^{i}, 1 \leq i \leq n$ be the fans of $S F_{n}^{r}$. Let $V\left(S F_{n}^{r}\right)=\left\{w_{j}^{i}, w_{i}, x: 1 \leq i \leq n, 1 \leq j \leq r\right\}$, where w_{i} is the hub of F_{r}^{i} and x is the hub of S_{n+1}. Since the diameter of $S F_{n}^{r}$ is 4 , colors greater than 3 can be assigned to only one vertex of $S F_{n}^{r}$.
Fact 1: If color 3 is assigned to vertex x, no other vertex of $S F_{n}^{r}$ can receive color 3 because $d\left(x, w_{j}^{i}\right)=2$ and $d\left(x, w_{i}\right)=1,1 \leq i \leq n, 1 \leq j \leq r$. Similarly, if color 3 is assigned to any vertex w_{i}, no other vertex of $S F_{n}^{r}$ can receive color 3. And also, if color 3 is assigned to any vertex w_{j}^{i} of any F_{r}^{i} and since $\operatorname{diam}\left(F_{r}^{i}\right)=2$, no other vertex of chosen F_{r}^{i} can receive 3 . There are n fans in $S F_{n}^{r}$. Since $d\left(w_{j}^{i}, w_{m}^{l}\right)=4, i \neq l, 1 \leq i, l \leq n, 1 \leq j, m \leq r$, at most n vertices receive color 3. Thus, the maximum number of vertices that can receive color 3 is n.
Fact 2: Since $d\left(w_{j}^{i}, w_{m}^{l}\right)=4, i \neq l, 1 \leq i, l \leq n, 1 \leq j, m \leq r$ and $d\left(w_{i}, w_{m}^{l}\right)=3, i \neq l, 1 \leq i, l \leq n, 1 \leq m \leq r$, assigning color 2 to a vertex w_{j}^{i} or w_{i}, at most n vertices can receive 2 . Thus, the maximum number of vertices that can receive color 2 is n.
Fact 3: If color 1 is assigned to any vertex w_{i}, at most $(n-1)\left\lceil\frac{r}{2}\right\rceil+1$ vertices can receive 1 . But, if color 1 is assigned to vertex x and alternative vertices of F_{r}^{i} with 1 , at most $n\left\lceil\frac{r}{2}\right\rceil+1$ vertices can receive 1 . Thus, the maximum number of vertices that can receive color 1 is $n\left\lceil\frac{r}{2}\right\rceil+1$.

There are $n r+n+1$ vertices in $S F_{n}^{r}$ and at most $n\left\lceil\frac{r}{2}\right\rceil+1+n+n$ vertices receive color 1,2 and 3 . Thus, at least $n r+n+1-\left[n+n+n\left\lceil\frac{r}{2}\right\rceil+1\right]=n\left[r-\left\lceil\frac{r}{2}\right\rceil-1\right]$ vertices should receive distinct colors starting from 4 to $3+n\left\lceil r-\left\lceil\frac{r}{2}\right\rceil-1\right]$. Thus, $\chi_{\rho}\left(S F_{n}^{r}\right) \geq 3+n\left[r-\left\lceil\frac{r}{2}\right\rceil-1\right]$.

We give an algorithm to color the uniform n-fan split graph $S F_{n}^{r}$ and prove that the bound is sharp.

Procedure PACKING COLORING $S F_{n}^{r}, n \geq 4, r \geq 5$

Input: A uniform n-fan split graph $S F_{n}^{r}$

Algorithm:

Step 1: Color the vertices $w_{2 j-1}^{i}, 1 \leq i \leq n, 1 \leq j \leq\left\lceil\frac{r}{2}\right\rceil$ of F_{r}^{i} by 1.
Step 2: Color the vertices $w_{2 j}^{i}, 1 \leq i \leq n, 1 \leq j \leq 2$ of F_{r}^{i} by $(1+j)$.
Step 3: Color the hub vertex x by 1.
Step 4: Color remaining vertices of $S F_{n}^{r}$ with distinct colors starting from 4 to $3+n\left[r-\left\lceil\frac{r}{2}\right\rceil-1\right]$.
Output: A packing $3+n\left[r-\left\lceil\frac{r}{2}\right\rceil-1\right]$-coloring of $S F_{n}^{r}$.
Proof of Correctness: The diameter of F_{r}^{i} is 2 . Coloring the vertices $w_{2 j-1}^{i}, 1 \leq i \leq n, 1 \leq j \leq\left\lceil\frac{r}{2}\right\rceil$ of any F_{r}^{i} by 1, at most $\left\lceil\frac{r}{2}\right\rceil$ vertices receive color 1 . There are n fans in $S F_{n}^{r}$ and since $d\left(w_{j}^{i}, w_{m}^{l}\right)=4, i \neq l, 1 \leq i, l \leq n, 1 \leq$ $j, m \leq r$, at most $n\left\lceil\frac{r}{2}\right\rceil$ vertices receive color 1 . Since $\operatorname{diam}\left(F_{r}^{i}\right)=2$, colors greater than 1 cannot be used more than

Fig. 1. A packing 15 -coloring of $S F_{4}^{9}$.
once in F_{r}^{i}, so that remaining vertices of F_{r}^{i} receive distinct colors greater than 1 . Therefore, at most $n\left[r-\left\lceil\frac{r}{2}\right\rceil\right]$ vertices receive distinct colors. Since $\operatorname{diam}\left(S F_{n}^{r}\right)=4$ and $d\left(w_{j}^{i}, w_{m}^{l}\right)=4, i \neq l, 1 \leq i, l \leq n, 1 \leq j, m \leq r$, coloring vertices $w_{2 j}^{i}, 1 \leq i \leq n, 1 \leq j \leq 2$ of any F_{r}^{i} at most two vertices receive colors 2 and 3 . There are n fans in $S F_{n}^{r}$. Therefore $2 n$ vertices receive colors 2 and 3 . Thus $n\left[r-\left\lceil\frac{r}{2}\right\rceil-2\right]$ vertices receive distinct colors greater than 3 . By the coloring of F_{r}^{i} by 1, the vertex x receives color 1. There are n hub vertices w_{i} in $S F_{n}^{r}$. Thus, $n\left[r-\left\lceil\frac{r}{2}\right\rceil-2\right]+n=n\left[r-\left\lceil\frac{r}{2}\right\rceil-1\right]$ vertices receive distinct colors from 4 to $3+n\left[r-\left\lceil\frac{r}{2}\right\rceil-1\right]$. Hence $\chi_{\rho}\left(S F_{n}^{r}\right)=3+n\left[r-\left\lceil\frac{r}{2}\right\rceil-1\right]$.

Definition 2.7 ([13]). Let $u_{i}, 1 \leq i \leq n$ be the vertices of the complete graph K_{n}. Let $W_{r+1}^{i}=C_{r}^{i}+K_{1}$ be the wheels with hubs $w^{i}, 1 \leq i \leq n$ respectively. Let $u_{i} w^{i}, 1 \leq i \leq n$ be an edge. The graph constructed is called uniform n-wheel split graph and denoted by $K W(n, r)$.

Remark 2.8. A uniform n-wheel split graph $K W(n, r)$ is a graph in which the deletion of n edges $u_{i} w^{i}, 1 \leq i \leq n$ partitions the graph into a complete graph and n independent wheels W_{r+1}. This graph can be thought of as a generalization of the standard split graph in the sense that the elements of the independent set are replaced by wheels here. The number of vertices in $K W(n, r)$ is $n(r+2)$ and the number of edges is $n\left(2 r+\frac{n-1}{2}+1\right)$. The diameter of $K W(n, r)$ is 5 . See Fig. 2.

Theorem 2.9. For the uniform n-wheel split graph, we have $\chi_{\rho}(K W(n, r)) \geq 4+n\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor-2\right]-1, n \geq$ $5, r \geq 6$.

Proof. Let $W_{r+1}^{i}, 1 \leq i \leq n$ be the wheels of $K W(n, r)$. Let $V\left(W_{r+1}^{i}\right)=\left\{w_{j}^{i}, w^{i}: 1 \leq i \leq n, 1 \leq j \leq r\right\}$, where w^{i} is the hubs of W_{r+1}^{i}. Since the diameter of $K W(n, r)$ is 5 , colors greater than 4 can be assigned to only one vertex of $K W(n, r)$.
Fact 1: If color 4 is assigned to any vertex u_{i} of K_{n} or hub w^{i}, no other vertex of $K W(n, r)$ can receive color 4 because $d\left(u_{i}, w_{j}^{i}\right)=2$ and $d\left(u_{i}, w^{i}\right)=1,1 \leq i \leq n, 1 \leq j \leq r$. Therefore, we color one vertex w_{j}^{i} of any W_{r+1}^{i} by color 4. Since diam $\left(W_{r+1}^{i}\right)=2,1 \leq i \leq n, 1 \leq j \leq r$, no other vertex of chosen W_{r+1}^{i} can receive color 4 . There are n wheels in $K W(n, r)$ and since $d\left(w_{j}^{i}, w_{m}^{l}\right)=5, i \neq l, 1 \leq i, l \leq n, 1 \leq j, m \leq r$, at most n vertices can receive color 4 . Thus the maximum number of vertices that can receive color 4 is n.
Fact 2: If color 3 is assigned to any vertex u_{i} of K_{n}, no other vertex of $K W(n, r)$ can receive 3 because $d\left(u_{i}, w_{j}^{i}\right)=2$ and $d\left(u_{i}, w^{i}\right)=1,1 \leq i \leq n, 1 \leq j \leq r$. And also, if color 3 is assigned to any vertex w^{i} or w_{j}^{i}, at most n vertices of $K W(n, r)$ can receive color 3. Thus, the maximum number of vertices that can receive color 3 is n.
Fact 3: If color 2 is assigned to any vertex u_{i} or w^{i} or w_{j}^{i}, at most n vertices can receive 2 because $d\left(w_{j}^{i}, w_{m}^{l}\right)=5$, $i \neq l, 1 \leq i, l \leq n, 1 \leq j, m \leq r$ and $d\left(w^{i}, w_{m}^{l}\right)=4, i \neq l, 1 \leq i, l \leq n, 1 \leq m \leq r$ and $d\left(u_{i}, w_{m}^{l}\right)=3$, $i \neq l, 1 \leq i, l \leq n, 1 \leq m \leq r$. Thus, the maximum number of vertices that can receive color 2 is n.

Fig. 2. A packing 27-coloring of $K W(6,9)$.
Fact 4: If color 1 is assigned to any vertex w^{i} with 1 , at most $(n-1)\left\lfloor\frac{r}{2}\right\rfloor+2$ vertices receive 1 . But, if color 1 is assigned to any vertex of u_{i} of K_{n} or w_{j}^{i}, at most $n\left\lfloor\frac{r}{2}\right\rfloor+1$ vertices of $K W(n, r)$ can receive color 1 because $d\left(u_{i}, w_{j}^{i}\right)=2$ and $\operatorname{diam}\left(W_{r+1}^{i}\right)=2$. Thus, the maximum number of vertices that can receive color 1 is $n\left\lfloor\frac{r}{2}\right\rfloor+1$. There are $n[(r+2)]$ vertices in $K W(n, r)$ and at most $n\left\lfloor\frac{r}{2}\right\rfloor+1+n+n+n$ vertices receive color $1,2,3$ and 4 . Thus, at least $n[(r+2)]-\left[n+n+n+n\left\lfloor\frac{r}{2}\right\rfloor+1\right]=n\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor-2\right]-1$ vertices should receive distinct colors.

Thus, $\chi_{\rho}(K W(n, r)) \geq 4+n\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor-2\right]-1$.
We give an algorithm to color the uniform n-wheel split graph $K W(n, r)$ and prove that the bound is sharp.

Procedure PACKING COLORING $K W(n, r), n \geq 5, r \geq 6$

Input: A uniform n-wheel split graph $K W(n, r)$

Algorithm:

Step 1: Color the vertices $w_{2 j-1}^{i}, 1 \leq i \leq n, 1 \leq j \leq\left\lfloor\frac{r}{2}\right\rfloor$ of W_{r+1}^{i} by 1 .
Step 2: Color the vertices $w_{2 j}^{i}, 1 \leq i \leq n, 1 \leq j \leq 3$ of W_{r+1}^{i} by $(1+j)$.
Step 3: Color any one vertex of K_{n} in $K W(n, r)$ by 1 .
Step 4: Color remaining vertices of $K W(n, r)$ with distinct colors starting from 5 to $4+n\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor-2\right]-1$.
Output: A packing $4+n\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor-2\right]-1$-coloring of $K W(n, r)$.
Proof of Correctness: The diameter of W_{r+1}^{i} is 2 . Coloring the vertices $w_{2 j-1}^{i}, 1 \leq i \leq n, 1 \leq j \leq\left\lfloor\frac{r}{2}\right\rfloor$ of any W_{r+1}^{i} by 1 , at most $\left\lfloor\frac{r}{2}\right\rfloor$ vertices receive color 1 . There are n wheels in $K W(n, r)$ and since $d\left(w_{j}^{i}, w_{m}^{l}\right)=5$, $i \neq l, 1 \leq i, l \leq n, 1 \leq j, m \leq r$, at most $n\left\lfloor\frac{r}{2}\right\rfloor$ vertices receive color 1 . Since diam $\left(W_{r+1}^{i}\right)=2$, color greater than 1 cannot be used more than once in W_{r+1}^{i}, so that remaining $\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor\right]$ vertices of W_{r+1}^{i} receive distinct colors greater than 1. Therefore, at most $n\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor\right]$ vertices receive distinct colors. Since diam $(K W(n, r))=5$ and $d\left(w_{j}^{i}, w_{m}^{l}\right)=5, i \neq l, 1 \leq i, l \leq n, 1 \leq j, m \leq r$, coloring vertices $w_{2 j}^{i}, 1 \leq i \leq n, 1 \leq j \leq 3$ of any W_{r+1}^{i} at most three vertices receive colors 2,3 and 4 . There are n wheels in $K W(n, r)$. Therefore, $3 n$ vertices receive colors 2, 3 and 4. Thus, $n\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor-3\right]$ vertices receive distinct colors greater than 4 . By the coloring of W_{r+1}^{i} by 1 , at most one vertex of K_{n} receives color 1 . The remaining $(n-1)$ vertices of K_{n} receive distinct colors in addition to $n\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor-3\right]$ vertices. Thus, $n\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor-3\right]+(n-1)=n\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor-2\right]-1$ vertices receive distinct colors from 5 to $4+n\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor-2\right\rfloor-1$. Hence $\chi_{\rho}(K W(n, r))=4+n\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor-2\right]-1$.

The proofs of Theorems 2.11, 2.13 and 2.15 are similar to that of Theorems 2.6 and 2.9.
Definition 2.10 ([13]). Let $u_{i}, 1 \leq i \leq n$ be the vertices of a star S_{n+1} with hub at x. Let $u_{i} w_{i}, 1 \leq i \leq n$ be an edge. Let $W_{r+1}^{i}=C_{r}^{i}+K_{1}$ be wheels with hubs $w_{i}, 1 \leq i \leq n$. The graph obtained is denoted by $S W(n, r)$.

The number of vertices in $S W(n, r)$ is $n(r+2)+1$ and the number of edge is $2 n(r+1)$. The diameter of $S W(n, r)$ is 6 . See Fig. 3 .

Fig. 3. A packing 11-coloring of $S W(6,8)$.
Theorem 2.11. The packing chromatic number of $S W(n, r)$ is given by $\chi_{\rho}(S W(n, r))=5+n\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor-4\right], n \geq$ $3, r \geq 8$.

The algorithm to color $S W(n, r)$ is given below:
Procedure PACKING COLORING $S W(n, r), n \geq 3, r \geq 8$
Input: A graph $S W(n, r)$
Algorithm
Step 1: Color the vertices $w_{2 j-1}^{i}, 1 \leq i \leq n, 1 \leq j \leq\left\lfloor\frac{r}{2}\right\rfloor$ of W_{r+1}^{i} by 1 .
Step 2: Color the vertices $w_{2 j}^{i}, 1 \leq i \leq n, 1 \leq j \leq 4$ of W_{r+1}^{i} by $(1+j)$.
Step 3: Color the hub vertex x by 2 .
Step 4: Color the vertices $u_{i}, 1 \leq i \leq n$ by 1 .
Step 5: Color remaining vertices of $S W(n, r)$ with distinct colors starting from 6 to $5+n\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor-4\right]$.
Output: A packing $5+n\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor-4\right]$-coloring of $S W(n, r)$.
Definition 2.12 ([13]). Let $x_{i}, 1 \leq i \leq n$ be the vertices of the complete graph K_{n}. Let $W_{r+1}^{i}=C_{r}^{i}+K_{1}$ be wheels with hubs $w_{i}, 1 \leq i \leq n$. Let $x_{i} w_{i}, 1 \leq i \leq n$ be an edge. Subdivide each edge $x_{i} w_{i}$ by $u_{i}, 1 \leq i \leq n$. The graph obtained is denoted by $K D W(n, r)$.

The number of vertices in $K D W(n, r)$ is $n(r+3)$ and the number of edge is $n(2 r+1)+n\left(\frac{n+1}{2}\right)$. The diameter of $K D W(n, r)$ is 7. See Fig. 4.

Theorem 2.13. The packing chromatic number of $K D W(n, r)$ is given by $\chi_{\rho}(K D W(n, r))=6+n\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor-\right.$ 4] $-1, n \geq 4, r \geq 10$.

The algorithm to color $K D W(n, r)$ is given below:
Procedure PACKING COLORING $K D W(n, r), n \geq 4, r \geq 10$
Input: A graph $K D W(n, r)$

Algorithm

Step 1: Color the vertices $w_{2 j-1}^{i}, 1 \leq i \leq n, 1 \leq j \leq\left\lfloor\frac{r}{2}\right\rfloor$ of W_{r+1}^{i} by 1 .
Step 2: Color the vertices $w_{2 j}^{i}, 1 \leq i \leq n, 1 \leq j \leq 5$ of W_{r+1}^{i} by $(1+j)$.
Step 3: Color any one vertex of K_{n} in $K D W(n, r)$ by 2.
Step 4: Color the vertices $u_{i}, 1 \leq i \leq n$ by 1 .
Step 5: Color remaining vertices of $K D W(n, r)$ with distinct colors starting from 7 to $6+n\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor-4\right]-1$.
Output: A packing $6+n\left[(r+1)-\left\lfloor\frac{r}{2}\right\rfloor-4\right]-1$-coloring of $K D W(n, r)$.
Definition 2.14 ([13]). The graph $S W_{n}^{r}$ contains a star S_{n+1} with hub at x such that the deletion of the n edges of S_{n+1} partitions the graph into n independent wheels $W_{r+1}^{i}=C_{r}^{i}+K_{1}, 1 \leq i \leq n$ and an isolated vertex. See Fig. 5.

Fig. 4. A packing 17 -coloring of $K D W(6,10)$.

Fig. 5. A packing 19-coloring of $S W_{4}^{9}$.
Theorem 2.15. The packing chromatic number of $S W_{n}^{r}, n \geq 4, r \geq 5$ is given by $\chi_{\rho}\left(S W_{n}^{r}\right)=3+n\left[r-\left\lfloor\frac{r}{2}\right\rfloor-1\right]$.
The algorithm to color $S W_{n}^{r}$ is given below:
Procedure PACKING COLORING $S W_{n}^{r}, n \geq 4, r \geq 5$
Input: A graph $S W_{n}^{r}$

Algorithm

Step 1: Color the vertices $w_{2 j-1}^{i}, 1 \leq i \leq n, 1 \leq j \leq\left\lfloor\frac{r}{2}\right\rfloor$ of W_{r+1}^{i} by color 1 .
Step 2: Color the vertices $w_{2 j}^{i}, 1 \leq i \leq n, 1 \leq j \leq 2$ of W_{r+1}^{i} by color $(1+j)$.
Step 3: Color the hub vertex x by 1 .
Step 4: Color remaining vertices of $S W_{n}^{r}$ with distinct colors starting from 4 to $3+n\left[r-\left\lfloor\frac{r}{2}\right\rfloor-1\right]$.
Output: A packing $3+n\left[r-\left\lfloor\frac{r}{2}\right\rfloor-1\right]$-coloring of $S W_{n}^{r}$.

Acknowledgment

This work is supported by Maulana Azad National Fellowship F1-17.1/2011/MANF-CHR-TAM-2135 of the University Grants Commission, New Delhi, India.

ARTICLE IN PRESS

References

[1] W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, J.M. Harris, D.F. Rall, Broadcast chromatic numbers of graphs, Ars Combin. 86 (2008) 33-49.
[2] B. Brešar, S. Klavžar, D.F. Rall, On the packing chromatic number of cartesian products, hexagonal lattice and trees, Discrete Appl. Math. 155 (2007) 2303-2311.
[3] J. Fiala, P.A. Golovach, Complexity of the packing coloring problem for trees, Discrete Appl. Math. 158 (2010) $771-778$.
[4] C. Sloper, An eccentric coloring of trees, Australas. J. Combin. 29 (2004) 309-321.
[5] J. Fiala, S. Klavžar, B. Lidický, The packing chromatic number of infinite product graphs, European J. Combin. 30 (5) (2009) $1101-1113$.
[6] P. Holub, R. Soukal, A note on packing chromatic number of the square lattice, Electron. J. Combin. 17 (2010) 1-7. Note 17.
[7] J. Ekstein, P. Holub, B. Lidický, Packing chromatic number of distance graphs, Discrete Appl. Math. 160 (2012) 518-524.
[8] O. Togni, On packing colorings of distance graphs, Discrete Appl. Math. 167 (2014) 280-289.
[9] G. Argiroffo, G. Nasini, P. Torres, The packing coloring problem for lobsters and partner limited graphs, Discrete Appl. Math. 164 (2014) 373-382.
[10] G. Argiroffo, G. Nasini, P. Torres, The packing coloring problem for ($q, q-4$) graphs, Comb. Optim., Lect. Notes Comput. Sci. 7422 (2012) 309-319.
[11] A. Finbow, D.F. Rall, On the packing chromatic number of some lattices, Discrete Appl. Math. 158 (2010) 1224-1228.
[12] D. Rall, B. Brešar, A. Finbow, S. Klavžar, On the packing chromatic number of trees, cartesian products and some infinite graphs, Electron. Notes Discrete Math. 30 (2008) 57-61.
[13] Y. Kins, Radio labeling of certain graphs (Ph.D. thesis), University of Madras, India, November 2011.

[^0]: Peer review under responsibility of Kalasalingam University.
 E-mail address: sroysantiago@gmail.com.

